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Constructing the L2-Graph for Robust Subspace
Learning and Subspace Clustering
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Abstract—Under the framework of graph-based learning, the
key to robust subspace clustering and subspace learning is to
obtain a good similarity graph that eliminates the effects of errors
and retains only connections between the data points from the
same subspace (i.e., intrasubspace data points). Recent works
achieve good performance by modeling errors into their objec-
tive functions to remove the errors from the inputs. However,
these approaches face the limitations that the structure of errors
should be known prior and a complex convex problem must be
solved. In this paper, we present a novel method to eliminate
the effects of the errors from the projection space (represen-
tation) rather than from the input space. We first prove that
�1-, �2-, �∞-, and nuclear-norm-based linear projection spaces
share the property of intrasubspace projection dominance, i.e.,
the coefficients over intrasubspace data points are larger than
those over intersubspace data points. Based on this property, we
introduce a method to construct a sparse similarity graph, called
L2-graph. The subspace clustering and subspace learning algo-
rithms are developed upon L2-graph. We conduct comprehensive
experiment on subspace learning, image clustering, and motion
segmentation and consider several quantitative benchmarks clas-
sification/clustering accuracy, normalized mutual information,
and running time. Results show that L2-graph outperforms
many state-of-the-art methods in our experiments, including
L1-graph, low rank representation (LRR), and latent LRR, least
square regression, sparse subspace clustering, and locally linear
representation.

Index Terms—Error removal, feature extraction, robustness,
spectral clustering, spectral embedding.

I. INTRODUCTION

THE KEY to graph-based learning algorithms is the sparse
eigenvalue problem, i.e., constructing a block-diagonal

affinity matrix whose nonzero entries correspond to the data
points belonging to the same subspace (i.e., intrasubspace data
points). Based on the affinity matrix, a series of subspace
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learning and subspace clustering algorithms [1]–[4] were pro-
posed, where subspace learning aims at learning a projection
matrix to reduce the dimensionality of inputs and subspace
clustering seeks to categorize inputs into multiple clusters in
a low-dimensional space.

Broadly speaking, there are two popular ways to build a simi-
larity graph, one is based on pairwise distances (e.g., Euclidean
distance) [5]–[8] and the other is based on reconstruction coeffi-
cients (e.g., sparse representation) [9]–[12]. The second family
of methods has recently attracted a lot of interest from the
community, where one assumes that each data point can be
represented as a linear combination of other points. When the
data are clean and the subspaces are mutually independent or
disjoint, the approaches such as [13] and [14] can achieve good
results. In real applications, however, the data sets are likely
to contain various types of noise and data could often lie near
the intersection of multiple dependent subspaces. As a result,
intersubspace data points (i.e., the data points with different
labels) may connect to each other with very high edge weights,
which degrades the performance of graph-based methods. To
achieve more robust results, some algorithms have been pro-
posed [15]–[21]. Vidal [22] conducted a comprehensive survey
regarding subspace clustering.

Recently, [9]–[12] provided new ways to construct the graph
using the sparse or lowest-rank representation. Moreover,
Elhamifar and Vidal [9] and Liu et al. [12] remove errors from
the inputs by modeling the errors in their objective functions.
Through enforcing different constraints (e.g., �2- or �1-norm)
over errors, the methods can accordingly handle different
types of errors (e.g., Gaussian or Laplacian noise), and have
achieved good performance in feature extraction and cluster-
ing. Inspired by their successes, such error-removing method
is widely adopted in a number of approaches [23]–[32].

One major limitation of these approaches is that the struc-
ture of errors should be known as the prior knowledge so that
the errors can be appropriately formulated into the objective
function. In practice, such prior knowledge is often difficult
to obtain, while the algorithms may work well only if the
assumption on error structure is correct. In addition, these
methods must solve a convex problem whose computational
complexity is at least proportional to the cubic of the data size.

Different from these approaches, we propose a novel
error-removing method, where we seek to encode first and
then remove errors. The corresponding method can handle
errors from various types of projection spaces, including the
�p-norm- (where p = {1, 2,∞}) and nuclear-norm-based
projection space. The method is based on a mathematically
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trackable property of the projection space: intrasubspace pro-
jection dominance (IPD), which says that small coefficients
(trivial coefficients) always correspond to the projections over
errors. With the IPD property, we further propose the L2-graph
for subspace clustering and subspace learning considering the
case of �2-norm. Despite the fact that the error structure is
unknown and the data are grossly corrupted, the proposed
method is able to achieve good performance.

The contributions of this paper is summarized as follows.
1) We prove the IPD property shared by �1-, �2-, �∞-, and

nuclear-norm-based projection spaces, which makes the
elimination of errors from projection space possible.

2) With the IPD property, we propose a graph-construction
method under �2-norm considering its computational
efficiency. The proposed method (L2-graph) measures
the similarity among data points through the recon-
struction coefficients. There is a closed-form solution
to obtain the coefficients and the proposed method is
more efficient than [9]–[12] and [24].

3) Under the framework of graph embedding [33], [34], we
develop two new algorithms, respectively, for robust sub-
space clustering and subspace learning, by embedding
the L2-graph into a low-dimensional space.

This paper is an extension of the work in [35]. Compared
with [35], we further improve this paper from the following
several aspects.

1) Besides �1-, �2-, and �∞-norm-based projection space,
we prove that nuclear-norm-based projection space also
possesses the property of IPD.

2) Motivated by the success of sparse representation in
subspace learning [10], [11], [32], [36], we propose
a new subspace learning method derived upon the
L2-graph. Extensive experimental results show that our
method outperform state-of-the-art feature extraction
methods such as sparse subspace clustering (SSC) [9]
and low rank representation (LRR) [12] in accuracy and
robustness.

3) We explore the potential of L2-graph in estimating the
latent structures of data.

4) Besides image clustering, we extend L2-graph in the
applications of motion segmentation and unsupervised
feature extraction.

5) We investigate the performance of our method more
thoroughly (eight new data sets).

6) We conduct comprehensive analysis for our method,
including the influence of different parameters, differ-
ent types of errors (e.g., additive/nonadditive noises
and partial disguises), and different experimental
settings.

The rest of this paper is organized as follows. Section II
presents some related works on graph construction methods.
Section III proves that it is feasible to eliminate the effects
of errors from the representation. Section IV proposes the
L2-graph algorithm and two methods for subspace learning
and subspace clustering derived upon L2-graph. Section V
reports the performance of the proposed methods in the
context of feature extraction, image clustering, and motion
segmentation. Finally, Section VI summarizes this paper.

TABLE I
NOTATIONS AND ABBREVIATIONS

A. Notations

Unless specified otherwise, lower-case bold letters denote
column vectors and upper-case bold ones denote matrices.
AT and A−1 denote the transpose and pseudo-inverse of the
matrix A, respectively. I denotes the identity matrix. Table I
summarizes some notations and abbreviations used throughout
this paper.

II. RELATED WORK

Over the past two decades, a number of graph-based algo-
rithms have been proposed with various applications such as
feature extraction [34], subspace clustering [37], and object
tracking [38]. The key to these algorithms is the construction
of the similarity graph and the performance of the algorithms
largely hinges on whether the graph can accurately determine
the neighborhood of each data point, particularly when the
data set contains errors.

There are two ways to build a similarity graph, i.e., the
pairwise distance and the reconstruction coefficients. In the
pairwise distance setting, one of the most popular metric is
Euclidean distance with heat kernel, that is

similarity
(
xi, xj

) = exp−‖xi−xj‖2
2

τ (1)

where xi and xj denote two data points and τ denotes the
width of the heat kernel.

This metric has been used to build the similarity graph for
subspace clustering [33] and subspace learning [14]. However,
pairwise distance is sensitive to noise and outliers since its
value only depends on the corresponding two data points.
Consequently, pairwise distance-based algorithms may fail to
handle noise corrupted data.

Alternatively, reconstruction coefficients-based similarity is
data-adaptive. Such property benefits the robustness, and as
a result these algorithms have become increasingly popular,
especially in high-dimensional data analysis. Three reconstruc-
tion coefficients are widely used to represent the neighbor
relations among data points, i.e., locally linear representa-
tion (LLR) [1], sparse representation (SR), and LRR.
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For each data point xi, LLR seeks to solve the following
optimization problem:

min ‖xi − Dici‖2
2 s.t. 1Tci = 1 (2)

where ci ∈ Rk is the coefficient of xi over Di ∈ Rm×k and
Di consists of k nearest neighbors of xi in terms of Euclidean
distance. Another well known relevant work is neighborhood
preserving embedding (NPE) [34] which uses LLR to con-
struct the similarity graph for subspace learning. A significant
problem associated with such methods is that they cannot
achieve a good result unless the data are uniformly sampled
from a smooth manifold. Moreover, if the data are grossly
corrupted, the performance of these methods will degrade
considerably.

Different from LLR, SR uses a few bases to represent each
data point. Such strategy is widely used to construct the sim-
ilarity graph for subspace clustering [9], [11] and subspace
learning [10], [11]. A robust version of SR is

min
C,E,Z

‖C‖1 + λE‖E‖1 + λZ‖Z‖F

s.t. X = XC + E + Z, 1TC = 1, diag(C) = 0 (3)

where ‖C‖1 denotes the �1-norm of the vectorized form of the
matrix C, X ∈ Rm×n is the given data set, C ∈ Rn×n denotes
the sparse representation of the data set X, E corresponds to
the sparse outlying entries, and Z denotes the reconstruction
errors caused by the constrained representation flexibility. 1 is
a column vector with n entries of 1, and the parameters λE

and λZ balance the cost terms of the objective function.
Different from SR, LRR uses the low rank representation to

build the graph, which is proved to be very effective in sub-
space clustering [12] and subspace learning [24]. The method
solves the following optimization problem:

min ‖C‖∗ + λ‖E‖p s.t. X = XC + E (4)

where ‖·‖∗ denotes the nuclear norm that summarizes the
singular value of a given data matrix. ‖·‖p could be cho-
sen as �2,1-, �1-, or Frobenius-norm. The choice of the norm
only depends on which kind of error is assumed in the
data set. Specifically, �2,1-norm is usually adopted to depict
sample-specific corruption and outliers, �1-norm is used to
characterize random corruption, and Frobenius norm is used
to describe the Gaussian noise.

From (3) and (4), it is easy to see that SR and LRR-based
methods remove errors from the input space by modeling them
in their objective functions. A number of works [23]–[25], [27]
have also adopted such error-removing strategy, showing its
effectiveness in various applications. In this paper, we pro-
pose a novel error-removing method that seeks to eliminate
the effect of errors from the projection space instead of the
input space. The method is mathematically trackable and does
not suffer from the limitation of error structure estimation as
most existing methods do.

III. INTRASUBSPACE PROJECTION DOMINANCE

In this section, we show the conditions under which the
property of IPD holds. We theoretically prove that IPD holds

for �1-, �2-, and �∞-norm under certain conditions, and further
extend such property to the case of nuclear-norm.

A. IPD in �p-Norm-Based Projection Space

Let x �= 0 be a data point drawn from the union of subspaces
(denoted by SD) that is spanned by D = [Dx D−x], where
Dx and D−x consist of the intracluster and intercluster data
points of x, respectively. Note that in our setting, noise and
outliers are regarded as the intercluster data points of x, since
the corrupted data and outliers are often distributed relatively
far from subspaces. Without loss of generality, let SDx and
SD−x be the subspace spanned by Dx and D−x, respectively.
Obviously, x lies either in the intersection between SDx and
SD−x , or in SDx except the intersection. Mathematically, we
denote these two cases as

Case 1: x ∈ {S|S = SDx ∩ SD−x}.
Case 2: x ∈ {S|S = SDx\SD−x}.
Let c∗ be the optimal solution of

min ‖c‖p s.t. x = Dc (5)

where ‖·‖p denotes the �p-norm, p = {1, 2,∞}. Let

c∗ =
[

c∗
Dx

c∗
D−x

]
(6)

be a partition of c∗ according to the data set D = [Dx D−x].
We aim to investigate the conditions under which, for any
nonzero data point x ∈ SDx (in either case 1 or case 2), the
coefficients over intrasubspace data points are larger than those
over intersubspace data points (i.e., the IPD property). In other
words, the following inequality is satisfied:

[
c∗

Dx

]
rx,1

>
[
c∗

D−x

]

1,1
(7)

where [c∗
Dx

]rx,1 denotes the rxth largest absolute value of the
entries of c∗

Dx
, and rx is the dimensionality of SD.

To prove that the inequality (7) holds, we first have
Lemma 1 which gives the necessary and sufficient condition
in case 1.

Lemma 1: Let y ∈ SDx and ŷ ∈ SD−x be any two data
points belonging to different subspaces. Consider a nonzero
data point x on the intersection of subspaces, i.e., x ∈ {S|S =
SDx ∩ SD−x}. Let zDx and zD−x , respectively, be the solutions
of min ‖z‖p, s.t. y = Dxz and min ‖z‖p, s.t. ŷ = D−xz. Then
c∗

D−x
= 0 and [c∗

Dx
]rx,1 > [c∗

D−x
]1,1, if and only if ‖zDx‖p <

‖zD−x‖p.
Proof: (⇐=) We prove the result using contradiction.

Assume c∗
D−x

�= 0, then

x − Dxc∗
Dx

= D−xc∗
D−x

. (8)

First, denote the left side of (8) by y, that is

y = x − Dxc∗
Dx

(9)

then, y must belong to SDx as x ∈ SDx . Let y = DxzDx and
substitute it into (9), we have

x = Dxc∗
Dx

+ DxzDx (10)

where zDx is an optimal solution of y in terms of (5).
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Moreover, the right side of (8) corresponds to the data point
ŷ that lies in SD−x . Similarly, denoting ŷ = D−xzD−x and
substituting ŷ into (8), we have

x = Dxc∗
Dx

+ D−xzD−x (11)

where zD−x is an optimal solution of ŷ in terms of (5).

Equations (10) and (11) show that,

[
c∗

Dx
+ zDx

0

]
and

[
c∗

Dx

zD−x

]

are two feasible solutions of (5) over D. According to the
triangle inequality and the condition ‖zDx‖p < ‖zD−x‖p,
we have
∥
∥∥∥

[
c∗

Dx
+ zDx

0

]∥
∥∥∥

p
≤ ∥∥c∗

Dx

∥∥
p
+ ‖zDx‖p <

∥∥c∗
Dx

∥∥
p
+ ‖zD−x‖p.

(12)

As zD−x is the optimal solution of (5) over D−x with respect
to ŷ, then ‖zD−x‖p ≤ ‖c∗

D−x
‖p. Substituting this into (12), we

have

∥∥∥∥

[
c∗

Dx
+ zDx

0

]∥∥∥∥
p

<

∥∥∥∥

[
c∗

Dx

c∗
D−x

]∥∥∥∥
p

. It contradicts the fact that
∥∥∥
∥

[
c∗

Dx

c∗
D−x

]∥∥∥
∥

p

is the optimal solution of (5) over D.

(=⇒) We prove the result using contradiction. For any
nonzero data point x ∈ {S|S = SDx ∩ SD−x}, assume
‖zDx‖p ≥ ‖zD−x‖p. Thus, for the data point x, (5) will only
choose the points from SD−x to represent x. This contradicts
to the conditions c∗

Dx
�= 0 and c∗

D−x
= 0.

Similar to the above proof, the following theorem guarantees
the IPD property in case 2.

Theorem 1: The inequality (7) holds in case 2 if the con-
dition ‖zDx‖p < ‖zD−x‖p is satisfied, where zDx and zD−x are
optimal solutions of y ∈ SDx and ŷ ∈ SD−x in terms of (5).

Proof: For any nonzero data point x ∈ {S|S = SDx\SD−x},
‖zDx‖p < ‖zD−x‖p is the sufficient condition to guarantee the
IPD property in case 1. The proof is same with the sufficient
condition in Lemma 1.

Lemma 1 does not bridge the relationship between IPD and
the data distribution. To establish such relationship, we mea-
sure the distance among the subspaces SDx and SD−x using
the first principle angle θmin and show that the IPD property
holds in case 1 under such a setting. For ease of presenting
Theorem 2, we first provide Definition 1 below.

Definition 1 (The First Principal Angle): Let ξ be a
Euclidean vector-space, and consider the two subspaces
W and V with dim(W) := rW ≤ dim(V) := rV . There exists
a set of angles {θi}rW

i=1 called the principal angles, the first
one being defined as

θmin := min
μ,ν

{
arccos

(
μTν

‖μ‖2‖ν‖2

)}
(13)

where μ ∈ W and ν ∈ V .
Theorem 2: In case 1, the inequality (7) will hold if the

following condition is satisfied:

σmin(Dx) ≥ cos θmin‖D−x‖max,2 (14)

where σmin(Dx) is the smallest nonzero singular value of Dx,
θmin is the first principal angle between Dx and D−x, and
‖D−x‖max,2 is the maximum �2-norm of the columns of D−x.

Proof: Since x ∈ {S|S = SDx ∩ SD−x}, we could write
x = Urx	rx VT

rx
zDx , where rx is the rank of Dx, Dx =

Urx	rx VT
rx

is the skinny singular value decomposition (SVD)
of Dx, 	rx = diag(σ1(Dx), σ2(Dx), . . . , σrx(Dx)), and zDx is
the optimal solution of (5) over Dx. Thus, zDx = Vrx	

−1
rx

UT
rx

x.
From the propositions of p-norm, i.e., ‖z‖∞ ≤ ‖z‖1 ≤

n‖z‖∞, ‖z‖∞ ≤ ‖z‖2 ≤ √
n‖z‖∞, and ‖z‖2 ≤ ‖z‖1 ≤√

n‖z‖2, we have

‖zDx‖p ≤ ‖zDx‖1 ≤ √
n‖zDx‖2 = √

n
∥∥∥Vrx	

−1
rx

UT
rx

x
∥∥∥

2
. (15)

Since n/rx ≥ 1 and the Frobenius norm is subordinate to
the Euclidean vector norm, we must have

‖zDx‖p ≤ √
n
∥∥∥Vrx	

−1
rx

UT
rx
‖F‖x

∥∥∥
2

=
√

n
√

σ 2
1 (Dx) + · · · + σ 2

rx
(Dx)

‖x‖2

≤ σ−1
min(Dx)‖x‖2 (16)

where σmin(Dx) = σrx(Dx) is the smallest nonzero singular
value of Dx.

Moreover, x could be represented as a linear combina-
tion of D−x since it lies in the intersection between SDx

and SD−x , i.e., x = D−xzD−x , where zD−x is the optimal
solution of (5) over D−x. Multiplying two sides of the equa-
tion with xT , it gives ‖x‖2 = xTD−xzD−x . According to the
Hölder’s inequality, we have

‖x‖2
2 ≤ ∥∥DT−xx

∥∥∞‖zD−x‖1. (17)

According to the definition of the first principal angles
(Definition 1), we have

∥∥DT−xx
∥∥∞ = max

(∣∣
∣
[
D−x

]T
1 x

∣∣
∣,

∣∣
∣
[
D−x

]T
2 x

∣∣
∣, . . .

)

≤ cos θmin‖D−x‖max,2‖x‖2 (18)

where [D−x]i denotes the ith column of D−x, θmin is the
first principal angle between SDx and SD−x , and ‖D−x‖max,2
denotes the maximum �2-norm of the columns of D−x. Note
that the smallest principal angle between any two subspaces
always greater than zero, hence, cos θmin ∈ [0, 1).

Combining (17) and (18), it gives that

‖x‖2
2 ≤ cos θmin‖D−x‖max,2‖x‖2‖zD−x‖1 (19)

hence

‖zD−x‖1 ≥ ‖x‖2

cos θmin‖D−x‖max,2
. (20)

From the propositions of p-norm, we have

‖zD−x‖p ≥ ‖x‖2

cos θmin‖D−x‖max,2
. (21)

Let ‖zDx‖p < ‖zD−x‖p, then

σ−1
min(Dx)‖x‖2 <

‖x‖2

cos θmin‖D−x‖max,2
(22)

then

σmin(Dx) > cos θmin‖D−x‖max,2. (23)

It is the sufficient condition for [c∗
Dx

]rx,1 > [c∗
D−x

]1,1 since
it implies c∗

Dx
�= 0 and c∗

D−x
= 0 according to Lemma 1.
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Fig. 1. Toy example of the IPD in �2-norm-based projection space. (a) Given data sets come from two clusters, indicated by different shapes. Note that each
cluster corresponds to a subspace, and the two subspaces are dependent. (b) and (c) Similarity graph in �2-norm-based projection space and the coefficients of
a data point x. The first and the last 25 values in (c) correspond to the coefficients (similarity) over the intracluster and intercluster data points, respectively.
(d) and (e) Similarity graph achieved by our method and the coefficients of x. For each data point, only the two largest coefficients are nonzero, corresponding
to the projection over the base of R2. From (b) and (d), the intercluster data point connections are removed and the data are successfully separated into
respective clusters.

B. IPD in Nuclear-Norm-Based Projection Space

Nuclear-norm has been widely used as a convex relaxation
of the rank, when solving many rank-minimization problems.
Based on the theoretical results in [12] and [25], we show that
the IPD property is also satisfied by the nuclear-norm case.

Lemma 2 [12]: Let D = Ur	rVT
r be the skinny SVD of

the data matrix D. The unique solution to

min ‖C‖∗ s.t. D = DC (24)

is given by C∗ = VrVT
r , where r is the rank of D.

Note that, Lemma 2 implies the assumption that the data
matrix D is free to errors.

Lemma 3 [25]: Let D = U	VT be the SVD of the data
matrix D. The optimal solution to

min
C,D0

‖C‖∗ + α

2
‖D − D0‖2

F s.t. D0 = D0C (25)

is given by D∗
0 = U1	1VT

1 and C∗ = V1VT
1 , where 	1, U1,

and V1 contain top k∗ = argmin
k

(k + (α/2)
∑

i>k σ 2
i ) singular

values and singular vectors of D, respectively.
Theorem 3: Let C∗ = UC	CVT

C be the skinny SVD of the
optimal solution to

min ‖C‖∗ s.t. D = DC (26)

where D consists of the clean data set D0 and the errors De,
i.e., D = D0 + De.

The optimal solution to

min
C0,D0

‖C0‖∗ + α

2
‖De‖2

F s.t. D0 = D0C0, D = D0 + De

(27)

is given by C∗
0 = UCHk∗(	C)VT

C, where Hk(x) is a truncation
operator that retains the first k elements and sets the other
elements to zero, k∗ = argmin

k
(k + (α/2)

∑
i>k σ 2

i ), and σi is

the ith largest singular value of D.
Proof: Suppose the rank of data matrix D is r, let D =

U	VT and D = Ur	rVT
r be the SVD and skinny SVD of D,

respectively. Hence, we have U = [Ur U−r], 	 =
[
	r 0
0 0

]
and

V =
[

VT
r

VT−r

]
, where I = UT

r Ur+UT−rU−r, I = VT
r Vr+VT−rV−r,

UT
r U−r = 0, and VT

r V−r = 0.

On the one hand, from Lemma 2, the optimal solution
of (26) is given by C∗ = VrVT

r which is a skinny SVD for C∗.
Therefore, we can choose UC = Vr, 	C = I and VC = Vr.
On the other hand, from Lemma 3, the optimal solution of (27)
is given by C∗

0 = V1VT
1 , where V1 is the top k∗ right singular

vectors of D. Therefore, we can conclude that V1 corresponds
to the top k∗ singular vector of Vr owing to k∗ ≤ r, i.e.,
C∗

0 = UCHk∗(	C)VT
C, where Hk(x) keeps the first k elements

and sets the other elements to zero.
This completes the proof.
Theorem 3 proves the IPD of nuclear-norm-based projec-

tion space. It is noted that it is slightly different from the
case of �p-norm. The IPD of nuclear-norm-based space shows
that the eigenvectors corresponding the bottom eigenvalues
are coefficients over errors, whereas the trivial coefficients
in �p-norm-based space directly correspond to the codes over
errors.

The IPD property forms the fundamental theoretical basis
for the subsequent L2-graph algorithm. According to the IPD,
the coefficients over intrasubspace is always larger than those
over the errors in terms of �p- and nuclear-norm-based projec-
tion space. Hence, the effect of the errors can be eliminated by
keeping k largest entries and zeroing the other entries, where
k equals to the dimensionality of the corresponding subspace.
We summarize such errors-handling method as “encoding and
then removing errors from projection space.” Compared with
the popular method “removing errors from input space and
then encoding,” the proposed method does not require the prior
knowledge on the structure of errors.

Fig. 1 shows a toy example illustrating the IPD in the
�2-norm-based projection space, where the data points are
sampled from two dependent subspaces corresponding to two
clusters in R2. In this example, the errors (the intersection
between two dependent subspaces) lead to the connections
between the intercluster data points and the weights of
these connections are smaller than the edge weights between
the intracluster data points [Fig. 1(b)]. By thresholding the
connections with trivial weight, we obtain a new similar-
ity graph as shown in Fig. 1(d). Clearly, this toy example
again shows the IPD property of �2-norm-based projection
space and the effectiveness of the proposed errors-removing
method.
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IV. CONSTRUCTING THE L2-GRAPH FOR ROBUST

SUBSPACE LEARNING AND SUBSPACE CLUSTERING

In this section, we present the L2-graph method based
on the IPD property of �2-norm-based projection space. We
chose �2-norm rather than the others such as �1-norm since
�2-norm-based objective function can be analytically solved.
Moreover, we generalize our proposed framework to subspace
clustering and subspace learning by incorporating L2-graph
into spectral clustering [33] and subspace learning [34].

A. Algorithms Description

Let X = {x1, x2, . . . , xn} be a collection of data points
located on a union of subspaces {S1, S2, . . . , SL} and Xi =
[x1, . . . , xi−1, 0, xi+1, . . . , xn], (i = 1, . . . , n). In the follow-
ing, we use the data set Xi as the dictionary of xi, i.e.,
D = Xi for the specific xi. The proposed objective function is
as follows:

min
ci

1

2
‖xi − Xici‖2

2 + λ

2
‖ci‖2

2 (28)

where λ ≥ 0 is the ridge regression parameter to avoid
overfitting.

Equation (28) is actually the well-known ridge regression
problem [39], which has been investigated in the context of
face recognition [40]. There is, however, a lack of examina-
tion on its performance in subspace clustering and subspace
learning. The optimal solution of (28) is (XT

i Xi + λI)−1XT
i xi.

This means that the computational complexity is O(mn4) for
n data points with m dimensions, which is very inefficient. To
solve this problem, we rewrite (28) as

min
ci

1

2
‖xi − Xci‖2

2 + λ

2
‖ci‖2

2, s.t. eT
i ci = 0. (29)

Using Lagrangian method, we have

L(ci) = 1

2
‖xi − Xci‖2

2 + λ

2
‖ci‖2

2 + γ eT
i ci (30)

where γ is the Lagrangian multiplier. Clearly

∂L(ci)

∂ci
= (

XTX + λI
)
ci − XTxi + γ ei. (31)

Let (∂L(ci)/∂ci) = 0, we obtain

ci = (
XTX + λI

)−1(
XTxi − γ ei

)
. (32)

Multiplying both sides of (32) by eT
i , and since eT

i ci = 0,
it holds that

γ = eT
i

(
XTX + λI

)−1XTxi

eT
i

(
XTX + λI

)−1ei

. (33)

Substituting γ into (32), the optimal solution is given by

c∗
i = P

[

XTxi − eT
i Qxiei

eT
i Pei

]

(34)

where

P = (
XTX + λI

)−1
(35)

Q = PXT (36)

Algorithm 1 Robust Subspace Learning With L2-Graph
Input: A given data set X = {xi}n

i=1, a new coming datum
y ∈ span{X}, the tradeoff parameter λ and the thresholding
parameter k.

1: Calculate P and Q as in (35) and (36), and store them.
2: For each point xi, obtain its representation ci via (34).
3: For each ci, eliminate the effect of errors in the projec-

tion space via ci = Hk(ci), where the hard thresholding
operator Hk(ci) keeps k largest entries in ci and zeroes
the others.

4: Construct an affinity matrix by Wij = |cij| + |cji| and nor-
malize each column of W to have a unit �2-norm, where
cij is the jth entry of ci.

5: Embed W into a m′-dimensional space and calculate the
projection matrix  ∈ Rm×m′

via solving

min


∥∥TD − TDW
∥∥2

F, s.t. TDDT = I, (37)

Output: The projection matrix  and the low-dimensional
representation of y via z = Ty.

Algorithm 2 Robust Subspace Clustering With L2-Graph
Input: A collection of data points X = {xi}n

i=1 sampled from
a union of linear subspaces {Si}c

i=1, the tradeoff parameter
λ and thresholding parameter k;

1: Calculate P and Q as in (35) and (36), and store them.
2: For each point xi, obtain its representation ci via (34).
3: For each ci, eliminate the effect of errors in the projec-

tion space via ci = Hk(ci), where the hard thresholding
operator Hk(ci) keeps k largest entries in ci and zeroes
the others.

4: Construct an affinity matrix by Wij = |cij| + |cji| and nor-
malize each column of W to have a unit �2-norm, where
cij is the jth entry of ci.

5: Construct a Laplacian matrix L = 	−1/2W	−1/2, where
	 = diag{si} with si = ∑n

j=1 Wij.
6: Obtain the eigenvector matrix V ∈ Rn×c which consists

of the first c normalized eigenvectors of L corresponding
to its c smallest nonzero eigenvalues.

7: Perform k-means clustering algorithm on the rows of V.
Output: The cluster assignment of X.

and the union of ei (i = 1, . . . , n) is the standard orthogonal
basis of Rn, i.e., all entries in ei are zeroes except the ith
entry is 1.

After projecting the data set into the linear space spanned
by itself via (34), L2-graph handles the errors by perform-
ing a hard thresholding operator Hk(·) over ci, where Hk(·)
keeps k largest entries in ci and zeroizes the others. Generally,
the optimal k equals to the dimensionality of corresponding
subspace.

Once the L2-graph was built, we perform subspace learning
and subspace clustering with it. The proposed methods are
summarized in Algorithms 1 and 2, respectively.
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Fig. 2. Estimating the latent structure of a given data set. The used data set contains 580 frontal images drawn from the first ten subjects of the ExYaleB [41].
(a) Dotted curve plots the eigenvalues of L and the red solid line plots the discretized eigenvalues. One can find that the number of the unique nonzero
eigenvalues is 10. This means that the data set contains ten subjects. (b) Affinity matrix W ∈ R58×58 obtained by our algorithm. The experiment was carried
out on the first 58 samples of the first subject of ExYaleB. The left column and the top row illustrate some images. The dotted lines split the matrix into four
parts. Top-left part: the similarity relationship among the first 32 images which are illuminated from right side. Bottom-right part: the relationship among the
remaining 26 images which are illuminated from left side. From the connections, it is easy to find that our method reflects the variation in the direction of
light source. (c) Eigenvalues of W. One could find that most energy concentrates to the first six components. This means that the intrinsic dimensionality of
these data is around 6. The result is consistent with [42].

B. Computational Complexity Analysis

Given X ∈ Rm×n, the L2-graph takes O(mn2 + n3) to com-
pute and store the matrices {P, Q} defined in (35) and (36). It
then projects each data point into another space via (34) with
complexity O(mn). Moreover, to eliminate the effects of errors,
it requires O(k log k) to find k largest coefficients. Putting
everything together, the computational complexity of L2-graph
is O(mn2 + n3). This cost is considerably less than sparse
representation-based methods [9]–[11] (O(tm2n2 + tmn3)) and
LRR [12] (O(tnm2 + tn3)), where t denotes the total number
of iterations for the corresponding algorithm.

C. Estimating the Structure of Data Space With L2-Graph

In this section, we show how to estimate the number of sub-
spaces, the submanifold of the given data set, and the subspace
dimensionality with L2-graph.

When the obtained affinity matrix W is strictly block-
diagonal, i.e., Wij �= 0 only if the data points di and dj

belong to the same subspace, one can predict the num-
ber of subspace by counting the number of unique singular
value of the Laplacian matrix L as suggested by [37], where
L = I−	−1/2W	−1/2 and 	 = diag(si) with si = ∑n

j=1 Wij.
In most cases, however, W is not strictly block-diagonal and
therefore such method may fail to get the correct result.
Fig. 2(a) shows an example by plotting the eigenvalues of
L derived upon L2-graph (dotted curve). To solve this prob-
lem, we perform the DBSCAN method [43] to discretize the
eigenvalues of L. The processed eigenvalues are plotted in the
solid line. One can find that the values decrease from 0.002 to
0.0011 with an interval of 0.0001. Thus, the estimated number
of subspaces is ten by counting the number of unique nonzero
eigenvalues. The result is in accordance with the ground truth.

To estimate the intrinsic dimensionality of subspace, we give
an example by using the first 58 samples from the first sub-
ject of extended Yale B database (ExYaleB) and building an
affinity matrix W using L2-graph as shown in Fig. 2(b). We

perform principle component analysis (PCA) on W and count
the number of the eigenvalues above a specified threshold.
The number is regarded as the intrinsic dimensionality of the
subspace as shown in Fig. 2(c). Note that, Fig. 2(b) shows
that L2-graph can also reveal the submanifolds of the given
data set, i.e., two submanifolds corresponding to two direc-
tions of light source in this example. This ability is helpful in
understanding the latent data structure.

V. EXPERIMENTAL VERIFICATION AND ANALYSIS

In this section, we evaluate the performance of the L2-graph
in the context of subspace learning and subspace clustering.
Besides face clustering, we investigate the performance of
L2-graph for motion segmentation which is another applica-
tion of subspace clustering. We consider the results in terms of
three aspects: 1) accuracy; 2) robustness; and 3) computational
cost. Robustness is evaluated by performing experiments using
corrupted samples. In our setting, three types of corruptions
are considered, i.e., Gaussian noise, random pixel corruption,
and the images with real disguises.

A. Subspace Learning

1) Baselines: In this section, we report the performance of
L2-graph for robust feature extraction. The baseline methods
include LPP [14], NPE [34], eigenfaces [44], L1-graph [11],
LRR [12], and latent LRR (LatLRR) [24]. We implement a fast
version of L1-graph using homotopy algorithm [45] to com-
pute the sparse representation. According to [46], homotopy
is one of the most competitive �1-minimization algorithms in
terms of accuracy, robustness, and convergence speed. LRR
and LatLRR are incorporated into the framework of NPE
to obtain low-dimensional features similar to L2-graph and
L1-graph. After the low-dimensional features are extracted,
we perform the nearest neighbor classifier to verify the per-
formance of the tested methods. By following [10]–[12], we
tune the parameters of LPP, NPE, L1-graph, LRR, and LatLRR
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Fig. 3. (a) Classification accuracy of the tested methods with increasing training AR1 images. (b) Recognition rate of 1-NN classifier with different subspace
learning methods over ExYaleB.

TABLE II
USED DATABASES. c AND ni DENOTE THE NUMBER OF SUBJECTS

AND THE NUMBER OF SAMPLES FOR EACH SUBJECT

to achieve their best results. For L2-graph, we fix λ = 0.1 and
assigned different k for different data sets. The used data sets
and the MATLAB codes of L2-graph can be downloaded at
http://www.machineilab.org/users/pengxi.

2) Data Sets: Several popular facial data sets are used
in our experiments, including ExYaleB [41], AR [47], and
multiple PIE (MPIE) [48].

ExYaleB contains 2414 frontal-face images of 38 subjects
(about 64 images for each subject), and we use the first 58
samples of each subject. Following [49], we use a subset
of AR data set which contains 2600 samples from 50 male
and 50 female subjects. Specifically, it contains 1400 samples
without disguise, 600 images with sunglasses and 600 images
with scarves. MPIE contains the facial images captured in four
sessions. In the experiments, all the frontal faces with 14 illu-
minations are investigated. For computational efficiency, we
resize each images from the original size to smaller one (see
Table II).

Each data set is randomly divided into two parts, i.e., train-
ing data and testing data. Thus, both training data and testing
data may contain samples with or without corruptions. In
experiments, training data are used to learn a projection matrix,
and the test datum is assigned to the nearest training datum
in the projection space. For each algorithm, the same training
and testing data partitions are used.

3) Performance With Varying Training Sample and Feature
Dimension: In this section, we report the recognition results of
L2-graph over AR1 with increasing training data and ExYaleB
with varying feature dimension. For the first test, we randomly
select ni AR images from each subject for training and used
the rest for testing. Hence, we have ni training samples and
14 − ni testing samples for each subject. For the second test,
we split ExYaleB into two parts with equal size and perform
1-NN classifier over the first m′ features, where m′ increases
from 1 to 600 with an interval of 10.

From Fig. 3, one can conclude that: 1) L2-graph performs
well even though only a few of training data are available.
Its accuracy is about 90% when ni = 4, and the second
best method achieve the same accuracy when ni = 8 and
2) L2-graph performs better than the other tested methods
when m′ ≥ 50. When more features are used (m′ ≥ 350), LRR
and LatLRR are comparable to NPE and eigenfaces which
achieved the second and the third best result.

4) Subspace Learning on Clean Facial Images: In this sec-
tion, the experiments are conducted using MPIE. For each
session of MPIE, we split it into two parts with the same data
size. For each test, we fix λ = 0.1 and k = 6 for L2-graph
and tuned the parameters for the other algorithms.

Table III reports the results. One can find that L2-graph
outperforms the other investigated approaches. The proposed
method achieves 100% recognition rates on the second and the
third sessions of MPIE. In fact, it could have also achieved
perfect classification results on MPIE-S1 and MPIE-S4 if dif-
ferent λ and k are allowed. Moreover, L2-graph uses less
dimensions but provides more discriminative information.

5) Subspace Learning on Corrupted Facial Images: In this
section, we investigate the robustness of L2-graph (λ = 0.1
and k = 15) against two popular corruptions using ExYaleB
over 38 subjects, i.e., white Gaussian noise (additive noise) and
random pixel corruption (nonadditive noise). Fig. 4 illustrates
some samples.

In the tests, we randomly chose a half of images (29 images
per subject) to add these two types of corruptions. Specifically,
we add white Gaussian noise to the chosen sample x via x̃ =
x + ρn, where x̃ ∈ [0 255], ρ is the corruption ratio, and n
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TABLE III
RECOGNITION RATE OF 1-NN CLASSIFIER WITH DIFFERENT SUBSPACE LEARNING ALGORITHMS ON THE MPIE DATABASE. THE VALUES IN

PARENTHESES DENOTE THE DIMENSIONALITY OF THE FEATURES AND THE TUNED PARAMETERS FOR THE BEST RESULT.
THE BOLD NUMBER INDICATES THE HIGHEST CLASSIFICATION ACCURACY

TABLE IV
RECOGNITION RATE OF THE TESTED ALGORITHMS ON THE CORRUPTED EXYALEB DATABASE. WGN AND RPC ARE ABBREVIATIONS

FOR WHITE GAUSSIAN NOISE AND RANDOM PIXEL CORRUPTION, RESPECTIVELY

Fig. 4. Samples with real possible corruptions. Top row: the images with
white Gaussian noise. Bottom row: the images with random pixel corruption.
From left to right, the corruption rate increases from 10% to 90% (with an
interval of 20%).

Fig. 5. Some sample images disguised by sunglasses (AR2) and
scarves (AR3).

is the noise following the standard normal distribution. For
nonadditive corruption, we replace the value of a percentage
of pixels randomly selected from the image with the values
following an uniform distribution over [0, pmax], where pmax
is the largest pixel value of x.

From Table IV, it is easy to find that L2-graph is superior
to the other approaches with a considerable performance gain.
When 30% pixels are randomly corrupted, the accuracy of
L2-graph is at least 6.9% higher than that of the other methods.

6) Subspace Learning on Disguised Facial Images:
Table V reports the results of L2-graph (λ = 0.1 and k = 3)
over two subsets of AR database (Fig. 5). The first subset
(AR2) contains 600 images without disguises and 600 images
with sunglasses (occlusion rate is about 20%), and the second
one (AR3) includes 600 images without disguises and 600
images disguised by scarves (occlusion rate is about 40%).
L2-graph again outperforms the other tested methods by a

TABLE V
CLASSIFICATION PERFORMANCE OF THE TESTED ALGORITHMS

ON THE DISGUISED AR IMAGES

considerable performance margin. With respect to two differ-
ent disguises, the recognition rates of L2-graph are 5.8% and
7.5% higher than those of the second best method.

B. Image Clustering

1) Baselines: We compare L2-graph with several recently-
proposed subspace clustering algorithms, i.e., SSC [9],
LRR [12], and two variants of least square regression (LSR)
(LSR1 and LSR2) [50]. Moreover, we use the coefficients of
locally linear embedding [1] to build the similarity graph for
subspace clustering as [11] did, denoted by LLR (i.e., LLR).

For fair comparison, we perform the same spectral cluster-
ing algorithm [33] on the graphs built by the tested algorithms
and report their best results with the tuned parameters. For the
SSC algorithm, we experimentally chose the optimal value of
α from 1 to 50 with an interval of 1. For LRR, the optimal
value of λ is selected from 10−6 to 10 as suggested in [12]. For
LSR1, LSR2, and L2-graph, the optimal value of λ is chosen
from 10−7 to 1. Moreover, a good k is selected from 3 to 14
for L2-graph and from 1 to 100 for LLR.

2) Evaluation Metrics: Typical clustering methods usually
formulate the goal of obtaining high intracluster similarity
(samples within a cluster are similar) and low intercluster sim-
ilarity (samples from different clusters are dissimilar) into their
objective functions. This is an internal criterion for the quality
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Fig. 6. Influence the parameters of L2-graph. The x-axis denotes the value of parameter. (a) Influence of λ, where k = 7. (b) Influence of k, where λ = 0.7.
One can find that, L2-graph successfully eliminates the effect of errors by keeping k largest entries. The example verifies the effectiveness of our theoretical
results.

of a clustering. But good scores on such an internal criterion
do not necessarily produce a desirable result in practice. An
alternative to internal criteria is direct evaluation in the appli-
cation of interest by utilizing the available label information.
To this end, numerous metrics of clustering quality have been
proposed [51], [52]. In this paper, we adopt two of the most
popular benchmarks in our experiments, namely, Accuracy (or
called Purity) and normalized mutual information (NMI) [53].
The value of Accuracy or NMI is 1 indicates perfect matching
with the ground truth, whereas 0 indicates perfect mismatch.

3) Data Sets: We investigate the performance of the meth-
ods on the data sets summarized in Table II. For computational
efficiency, we downsize each image from the original size to
a smaller one and perform PCA to reduce the dimensional-
ity of the data by reserving 98% energy. For example, all the
AR1 images are downsized and normalized from 165 × 120
to 55 × 40. After that, the experiment are carried out using
167-D features produced by PCA.

4) Model Selection: L2-graph has two parameters, the
tradeoff parameter λ and the thresholding parameter k. The
value of these parameters depends on the data distribution.
In general, a bigger λ is more suitable to characterize the
corrupted images and k equals to the dimensionality of the
corresponding subspace.

To examine the influence of these parameters, we carry out
some experiments using a subset of ExYaleB which contains
580 images from the first ten individuals. We randomly select
a half of samples to corrupt using white Gaussian noise. Fig. 6
shows the following.

1) While λ increases from 0.1 to 1.0 and k ranges from
4 to 9, Accuracy and NMI almost remain unchanged.

2) The thresholding parameter k is helpful to improve the
robustness of our model. This verifies the correctness of
our theoretical result that the trivial coefficients corre-
spond to the codes over the errors, i.e., IPD property of
�2-norm-based projection space.

3) Larger k will impair the discrimination of the model,
whereas a smaller k cannot provide enough representa-
tive ability. Indeed, the optimal value of k can be found

around the intrinsic dimensionality of the corresponding
subspace. According to [42], the intrinsic dimensional-
ity of the first subject of ExYaleB is 6. This result is
consistent with our experimental result.

5) Performance With Varying Number of Subspace: In this
section, we evaluate the performance of L2-graph using 1400
clean AR images (167-D). The experiments are carried out on
the first c subjects of the data set, where c increases from 20
to 100. Fig. 7 shows the following.

1) L2-graph algorithm is more competitive than the other
examined algorithms. For example, when L = 100, the
Accuracy of L2-graph is at least, 1.8% higher than that
of LSR1, 2.7% higher than that of LSR2, 24.5% higher
than that of SSC, 8.8% higher than that of LRR and
42.5% higher than that of LLR.

2) With increasing c, the NMI of L2-graph almost remain
unchanged, slightly varying from 93.0% to 94.3%.
The possible reason is that NMI is robust to the data
distribution (increasing subject number).

6) Clustering on Clean Images: Six image data sets
(ExYaleB, MPIE-S1, MPIE2-S2, MPIE3-S3, MPIE-S4, and
COIL100) are used in this experiment. Table VI shows the
following.

1) L2-graph algorithm achieves the best results in the tests
except with MPIE-S4, where it is second best. With
respect to the ExYaleB database, the Accuracy of the
L2-graph is about 10.28% higher than that of the LSR,
12.19% higher than that of the LSR2, 18.18% higher
than that of the SSC, 1.53% higher than that of the LRR,
and 34.96% higher than that of LLR.

2) In the tests, L2-graph, LSR1, and LSR2 exhibit simi-
lar performance, because the methods are �2-norm-based
methods. One of the advantages of L2-graph is that it
is more robust than LSR1, LSR2, and the other tested
methods.

7) Clustering on Corrupted Images: Our error-removing
strategy can improve the robustness of L2-graph without the
prior knowledge of the errors. To verify this claim, we test
the robustness of L2-graph using ExYaleB over 38 subjects.
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Fig. 7. Clustering quality of different algorithms on the first c subjects of AR data set. (a) Accuracy. (b) NMI.

TABLE VI
CLUSTERING PERFORMANCE (%) ON SIX DIFFERENT IMAGE DATA SETS. ρ DENOTES THE CORRUPTED RATIO. THE VALUES IN THE PARENTHESES

DENOTE THE OPTIMAL PARAMETERS FOR THE REPORTED ACCURACY, I.E., L2-GRAPH (λ, k), LSR (λ), SSC(α), LRR (λ), AND LLR (k)

TABLE VII
PERFORMANCE OF L2-GRAPH, LSR [50], SSC [9], LRR [12], AND LLR [1] ON THE EXYALEB DATABASE (116-D)

For each subject of the database, we randomly chose a half of
images (29 images per subject) to corrupt by white Gaussian
noise or random pixel corruption, where the former is additive
and the latter is nonadditive. To avoid randomness, we pro-
duce ten data sets beforehand and then perform the evaluated
algorithms over these data partitions. From Table VII, we have
the following conclusions.

1) All the investigated methods perform better in the case
of white Gaussian noise. The result is consistent with
a widely-accepted conclusion that nonadditive corrup-
tions are more challenging than additive ones in pattern
recognition.

2) L2-graph is again considerably more robust than
LSR1, LSR2, SSC, LRR, and LLR. For exam-
ple, with respect to white Gaussian noise, the per-
formance gain in Accuracy between L2-graph and
LSR2 varied from 14.0% to 22.8%; with respect to

random pixel corruption, the performance gain varied
from 5.0% to 13.2%.

8) Clustering on Disguised Images: In this section, we
examine the robustness to real possible occlusions of the
competing methods using AR2 and AR3. Beside the imple-
mentation of Elhamifar and Vidal [9], we also report the result
by using homotopy method [45] to solve the �1-minimization
problem. In the experiments, we fix λ = 0.001 and k = 12 for
the L2-graph and tuned the parameters of the tested methods
for achieving their best performance.

Table VIII reports the performance of the tested algorithms.
Clearly, L2-graph again outperforms the other methods in clus-
tering quality and efficiency. Its Accuracy is about 30.59%
higher than SSC-homotopy, 40.17% higher than SSC, 13.92%
higher than LRR, and 48.59% higher than LLR when the faces
are occluded by glasses. In the case of the faces occluded by
scarves, the figures are about 40.25%, 44.00%, 17.58%, and
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Fig. 8. Some sample frames taken from the Hopkins155 database.

TABLE VIII
CLUSTERING PERFORMANCE OF DIFFERENT METHODS ON THE DISGUISED AR IMAGES. THE VALUES

IN PARENTHESES DENOTE THE OPTIMAL PARAMETERS FOR ACCURACY

TABLE IX
SEGMENTATION ERRORS (%) ON THE HOPKINS155 RAW DATA

54.31%, respectively. In addition, we can find that each of
the evaluated algorithm performs very close for two different
disguises, even though the occluded rates are largely different.

C. Motion Segmentation

Motion segmentation aims to separate a video sequence
into multiple spatiotemporal regions of which each region rep-
resents a moving object. Generally, segmentation algorithms
are based on the feature point trajectories of multiple mov-
ing objects [22], [54]. Therefore, the motion segmentation
problem can be thought of the clustering of these trajecto-
ries into different subspaces, and each subspace corresponds
to an object.

To examine the performance of the proposed approach
for motion segmentation, we conduct experiments on the
Hopkins155 raw data [55], some frames of which are shown
in Fig. 8. The data set includes the feature point trajectories
of 155 video sequences, consisting of 120 video sequences
with two motions and 35 video sequences with three motions.
Thus, there are a total of 155 independent clustering tasks. For
each algorithm, we report the mean, standard deviation (std.),
and median of segmentation errors (1−Accuracy) using these
two data partitions (two and three motions). For L2-graph, we

fix λ = 0.1 and k = 7 (k = 14) for two motions and three
motions.

Table IX reports the mean and median segmentation errors
on the data sets. We can find that the L2-graph outperforms
the other tested methods on the three-motions data set and
performs comparable to the methods on two-motion case.
Moreover, all the algorithms perform better with two-motion
data than with three-motion data.

VI. CONCLUSION

Under the framework of graph-based learning, most of the
recent approaches achieve robust clustering results by remov-
ing the errors from the original space and then build the
neighboring relation based on a “clean” data set. In contrast,
we have proposed and proved that it is feasible to eliminate
the effect of the errors from the linear projection space (rep-
resentation). Based on this mathematically traceable property
(called IPD), we have presented two simple but effective meth-
ods for robust subspace learning and clustering. Extensive
experimental results have shown that our algorithm outper-
forms eigenfaces, LPP, NPE, L1-graph, LRR, and LatLRR in
unsupervised feature extraction and LSR, SSC, LRR, and LLR
in image clustering and motion segmentation.
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There are several ways to further improve or extend this
paper. Although the theoretical analysis and experimental
studies showed the connections between the parameter k and
the intrinsic dimensionality of a subspace, it is challenging to
determine the optimal value of the parameter. Therefore, we
plan to explore more theoretical results on model selection in
future.
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