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Abstract

Spatial Pyramid Matching (SPM) and its variants have achieved a lot of
success in image classification. The main difference among them is their
encoding schemes. For example, ScSPM incorporates Sparse Code (SC) in-
stead of Vector Quantization (VQ) into the framework of SPM. Although
the methods achieve a higher recognition rate than the traditional SPM,
they consume more time to encode the local descriptors extracted from the
image. In this paper, we propose using Low Rank Representation (LRR) to
encode the descriptors under the framework of SPM. Different from SC, LRR
considers the group effect among data points instead of sparsity. Benefiting
from this property, the proposed method (i.e., LrrSPM) can offer a better
performance. To further improve the generalizability and robustness, we re-
formulate the rank-minimization problem as a truncated projection problem.
Extensive experimental studies show that LrrSPM is more efficient than its
counterparts (e.g., ScSPM) while achieving competitive recognition rates on
nine image data sets.
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1. Introduction

Image classification system automatically assigns an unknown image to
a category according to its visual content, which has been a major research
direction in computer vision and pattern recognition. Image classification has
two major challenges. First, each image may contain multiple objects with
similar low level features, it is thus hard to accurately categorize the image
using the global statistical information such as color or texture histograms.
Second, a medium-sized grayscale image (e.g., 1024 × 800) corresponds to
a vector with dimensionality of 819, 200, this brings up the scalability issue
with image classification techniques.

To address these problems, numerous impressive approaches [1, 2, 3, 4, 5]
have been proposed in the past decade, among which one of the most popu-
lar methods is Bag-of-Features (BOF) or called Bag-of-Words (BOW). BOW
originates from document analysis [6, 7]. It models each document as the
joint probability distribution of a collection of words. [8, 9, 10] incorporated
the insights of BOW into image analysis by treating each image as a collec-
tion of unordered appearance descriptors extracted from local patches. Each
descriptor is quantized into a discrete “visual words” corresponding to a given
codebook (i.e., dictionary), and then the compact histogram representation
is calculated for semantic image classification.

The huge success of BOF has inspired a lot of works [11, 12]. In partic-
ular, Lazebnik et al. [13] proposed Spatial Pyramid Matching (SPM) which
divides each image into 2l × 2l blocks in different scales l = 0, 1, 2, then com-
putes the histograms of local features inside each block, and finally concate-
nates all histograms to represent the image. Most state-of-the-art systems
such as [14, 15, 16, 17, 18] are implemented under the framework of SPM
and have achieved impressive performance on a range of image classification
benchmarks like Columbia University Image Library-100 (COIL100) [19] and
Caltech101 [20]. Moreover, SPM has been extensively studied for solving
other image processing problems, e.g., image matching [21], fine-grained im-
age categorization [22]. It has also been incorporated into deep learning to
make deep convolutional neural networks (CNN) [23] handling arbitrary sized
images possible. To obtain a good performance, SPM and its extensions have
to pass the obtained representation to a Support Vector Machine classifier
(SVM) with nonlinear Mercer kernels. This brings up the scalability issue
with SPMs in practice.

Although SPM has achieved state-of-the-art recognition rates on a range
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Figure 1: (a) Singular values of a given codebook. The codebook consists of 5,120
basis. It shows that most energy concentrates on the top singular values. (b) Schematic
comparison of the original SPM, ScSPM and the proposed LrrSPM.

of databases, its computational complexity is very high. To speed up SPM,
Yang et al. [24] proposed using Sparse Code (SC) instead of Vector Quantiza-
tion (VQ) to encode each Scale-Invariant Feature Transform (SIFT) descrip-
tor [25] over a codebook. Benefiting from the good performance of sparse
code, Yang’s method (namely ScSPM) with linear SVM obtains a higher
classification accuracy, while using less time for training and testing.

The success of ScSPM could be attributed to that SC can capture the
manifold structure of data sets. However, SC encodes each data point inde-
pendently without considering the grouping effect among data points. More-
over, the computational complexity of SC is proportional to the cube of the
size of codebook (denoted by n). Therefore, it is a daunting task to perform
ScSPM when n is larger than 10, 000. To solve these two problems, this
paper proposes using Low Rank Representation (LRR) rather than SC to
hierarchically encode each SIFT descriptor.

To show our motivation, i.e., the collections of descriptor and representa-
tion are low rank, we carry out k-means clustering algorithm over the SIFT
descriptors of the Caltech101 database [20] and obtain a codebook D con-
sisting of 5,120 cluster centers. By performing Singular Value Decomposition
(SVD) over the codebook shown in Figure 1(a), one can see that most en-
ergy (over 98%) concentrates on the top 2% singular values. In other words,
the data space spanned by the codebook is low rank. For a testing data
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set X ∈ span(D), its representation can be calculated by X = DC. Since
X and D are low rank, then C must be low rank. This observation moti-
vates us to develop an novel SPM method, namely Low Rank Representation
based Spatial Pyramid Matching (LrrSPM). Figure 1 illustrates a schematic
comparison of the original SPM, ScSPM, and LrrSPM. It should be pointed
out that, SPM, ScSPM, and LrrSPM are three basic models which do not
incorporate the label information, kernel function learning, and multiple de-
scriptors learning into their encoding schemes. The major difference among
them is that both SPM and ScSPM perform encoding in the vector space,
whereas LrrSPM calculates the representation in the matrix space.

The contributions of the paper are summarized as follows: 1) Differ-
ent from the existing LRR methods [26, 27, 28], the proposed LrrSPM is a
multiple-scale model which integrates more discriminative information com-
pared to the traditional LRR. 2) Most existing LRR methods are proposed
for clustering, which cannot be used for classification directly. In this paper,
we fill this gap based on our new mathematical formulation. 3) Our LrrSPM
has a closed form solution and can be calculated very fast. After the dictio-
nary is learnt from the training data, LrrSPM computes the representation of
testing data by simply projecting each testing datum into another space. Ex-
tensive experimental results show that LrrSPM achieves competitive results
on nine image databases and is 25− 50 times faster than ScSPM.

The rest of the paper is organized as follows: Section 2 provides a brief
review on two classic image classification methods, i.e., SPM [13] and Sc-
SPM [24]. Section 3 presents our method (i.e., LrrSPM) which uses multiple-
scale low rank representation to represent each image. Section 4 carries out
some experiments using nine image data sets and several popular approaches.
Finally, Section 5 concludes this work.

Notations: Lower-case bold letters represent column vectors and upper-
case bold ones denote matrices. AT and A−1 denote the transpose and
pseudo-inverse of the matrix A, respectively. I denotes the identity matrix.
Table 1 summarizes some notations used throughout the paper.

2. Related works

In this section, we mainly introduce SPM and ScSPM which employ two
basic encoding schemes, i.e., vector quantization and sparse code. To the
best of our knowledge, most of other SPM based methods can be regarded as
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Table 1: Some used mathematic notations.
Notation Definition

n the number of descriptors (features)
l the scale or resolution of a given image
m the dimensionality of the descriptors
s the number of subjects
k the size of codebook
r the rank of a given matrix
y an image
X = [x1,x2, . . . ,xn] a set of features
D = [d1,d2, . . . ,dk] codebook
C = [c1, c2, . . . , cn] the representation of X over D

the extensions of them, e.g., the method proposed in [17] is a kernel version
of ScSPM.

Let X ∈ Rm×n be a collection of the descriptors and each column vector
of X represents a feature vector xi ∈ R

m, SPM) [13] applies VQ to encode
xi via

min
C,D

n
∑

i=1

‖xi −Dci‖
2
2 s.t. Card(ci) = 1, (1)

where ‖ · ‖2 denotes ℓ2-norm, ci ∈ R
k is the representation or called the

cluster assignment of xi, the constraint Card(ci) = 1 guarantees that only
one entry of ci is with value of one and the rest are zeroes, and D ∈ Rm×k

denotes the codebook.
In the training phase, D andC are iteratively solved, and VQ is equivalent

to the classic k-means clustering algorithm which aims to

min
D

n
∑

i=1

k
∑

j=1

min ‖xi − dj‖
2
2, (2)

where D consists of k cluster centers identified from X.
In the testing phase, each xi ∈ X is actually assigned to the nearest dj ∈

D. Since each ci has only one nonzero element, it discards a lot of information
for xi (so-called hard coding problem). To solve this problem, Yang et al. [24]
proposed ScSPM which uses sparse representation to represent xi via

min
ci

‖xi −Dci‖
2
2 + λ‖ci‖1, (3)
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where ‖ · ‖1 denotes ℓ1-norm which sums the absolute values of a vector, and
λ > 0 is the sparsity parameter.

The advantage of ScSPM is that the sparse representation ci has a small
number of nonzero entries and it can represent xi better with less reconstruc-
tion errors. Extensive studies [15, 24] have shown that ScSPM with linear
SVM is superior to the original SPM with nonlinear SVM. The disadvantage
of ScSPM is that each data point xi is encoded independently, and thus the
sparse representation ci cannot reflect the class structure. Moreover, the
computational complexity of sparse coding is very high so that any medium-
sized data set will bring up scalability issue with ScSPM. Motivated by SPM
and ScSPM, a lot of works have been proposed, e.g., nonlinear extensions [17],
supervised extensions [18], and multiple descriptors fusing [29].

3. Fast Low Rank Representation Learning for Spatial Pyramid

Matching

In this section, we introduce LrrSPM in three steps. First, we give the ba-
sic formulation of LrrSPM which requires solving a rank-minimization prob-
lem. Moreover, we theoretically show that the representation is also low
rank if the data space spanned by the codebook is low rank. This provides
a theoretical foundation for our method. Second, we further improve the
generalization ability and robustness of the basic model by adopting the
regularization technique and recent theoretical development in robustness
learning. Finally, a real-world example is given to show the effectiveness of
the obtained representation.

LRR can capture the relations among different subjects, which has been
widely studied in image clustering [28], semi-supervised learning [30], and
dimension reduction [31]. In this paper, we introduce LRR into SPM to
hierarchically encode each local descriptor. Note that, it is nontrivial to
incorporate LRR into the framework of SPM due to the following reasons.
1) the traditional LRR are generally used for clustering, which cannot be
directly used for classification. In the context of classification, we need to
reformulate the objective function that must lead to a different optimiza-
tion problem. 2) To improve the robustness, the traditional LRR enforces
ℓ1-norm over the possible errors, which results a very high computational
complexity. In this paper, we do not take this error-removal strategy but
perform truncated operator into the projection space to eliminate the effect
of errors.
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Figure 2: Flow chart of the proposed algorithm.

Figure 2 provides a flow chart of the proposed algorithm. Different from
the existing LRR methods, we use the training data rather than all samples
as codebook. We aim at solving

min
C

rank(C) s.t. X = DC, (4)

where X ∈ Rm×n denotes the collection of SIFT descriptors, Cn×k denotes
the representation of X over the codebook Dm×k, and Dm×k generally con-
sists of k cluster centers.

Note that, LrrSPM (i.e., eq.4) enforces rank minimization operator over
the representation matrix, which is significantly different from the standard
SPM (i.e., eq.1) and ScSPM (i.e., eq.3). LrrSPM exploits the grouping effect
of data points in 2-dimensional space, whereas SPM and ScSPM obtain the
representation in 1-dimensional space (i.e., vector).

The optimal solution to eq.4 is given by

C∗ = D−1X, (5)

where D−1 denotes the inverse of D. Note that, one always calculates the
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pseudo-inverse of D in practice, denoted by C∗ = D†X.
Based on the above results, we have

rank(C∗) ≤ min{rank(D†), rank(X)}

= min{rank(D), rank(X)}. (6)

This shows how the rank of D affects that of C. Moreover, it also verifies
our motivation once again, i.e., C must be low rank when the dictionary D

is low rank.
To avoid overfitting, we further incorporate the regularization technique

and obtain the following solution:

C∗ = (DTD+ λI)−1DTX, (7)

where λ ≥ 0 is the regularization parameter and I denotes the identity ma-
trix. Note that, nuclear-norm based representation is actually equivalent to
the frobenius-norm based representation under some conditions, please refer
to [32] for more theoretical details.

In practice, D probably contains the errors such as noise, and thus the
obtained representation may be sensitive to various corruptions. To achieve
robust results, we recently proved that the trivial coefficients (i.e., small
coefficients) always correspond to the representation over errors in ℓ2-norm
based projection space, i.e.,

Lemma 1 ([33]). For any nonzero data point x in the subspace SDx
except

the intersection between SDx
and SD

−x
, i.e., x ∈ {S|S = SDx

\SD
−x
}, the

optimal solution of

min ‖c‖2 s.t. x = Dc, (8)

over D is given by c∗ which is partitioned according to the sets Dx and D−x,

i.e., c∗ =

[

c∗x
c∗−x

]

. Thus, we must have [c∗x]r0,1 > [c∗−x]1,1. Dx consists of

the intra-subject data points of x and D−x consists of the inter-subject data
points of x. [c∗x]rx,1 denotes the rx-th largest absolute value of the entries of
c∗x, and rx is the dimensionality of SD. Note that, noise and outlier could be
regarded as a kind of inter-subject data point of x.

Lemma 2 ([33]). Consider a nonzero data point x in the intersection between
SDx

and SD
−x
, i.e., x ∈ {S|S = SDx

∩ SD
−x
}. Let c∗, z0, and ze be the
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optimal solution of
min ‖c‖2 s.t. x = Dc (9)

over D, Dx, and D−x, and c∗ =

[

c∗x
c∗−x

]

is partitioned according to the sets

D = [Dx D−x]. If ‖z0‖p < ‖ze‖p, then c∗x 6= 0 and c∗−x = 0.

Based on Lemmas 1 and 2, we can obtain a robust representation by
truncating the coefficients over errors. Mathematically,

Z = Hǫ(C
∗), (10)

where the hard thresholding operator Hǫ(C) keeps large entries and elimi-
nates trivial ones for each column of C∗. C∗ is the optimal solution of eq.7
which is also the minimizer of eq.8.

Figure 3 shows a comparison among sparse code (eq.3), ℓ2-norm regular-
ized representation (eq.7), and LrrSPM (eq.10). In this example, we carry out
experiments using two subsets of Extended Yale database B [34], where the
dictionary subset and the testing subset consists of 12 sample, respectively.
We randomly select one sample from the first subject as testing sample and
calculated its representation. Figure 3(a)–3(c) illustrates the obtained rep-
resentations and Figure 3(d) shows the singular values of the representation
matrix for all testing data. From the results, the proposed method has the
following advantages: 1) LrrSPM is more discriminative since its coefficients
over the second subjects are zeroes. 2) it provides a compact representation
with better representative capacity.

Algorithm 1 summarizes our algorithm. Similar to [13, 24], the codebook
D can be generated by the k-means clustering method or dictionary learning
methods such as [35]. For training or testing purpose, LrrSPM can get the
low rank representation in an online way, which further explores the potential
of LRR in online and incremental learning. Moreover, our method is very
efficient since its coding process only involves a simple projection operation.

4. Experiments

4.1. Baseline Algorithms and Databases

We compared our method with four SPM methods using nine image
databases. The MATLAB code of LrrSPM can be downloaded from the
authors’ website www.machineilab.org/users/pengxi and the codes of the

9
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Figure 3: An example using two subsets of Extended Yale database B, where the testing
subset and the dictionary subset consist of 12 samples, respectively. The first and the last
six atoms of the dictionary belong to two different subjects. (a)–(c) sparse representation
(eq.3), ℓ2-regularized representation (eq.7), and the proposed LrrSPM (eq.10) of a given
querying sample that belongs to the first subject. (d) The singular value of the coefficient
matrices. Figure 3(a)–3(c) show that only the coefficients of LRR over the second subject
are zeroes. This makes our model more discriminative. Moreover, Figure 3(d) shows that
the energy of our method is more concentrated, i.e., our model is more competitive in
terms of the principle of minimum description length.

baseline methods are publicly accessible. Besides our own experimental re-
sults, we also quote some results in the literature.

The baseline methods include BOF [10] with linear SVM (LinearBOF)
and kernel SVM (KernelBOF), SPM [13] with linear SVM (LinearSPM) and
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Algorithm 1 Fast LRR for Spatial Pyramid Matching (LrrSPM).

Input: The codebook D ∈ R
m×k, the input image y, and the regularization

parameter λ.
1: Calculate P =

(

DTD+ λI
)−1

DT and store it.
2: For each image y, detect and extract the SIFT descriptors X from y.
3: Calculate the representation of y via C = PX and normalize each column of

C to have a unit ℓ2-norm.
4: If the dictionary contains errors, obtain the LRR of y by thresholding the

trivial entires of cji = [c1i, c2i, · · · , cki]
T at ǫ (generally, ǫ = 98%) via

cji =







cji k
cji

∑

j cji
< ǫ

0 otherwise

(11)

5: Divide C into 2l × 2l blocks, where l denotes the scale or the level of the
pyramid. For each block at each level, perform max pooling for each block
at each level via zi = max{|c1i |, |c

2
i |, · · · , |c

b
i |}, where c

j
i denotes the j-th LRR

vector belonging to the i-th block, and b = 2l × 2l.
Output: Form a single representation vector for y by concatenating the set of zi.

kernel SVM (KernelSPM), Sparse Coding based SPM with linear SVM(ScSPM) [24],
and Locality-constrained Linear Coding with linear SVM (LLC) [15].

The used databases include five scene image data sets, three object image
data sets (i.e., 17flowers [36], COIL20 [37] and COIL100 [19]), and one facial
image database (i.e., Extended Yale B [34]). The scene image data sets are
from Oliva and Torralba [38], Fei-Fei and Perona [10], Lazebnik et al. [13],
Fei-Fei et al. [20], and Griffin et al. [39] which are referred to as OT, FP,
LS, Caltech101, and Caltech256, respectively. Table 2 gives a brief review
on these data sets.

4.2. Experimental setup

To be consistent with the existing works [13, 15, 24], we use dense sam-
pling technique to divide each image into 2l×2l blocks (patches) with a step
size of 6 pixels, where l = 0, 1, 2 denotes the scale. And we extract the SIFT
descriptors from each block as features. To obtain the codebook, we use the
k-means clustering algorithm to find 256 cluster centers for each data set and
use the same codebook for different algorithms. In each test, we split the
samples per subject into two parts, one is for training and the other is for

11



Table 2: A summarization of the evaluated databases. s denotes the number of classes
and p denotes the number of samples for each subject.

Databases Type Data Size Image Size p s

OT scene 2688 256 × 256 260–410 8
FP scene 3860 250 × 300 210–410 13
LS scene 4486 250 × 300 210–410 15
Caltech101 scene 9144 300 × 200 31–800 102
Caltech256 scene 30,607 300 × 200 80–827 256
17flowers flowers 1,360 − 80 17
COIL20 object 1440 128 × 128 72 20
COIL100 object 7200 128 × 128 72 100
Extended Yale B face 2414 168 × 192 59–64 38

testing. Following the common benchmarking procedures, we repeat each
experiment five times with different training and testing data partitions and
record the average of per-subject recognition rates and the time costs for
each test. We report the final results by the mean and standard deviation
of the recognition rates and the time costs. For the LrrSPM approach, we
fix ǫ = 0.98 and assign different λ for different databases. For the competing
approaches, we directly adopt the parameters configuration in the original
works [13, 15, 24]. Moreover, we also quote the performance of these methods
reported in the original works.

4.3. Influence of the parameters

LrrSPM has two user-specified parameters, the regularization parameter
λ is used to avoid overfitting and the thresholding parameter ǫ is used to
eliminate the effect of the errors. In this section, we investigate the influence
of these two parameters on OT data set. We fix ǫ = 0.98 (λ = 0.7) and
reported the mean classification accuracy of LrrSPM with the varying λ (ǫ).
Figure 3 shows the results, from which one can see that LrrSPM is robust
to the choice of the parameters. When λ increases from 0.2 to 2.0 with an
interval of 0.1, the accuracy ranges from 83.68% to 85.63%; When ǫ increases
from 50% to 100% with an interval of 2%, the accuracy ranges from 84.07%
to 86.03%.

4.4. Performance with Different Sized Codebooks

In this Section, we evaluate the performance of LrrSPM when the size
of codebook increases from 256 to 4096. we carry out experiments on the
Caltech101 data set by randomly selecting 30 samples per subject for training

12
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(b) The influence of ǫ, where λ = 0.70.

Figure 4: The mean and standard deviation of the recognition rates of LrrSPM on the OT
database.

Table 3: The performance of LrrSPM on Caltech101 w.r.t. increasing size of codebook,
where the size of codebook k increases from 256 to 4096.

Metric k = 256 k = 512 k = 1024 k = 2048 k = 4096

Accuracy 65.89 ± 1.03 67.75 ± 0.92 68.43 ± 1.04 69.81 ± 1.01 70.37± 0.98
Time cost 640.83 1005.74 1691.35 3697.03 8952.43

and using the rest for testing. The λ is set as 0.7 for LrrSPM. Table 3
shows that with increasing k, LrrSPM achieves better recognition results but
takes more time for coding and classification. Specifically, when k increases
from 256 to 4096, the accuracy increases by 4.48%, but the computing time
increases by 1397%.

4.5. Scene Classification

In this section, the experimental studies consist of two parts. The first
part reports the performance of LrrSPM on three scene image databases.
The codebook consists of 256 bases identifying by the k-means method. For
each data set, we randomly choose 100 samples from each subject for training
and used the rest for testing.

Table 4 shows that LrrSPM is slightly better than the other evaluated
algorithms in most tests. Although LrrSPM is not the fastest method, it
finds a good balance between the efficiency and the classification rate. On
the OT database, the speed of LrrSPM is about 5.49 and 46.07 times faster

13



Table 4: The classification accuracy and the time cost of different methods on the OT,
FP, and LS databases.

Algorithms
the OT database the FP database the LS database

Accuracy (%) Time (s) Accuracy (%) Time (s) Accuracy (%) Time (s)

LrrSPM (Ours) 85.63±0.56 116.67 80.90±0.75 159.84 76.34±0.58 189.79
LinearBOF 78.95 ± 0.12 102.76 72.13± 0.43 195.85 66.38 ± 0.88 169.25
KernelBOF 76.28 ± 0.16 103.65 68.18± 0.24 203.89 62.67 ± 0.78 178.34
linearSPM 76.09 ± 0.55 209.14 71.63± 0.51 239.44 66.91 ± 0.78 188.24
KernelSPM 73.52 ± 0.64 196.20 64.97± 1.50 266.96 60.83 ± 0.39 196.35
ScSPM 84.44 ± 0.24 5375.41 79.04± 0.91 5841.89 74.40 ± 0.45 9539.62
LLC 85.55 ± 0.34 640.27 80.34± 0.76 943.81 76.99±1.21 1059.96
Rasiwasia’s method - - 76.20 - 72.50 ± 0.30 -

than ScSPM and LLC, respectively. On the LS database, the speedups are
5.59 and 50.26 times.

The second part of experiment reports the performance of the evaluated
methods using Caltech101, Caltech256, and Oxford 17flowers database by
randomly selecting 30 samples per subject for training and using the rest
for testing. In the tests, the dictionary contains 256 bases identified by the
k-means clustering method. We fix λ = 0.7, λ = 0.24, and λ = 0.145 for
LrrSPM on these three data sets.

Table 5 reports the results from which we can find that, on the Caltech101
data set, the recognition rates of LrrSPM is 28.78% higher than that of Lin-
earBOF, 20.73% higher than that of Kernel BOF, 22.36% higher than that of
LinearSPM, 12.38% higher than that of KernelSPM, 0.5% higher than that
of ScSPM and 1.97% lower than that of LLC. However, LrrSPM only takes
about 3% (30%) CPU time of ScSPM (LLC). On the 17flowers database,
LrrSPM outperforms the other evaluated methods by a considerable perfor-
mance margin. Its recognition rate is 4.98% higher than ScSPM with 21
times speedup.

Besides our experimental implementations, Table 6 summarizes some
state-of-the-art results reported by [1, 13, 24, 40, 41, 42] on Caltech101. One
can find that we do not reproduce the results reported in the literature for
some evaluated methods. This could be attributed to the subtle engineering
details. Specifically, Lazebnik et al. [13] only used a subset of Caltech101
(50 images for each subject) rather than all samples. [15, 24] used a larger
codebook (k = 2048) and the codebook could probably be different even
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Table 5: The classification accuracy and the time cost of different methods on the Cal-
tech101, Caltech256, and 17flowers database.

Algorithms
Caltech101 Caltech256 17flowers

Accuracy (%) Time (s) Accuracy (%) Time (s) Accuracy (%) Time (s)

LrrSPM (Ours) 65.89± 1.03 640.83 27.43± 0.98 2518.13 61.42± 1.46 121.00
LinearBoF 37.11± 1.11 307.50 15.09± 1.45 2474.96 40.19± 1.90 45.79
KernelBoF 45.16± 0.81 315.62 11.25± 0.46 3035.73 34.70± 2.79 47.81
linearSPM 43.53± 1.17 410.79 23.12± 0.27 2511.19 44.12± 2.45 86.66
KernelSPM 53.51± 1.11 467.68 12.03± 0.48 5819.58 36.35± 2.20 94.79
ScSPM 65.39± 1.21 18964.84 28.60± 0.15 58313.03 56.44± 0.54 2614.39
LLC 67.86± 1.17 2203.58 29.35± 0.42 6893.68 59.89± 1.55 747.49

Table 6: The classification accuracy on Caltech101 and Caltech256 reported by some
recent literatures. DBN, CNN, and OtC are the abbreviations of deep belief network,
convolutional neural network, and object to class method, respectively.

KernelSPM ScSPM LLC GMatching DBN CNN OtC

64.60 ± 0.80 73.20 ± 0.54 73.44 80.30± 1.2 65.40 66.30 64.26
− 34.02 ± 0.35 41.19 38.1 − − −

though the size of codebook is fixed due to the randomness. Duchenne et
al. [1] reported the state-of-the-art accuracy of 80.30% and 38.1% on Cal-
tech101 and Caltech256 by using graph matching based method to improve
the performance of classifier. With multiple kernel learning, Yang et al. [29]
proposed a model which achieves 84.3% of accuracy on Caltech101. This sig-
nificant improvement may attribute to the nonlinearity of kernel functions.
Moreover, Todorovic and Ahuja [43] showed that the performance of model
can be further improved by employing ensemble learning method over multi-
ple descriptors. Their method achieves 49.5% of accuracy on Caltech256 by
fusing six different descriptors.

4.6. Object and Face Recognition

This section investigates the performance of LrrSPM on two object im-
age data sets (i.e., COIL20 and COIL100) and one facial image database
(i.e., Extended Yale Database B). To analyze the time costs of the exam-
ined methods, we also report the time costs of the methods for encoding and
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Table 7: Object image classification results of different methods on the COIL20 database
with different training samples.

Algorithms
Training Images for Each Subject

10 20 30 40 50

LrrSPM (Ours) 97.90±0.42 99.52±0.87 100.00±0.00 100.00±0.00 100.00±0.00

LinearBOF 87.55± 0.17 94.08 ± 0.94 96.65± 0.42 97.38± 0.26 98.46± 0.84
KernelBOF 86.47± 0.27 95.60 ± 1.62 97.43± 1.10 98.41± 1.24 98.46± 1.09
linearSPM 85.00± 1.00 92.23 ± 1.85 94.17± 1.39 97.09± 1.17 97.09± 0.57
KernelSPM 86.61± 0.76 93.14 ± 2.30 95.41± 0.63 98.28± 1.56 98.64± 1.41
ScSPM 97.09± 1.13 98.85 ± 0.98 99.65± 0.76 100.00±0.00 100.00±0.00

LLC 97.17± 1.14 99.32 ± 1.00 99.64± 0.89 99.84± 0.89 100.00±0.00

Table 8: Object image classification results of different methods on the COIL100 database
with different training samples.

Algorithms
Training Images for Each Subject

10 20 30 40 50

LrrSPM (Ours) 91.19±0.65 97.39±0.78 99.29±0.21 99.87±0.36 99.85±0.07

LinearBOF 84.32± 1.15 91.65 ± 0.32 94.76± 0.35 95.99 ± 0.42 96.81± 0.36
KernelBOF 82.32± 1.12 92.77 ± 0.53 94.01± 0.75 96.36 ± 0.66 97.20± 0.48
linearSPM 84.84± 0.64 92.17 ± 0.63 95.30± 0.53 96.46 ± 0.28 97.64± 0.33
KernelSPM 86.01± 0.12 92.62 ± 0.61 96.49± 0.98 97.56 ± 0.88 98.29± 0.32
ScSPM 90.56± 0.34 94.73 ± 0.57 97.62± 0.15 98.44 ± 0.10 99.81± 0.07
LLC 91.26±0.42 96.35 ± 0.65 97.97± 0.34 98.49 ± 0.24 99.81± 0.19

classifying.
Tables 7– 9 report the recognition rate of the tested approaches on COIL20,

COIL100, and Extended Yale B, respectively. In most cases, our method
achieves the best results and is followed by ScSPM and LLC. When 50 sam-
ples per subject of COIL20 and COIL100 are used for training the classifier,
LrrSPM groups all the testing images into the correct categories. On the Ex-
tended Yale B, LrrSPM also classifies almost all the samples into the correct
categories (the recognition rate is about 99.81%).

Table 10 shows the efficiency of the evaluated methods. One can find that
LrrSPM, BOF, and SPM are more efficient than ScSPM and LLC both in the
process of encoding and classification. Specifically, the CPU time of LrrSPM
is only about 2.35%–3.90% of that of ScSPM and about 5.99%–10.44% of
that of LLC.
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Table 9: Face image classification results of different methods on the Extended YaleB
Database B with different training samples.

Algorithms
Training Images for Each Subject

10 20 30 40 50

LrrSPM (Ours) 87.08±0.41 96.03±0.89 98.28±0.55 99.23±0.81 99.81±0.83

LinearBOF 50.26± 1.25 64.13 ± 0.73 70.66± 1.28 73.78 ± 0.60 77.21± 2.14
KernelBOF 59.59± 2.33 63.51 ± 1.27 71.35± 1.40 76.25 ± 1.67 83.56± 1.98
linearSPM 50.21± 3.60 70.05 ± 1.20 80.82± 1.95 84.39 ± 0.60 88.68± 1.73
KernelSPM 54.49± 2.52 71.80 ± 1.32 85.54± 3.53 84.84 ± 2.10 88.90± 3.10
ScSPM 86.79± 0.20 94.22 ± 0.45 98.05± 0.44 99.00 ± 0.87 99.57± 1.16
LLC 84.79± 0.59 95.45 ± 0.64 98.05± 0.41 98.98 ± 0.25 99.23± 0.93

Table 10: The time costs (seconds) for encoding and classification (including training
and testing) of different methods on three image databases. The speed of LrrSPM is
25.67–42.58 times faster than ScSPM and 9.58–16.68 times faster than LLC.

Algorithms
COIL20 COIL100 Extended Yale B

Coding Classification Coding Classification Coding Classification

LrrSPM 16.54 1.4 43.91 4.49 49.67 2.69
LinearBOF 11.54 0.12 11.53 0.11 59.92 0.26
KernelBOF 11.54 11.54 11.53 0.78 59.92 2.05
linearSPM 12.15 0.17 78.92 2.28 93.38 0.52
KernelSPM 12.15 1.5 78.92 36.79 93.38 8.25
ScSPM 424.48 0.79 1837.03 4.07 2114.88 3.08
LLC 275.94 3.86 432.2 6.34 475.94 3.86

5. Conclusion

In this paper, we proposed a spatial pyramid matching method which
is based on the lowest rank representation (LRR) of the SIFT descriptors.
The proposed method, named as LrrSPM, formulates the quantization of the
SIFT descriptors as a rank minimization problem and utilizes the multiple-
scale representation to characterize the statistical information of the image.
LrrSPM is very efficient in computation while still maintaining a competitive
accuracy on a range of data sets. In general, LrrSPM is 25–50 times faster
than ScSPM and 5–16 times faster than LLC. Experimental results based on
several well-known data sets show the good performance of LrrSPM.

Each approach has its own advantages and disadvantages. LrrSPM is
based on the low rank assumption of data space. If this assumption is unsat-
isfied, the performance of our method may be degraded. Moreover, although

17



LrrSPM performs comparable to ScSPM and LLC with significant speedup,
its performance can be further improved by referring to the recently-proposed
methods. By referring to [17], one can develop the nonlinear LrrSPM by in-
corporating kernel function into our objective function. By referring to [18],
one can utilize the label information to design supervised LrrSPM. More-
over, the performance of LrrSPM can also be improved by fusing multiple
descriptors as [43] does.
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