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Abstract—As a recently proposed method for subspace learn-
ing, principal coefficients embedding (PCE) method can automat-
ically determine the dimension of the feature space and robustly
handle various corruptions in real-world applications. However,
the projection matrix learned by PCE is not orthogonal, so the
original data may be reconstructed improperly. To address this
issue, we proposed a new method termed orthogonal principal
coefficients embedding (OPCE). OPCE can not only automat-
ically determine the dimension of the feature space, but also
additionally considers the orthogonal property of the projection
matrix for better discriminating ability. Moreover, OPCE can
be solved in closed-form, thus making it computational efficient.
Extensive experimental results from multiple benchmark data
sets demonstrate the effectiveness and computational efficiency
of the proposed method.

Index Terms—Unsupervised feature extraction, bio-inspired
data representation, dimension reduction, manifold learning.

I. INTRODUCTION

Dimensional reduction methods have been widely applied
to the machine intelligence and pattern recognition problems
such as face recognition and gait recognition. The key idea of
dimensional reduction is to learn a projection matrix that can
map data from high-dimensional space into a low dimensional
one. For the face recognition problem, Eigenface [1] was
proposed to use the principal component analysis (PCA) to
project the data into a low-dimensional feature space. The
Fisherface [2] method applied the linear discriminant analysis
(LDA) by utilizing the class label information for better
discriminative ability. It is known that PCA, LDA, and their
extensions [3] are based on the global structure of the data
and may not consider local structure of the data.

In addition, there are also methods that learn the projection
by considering local structure of the data. The locally linear
embedding (LLE) [4] method utilizes the local structure of the
data by reconstructing the data point using its neighborhood
points. The neighborhood preserving embedding (NPE) [5]
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method learns a projection matrix for out-of-sample extension
based on LLE. The locality preserving projections (LPP) [6]
approach considers the locality by embedding the graph Lapla-
cian matrix constructed from the data. Following LPP, the
orthogonal locality preserving projections (OLPP) [7] method
was proposed to enforce that the basis of the projection matrix
are orthogonal for better discriminating ability.

Motivated by LLE, the sparsity preserving projections
(SPP) [8] and L1Graph [9] were proposed to obtain the
reconstruction combination coefficients based on the `1-norm
regularized sparse coding algorithms. These methods can
automatically select the basis for the reconstruction instead
of specifying the neighborhood number as in the aforemen-
tioned algorithms. The nuclear norm regularization based
algorithm robust principal component analysis (RPCA) [10]
was proposed to recover the low-rank matrix from corrupted
data by learning the robust subspace. L2graph [11]–[13] was
proposed to eliminate the errors from projection space with
`2-norm regularization, which have shown the state-of-the-art
performance in clustering and feature extraction. Motivated
by the great success of manifold learning and regularization
techniques, many methods have been proposed and achieved
impressive performance in manifold ranking [14], blind de-
convolution [15], spectral embedding [16], [17], and so on.

Different from most existing subspace learning methods that
usually require specifying the dimension of features for the
projection or the number of neighbors for the reconstruction,
principal coefficient embedding (PCE) [18] automatically de-
termines the dimension of the subspace learning and handle
the gross corruption properly. It firstly learns the reconstruc-
tion combination coefficients of the data by minimizing the
Frobenius norm of both the reconstruction matrix and the
error matrix; and then projects the data based on the learned
reconstruction combination coefficients. However, the basis
of the projection matrix in PCE is not orthogonal, and thus
the learned projection may lack strong discriminating ability.
Some works in biology and neuroscience have shown that the
orthogonality plays an important role in human’s information
processing system [19], [20]. Motived by these biological
evidences and OLPP, we improve PCE by enforcing the basis
of the projection to be mutually orthogonal. To be specific,
we propose a new algorithm called orthogonal principal co-
efficient embedding (OPCE) for dimension reduction. OPCE
has the following advantages: (1) it can not only automatically
select the dimension of the learned subspace for data with
gross noise, but also keep the basis of projection matrix
orthogonal for better discriminating ability. (2) it has an
efficient closed-form solution, thus making the computation
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fast.
The rest of this paper is organized as follows. In Section II,

we discuss the related works. In Section III, we briefly review
the principal coefficient embedding algorithm. In Section IV,
we present the objective function, the optimization as well as
the whole algorithm of our method. In Section V, the extensive
experimental results for image and document classifications
are reported. Finally, the conclusions are given in Section VI.

II. RELATED WORK

LLE was proposed in [4] to firstly learn the linear combina-
tion coefficients for data by minimizing the reconstruction er-
ror using its neighborhoods. It further embeds data by learning
the low-dimensional features from reconstruction coefficients.
Although LLE can capture the locally linear information
of data, it cannot easily handle the out-of-sample case. To
solve this problem, the neighborhood preserving embedding
(NPE) [5] method was proposed to learn a projection matrix
based on LLE. Instead of constructing the graph using data
locally as in LEE and NPE, SPP [8], L1Graph [9], and
L2Graph [11], [12] were proposed to construct the recon-
struction combination coefficients globally by encouraging the
sparsity via `1- or `2- norm regularizations. These approaches
can automatically select the basis for the reconstruction of each
data point, therefore the neighborhood number is not required.

RPCA [10] was proposed to recover the corrupted low-rank
matrix by minimizing the nuclear norm of the recovered data
matrix and the `1-norm of the error matrix. Following RPCA,
the low-rank representation (LRR) [21] approach was pro-
posed to learn the low-rank representation of data by using the
data set itself as the basis for reconstruction. The nuclear-norm
of the representation matrix and the group sparsity inducing
`2,1-norm regularization of the error matrix are simultaneously
minimized. Similar to the `1-norm minimization problem,
the nuclear norm based minimization problem also requires
iterative solution and is quite time consuming.

Different from the existing works for subspace learning,
PCE [18] was proposed to learn the linear combination coef-
ficients matrix by removing possible errors from the original
data. It utilized the Frobenius-norm regularization for both the
combination coefficients matrix and the error matrix instead
of the nuclear-norm and the group sparse inducing norm. It
can not only eliminate the effect of noise from data, but also
demonstrate satisfactory computation efficiency thanks to its
closed-form solution. Our work further improves the PCE
method by introducing an additional orthogonal constraint for
the projection matrix. The orthogonal projection is beneficial
for enhancing the discriminating ability.

III. BRIEF REVIEW OF PRINCIPAL COEFFICIENTS
EMBEDDING (PCE)

In the following, we denote a matrix using a bold uppercase
letter (e.g. X) and a vector using a bold lowercase letter
(e.g. x). We use n and d to denote the number of training
samples and the feature dimension of the input data. Besides,
the transpose of a matrix/vector is represented as superscript
“T”, the Frobenius norm is represented as ‖ · ‖F , and the

TABLE I
THE SUMMARY OF THE NOTATIONS USED IN THIS WORK.

Notation Definition

n the number of training samples
d the feature dimension of input data
xi ∈ Rd the i-th training sample
X ∈ Rd×n training data matrix with n samples
s the rank of a given data matrix
X = USVT Singular Value Decomposition (SVD)
E ∈ Rd×n the error matrix associated with X
Z ∈ Rn×n the representation of X
σi the i-th singular value
P ∈ Rd×k the projection matrix
T the transpose of a matrix/vector
† the pseudoinverse of a matrix

pseudo-inverse of a matrix is denoted as superscript “†”. A
summary of the notations used in this work is shown in Table I.

PCE is a recently proposed method for robust subspace
clustering, which is based on the minimization with the Frobe-
nius norm instead of `1- or nuclear-norm. Therefore, it enjoys
the fast closed-form solution for obtaining the representation
coefficients, without the time-consuming iterative optimization
procedure.

Suppose we are given a set of n training samples X =
[x1, . . . ,xn] ∈ Rd×n, PCE learns the linear combination
coefficients Z ∈ Rn×n as well as the error matrix E ∈ Rd×n

by solving the following minimizing problem:

min
Z,E

1

2
‖Z‖2F +

λ

2
‖E‖2F (1)

s.t. (X−E) = (X−E)Z,

where X− E denotes the clean data, which is the difference
between the given data matrix X and the error matrix E. λ is
the regularization parameter. Instead of directly using X, the
using of X− E for the reconstruction can be more robust to
the possible noise in the data. In this model, with Gaussian
noise assumption (which is usually the case in real-world data),
we adopt the Frobenius norm to penalize the error matrix.
Moreover, a benefit thanks to the Frobenius norm is the fast
closed-form solution and low rank property, as shown in the
following Lemma [18], [22]:

Lemma 1. Let X = USVT be the skinny SVD of the data
matrix X, where U ∈ Rd×s and V ∈ Rn×s contain the corre-
sponding left and right singular vectors and S ∈ Rs×s is the
diagonal matrix with the singular values {σi}si=1 of X sorted
in descending order. The unique solution for Z to problem (1)
is given by Z = VkV

T
k , where Vk = [v1, . . . ,vk] ∈ Rn×k,

and k can be obtained analytically as:

k = arg min
r∈{1,2,...,s}

(
r + λ

s∑
i=r+1

σ2
i

)
. (2)

We can get the optimal coefficient matrix Z based on the
closed-form solution from (1). In the following stage, PCE
further obtains a projection matrix P ∈ Rd×k given by
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the eigenvectors corresponding to the k largest eigenvalues
of the generalized eigen-decomposition problem XZXTp =
σXXTp. As (XZXT )†XXT is not generally symmetric, the
basis of P are not guaranteed to be orthogonal.

IV. ORTHOGONAL PRINCIPAL COEFFICIENTS EMBEDDING

A. The Objective Function

The projection matrix P in PCE is obtained based on the
generalized eigen-decomposition problem. It is obvious that
P is not orthogonal. Motivated by [7], [19], we propose
the following optimization problem to learn an orthogonal
projection matrix P = [p1, . . . ,pk] ∈ Rd×k from a given
X and Z:

min
P

1

2
‖PTX−PTXZ‖2F (3)

s.t., pT
i XXTpi = 1, i = 1, . . . , k,

PTP = I,

where I ∈ Rk×k is the identity matrix, and we also enforce
that the basis of P are orthogonal to each other using the
additional orthogonal constraints.

B. The Solution for OPCE

To solve the optimization problem in (3), we obtain the
columns p1, . . . ,pk sequentially.

1) Obtain p1: From the optimization problem in (3), we
can obtain the objective function with respect to p1 as follows:

min
p

1

2
‖pTX− pTXZ‖2F (4)

s.t., pTXXTp = 1,

where we ignore the constraint pTp = 1 as it can be
automatically satisfied in the solution as shown latter.

To obtain the solution p1 for the optimization problem in
(4), we introduce the Lagrangian multiplier σ and get the
following Lagrangian:

L =
1

2
‖pTX− pTXZ‖2F−

σ

2
(pTXXTp− 1).

For simplicity, let us define a matrix R as R = X −XZ.
By setting the derivative of L with respect to p as zeros, we
arrive at

∂L
∂p

= RRTp− σXXTp = 0,

based on which we can further obtain

σ =
pTRRTp

pTXXTp
.

Then, we have:

L =
1

2
pTRRTp− pTRRTp

2pTXXTp
(pTXXTp− 1) =

1

2
σ. (5)

Thus, p1 is the eigenvector corresponding to the mini-
mum nonzero eigenvalue of the following generalized eigen-
decomposition problem:

RRTp = σXXTp. (6)

2) Obtain {pt}kt=2: Given p1, . . . ,pt−1, the optimization
problem regarding the basis pt is in the following form:

min
p

1

2
‖pTX− pTXZ‖2F (7)

s.t., pTXXTp = 1,

pTp1 = pTp2 = . . . = pTpt−1 = 0.

where t = 2, 3, . . . , k.
To solve (7), we introduce the Lagrange multipliers

β, β1, . . . , βt−1 and σ to the optimization problem and obtain
the following Lagrange:

L =
1

2
‖pTX− pTXZ‖2F−

σ

2
(pTXXTp− 1)−

t−1∑
i=1

βip
Tpi.

By setting the partial derivatives of L with respect to p to
zeros, we further obtain the following Karush-Kuhn-Tucker
condition,

∂L
∂p

= RRTp− σXXTp−
t−1∑
i=1

βipi = 0. (8)

Besides, by multiplying pT to the left side of (8) and using
the orthogonal constraints, we can have

pTRRTp = σpTXXTp, (9)

which leads to

σ =
pRRTp

pXXTp
. (10)

By left-multiplying pT
1 (XXT )†, . . . ,pT

t−1(XXT )† sequen-
tially to both sides of (8), we can obtain the following (t− 1)
equations:

pT
1 (XXT )†RRTp=pT

1 (XXT )†
t−1∑
i=1

βipi,

pT
2 (XXT )†RRTp=pT

2 (XXT )†
t−1∑
i=1

βipi,

...

pT
t−1(XXT )†RRTp=pT

t−1(XXT )†
t−1∑
i=1

βipi.

The above (t − 1) equations are the linear equations for
the (t − 1) Lagrangian multipliers β1, . . . , βt−1. To obtain
the solution for these Lagrangian multipliers, we define the
following notations for ease of presentation:

Q = [Qij ] = [pT
i (XXT )†pj ] ∈ R(t−1)×(t−1),

β = [β1, . . . , βt−1]
T ∈ R(t−1), (11)

P(t−1) = [p1, . . . ,p(t−1)] ∈ Rd×(t−1).

With these definitions, we can rewrite the (t− 1) equations
into the following matrix form:

PT
(t−1)(XXT )†RRTp = Qβ. (12)

Therefore, we can obtain the optimal solution to β in the
following closed-form:

β = Q†PT
(t−1)(XXT )†RRTp. (13)
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By left-multiplying (XXT )† to both sides of (8), we obtain

(XXT )†RRTp− (XXT )†
t−1∑
i=1

βipi = σp,

and together with (13), we can further get:

(XXT )†RRTp− (XXT )†
t−1∑
i=1

βipi

= (XXT )†RRTp− (XXT )†P(t−1)β

= (XXT )†RRTp−
(XXT )†P(t−1)Q

†PT
(t−1)(XXT )†RRTp.

Thus, we have(
I−(XXT )†P(t−1)Q

†PT
(t−1)

)
(XXT )†RRTp=σp, (14)

which is a generalized eigen-decomposition problem.
As our objective is to minimize σ with the optimal p,

the optimal solution to (7) is given by the eigenvectors
corresponding to smallest nonzero eigenvalues of the following
matrix:(

I− (XXT )†P(t−1)Q
†PT

(t−1)

)
(XXT )†RRT . (15)

C. Automatic feature dimension estimation

In this section, we show that OPCE can automatically
estimate the feature dimension with the following theorem.

Theorem 1. For a given data set X, the feature dimension
m′ is upper bounded by the rank of Z∗, i.e.,

m′ ≤ k. (16)

Proof. It is easy to see that the optimal solution to (14) is also
given by the leading eigenvectors of the following matrix:

(XXT )†P(t−1)Q
†PT

(t−1)(XXT )†RRT . (17)

Clearly, the rank of the above matrix (denoted by m′) is
upper bounded by

m′ = min(rank(X), k). (18)

From Lemma 1, ones could see that Z∗ = VkV
T
k and Vk

consists of the first k right singular vectors of X. Thus, we
have rank(X) = s > k and the result as desired.

D. Algorithm description and complexity analysis

The whole optimization procedure for the OPCE is sum-
marized in Algorithm 1. After obtaining the projection P, we
can get the low-dimensional representation for any given data
point x as PTx.

Algorithm 1 is composed of obtaining Z and the projection
matrix P, so the corresponding time complexity depends on
the complexity of these two parts. For the optimization process
w.r.t. Z, given the training data matrix X ∈ Rd×n, OPCE
usually conducts the skinny SVD in O(d2n+dn2+n3). Using
Brand’s method [23], the complexity of the skinny SVD can
be reduced to O(dnk) with k being the rank of X. Moreover,
OPCE determines the feature dimension k with O(s log s)

Algorithm 1 The algorithm for our proposed Orthogonal
Principal Coefficients Embedding (OPCE)
Input: n training samples X = [x1, . . . ,xn] ∈ Rd×n and the

regularization parameter λ > 0.
1: Obtain Z using Lemma 1.
2: Obtain the solution for p1 via (6).
3: Obtain {pt}kt=2 sequentially using (15).

Output: The projection matrix P. (For any new sample x ∈
Rd, the low-dimensional representation is given by PTx.)

complexity. On the other hand, to calculate the projection
matrix P, the complexity of calculating each pt is O(dn+dn2)
as it is a generalized eigen-decomposition problem. Therefore,
the complexity of obtaining P is O(d(n+n2)k). Considering
that k < min(d, n), the whole time complexity for OPCE is
O(d(n+ n2)k).

V. EXPERIMENTS

In this section, to evaluate the performance of our pro-
posed OPCE in comparison with six state-of-the-art subspace
learning methods, we perform experiments on five real-world
data sets. The used data sets cover different sources, i.e. text
corpus, handwritten digital images, object images, and the
facial images captured under controlled environment.

A. Experimental settings

We implement our method in MATLAB1 and carry out
experiments on a MacBook with a 2.6GHz Intel Core i5 CPU
and 8GB memory. To examine the efficacy of our method,
we investigate the performance of the proposed method in the
context of classification. More specifically, we split each data
set into two partitions for training and testing. The training
data is used to learn the projection matrix for dimension
reduction and train a classifier for classification. In other
words, the label information is only used in training of
classification phase. With the learned projection matrix and
classifier, we obtain the classification accuracy on the testing
data. In the experiments, we use four different classifiers
including sparse representation based classifier (SRC) [24],
linear regression classifier (LRC) [25], linear support vector
machine (SVM) [26], and the k nearest neighbor classifier
(KNN).

For fair comparisons, we seek optimal parameters for each
algorithm to achieve their best performance on each data
set by following the settings in [18]. Morever, we repeat
each algorithm 10 times and report their mean and standard
deviation of classification accuracy and time cost.

1) Baseline Algorithms: To show the effectiveness of our
method, we compare the proposed OPCE with PCE. Moreover,
we also use six state-of-the-art unsupervised subspace learning
methods as baselines, including LPP [6], [27], NPE [5],
L1Graph [9], nonnegative matrix decomposition (NMF) [28],
[29], robust principal component analysis (RPCA) with PCA,
and RPCA with Gradient Descent (RPCAG) [30]. In all

1The MATLAB codes of tested algorithms are provided by the authors.
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(a) SRC (b) LRC

(c) SVM (d) KNN

Fig. 1. The influence of the parameter λ. The solid and dotted lines denote the classification accuracy and the estimated feature dimension m′ (i.e., k),
respectively.

evaluations, we specify the feature dimension as 300 for all
tested methods excepted OPCE and PCE since these two
methods can automatically estimate the dimension of feature
space.

2) Data sets: We use five different data sets in our experi-
ments, including AR facial images [31], COIL100 object im-
ages [32], USPS handwritten digital database, Extended Yale
Database B (ExYaleB) [33] and Reuters21578 text corpus [34].

The used AR database [35] contains 1,400 clean images,
600 face images with sunglasses, and 600 faces with scarves
that evenly distributed over 50 male and 50 female. For
computational efficiency, we resize all samples from 165×120
to 55 × 40. The used COIL100 consists of 1,000 randomly
chosen samples that are drawn from 10 different objects. Each
image is resized from 128×128 to 64×64. The USPS contains
11,000 digital images, from zero through nine. Each image is
with the size of 16 × 16. The used ExYaleB contains 2024
images that evenly distribute over 38 subjects, of which each
image is resized from 192×168 to 54×48. The Reuters21578
corpus includes 21578 documents from 135 categories. In our
experiments, we use a subset which contains 2,347 documents
in 54 subjects. Each document is represented by a 18,993
dimensional vector.

B. Influence of parameters
We first investigate the influence of parameter of OPCE,

i.e. the regularization parameter λ. To this end, we perform
experiment using the Reuters21578 data set, where 1,160
documents are randomly chosen for training and the remaining
1,187 samples are used for testing.

From Fig. 1, we can see that the estimated feature dimension
m′ (i.e. k) increases from 10 to 206 when λ increases from 0.1
to 1.0. Meanwhile, the classification accuracy increases from
70.78% to 85.90% with SRC, 70.44% to 83.61% with LRC,
75.68% to 87.08% with SVM, and 74.58% to 83.45% with
KNN. The classification accuracy increases with λ within a
certain range because larger λ leads to larger k (see red curve)
so that more energy is preserved.

C. Performance with varying training samples
In this section, we report the performance of OPCE with

increasing training samples on the AR data set. We randomly
select p clean faces from each category for training and use
the remaining 14 − p samples for testing, where p increases
from 3 to 10 with an interval of 1.

Table II shows the classification accuracy achieved by
different feature extraction methods with the LRC classifier,
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TABLE II
PERFORMANCE VERSUS INCREASING TRAINING SAMPLES ON THE AR DATA SET, WHERE p DENOTES TRAINING SAMPLES PER SUBJECT. RESULTS IN

BOLDFACE ARE SIGNIFICANTLY BETTER THAN THE OTHERS, ACCORDING TO THE T-TEST WITH A SIGNIFICANCE LEVEL AT 0.05.

p OPCE PCE LPP NPE L1Graph NMF RPCA RPCAG

3 79.13±1.08 79.65±1.39 75.63±1.98 72.14±2.62 71.45±2.73 25.32±1.83 79.48±2.40 56.88±0.86
4 86.89±1.16 84.35±1.04 76.86±2.03 80.79±1.48 80.96±1.91 23.50±1.56 83.56±1.90 64.80±1.83
5 90.70±1.31 88.49±1.54 80.22±1.20 85.99±1.54 84.76±0.92 36.78±1.50 86.36±0.74 71.64±1.10
6 94.57±0.94 92.84±1.25 84.39±1.65 88.40±2.05 85.38±1.08 57.15±0.91 91.60±0.90 76.95±2.48
7 96.80±1.07 94.43±0.84 85.11±2.02 89.10±1.28 84.10±1.36 58.82±1.36 92.79±0.73 76.76±1.83
8 96.57±0.88 95.58±1.60 87.89±1.78 89.22±1.53 84.96±1.18 62.56±1.16 95.00±0.62 80.17±1.42
9 98.03±0.73 96.36±0.94 91.87±2.07 88.76±2.16 86.10±1.78 62.39±1.04 97.12±0.78 83.74±2.21

10 99.25±0.91 96.62±1.23 90.25±1.96 88.33±1.48 85.67±1.28 52.00±0.82 97.43±0.97 84.11±0.83

TABLE III
ROBUSTNESS OF DIFFERENT SUBSPACE LEARNING METHODS WITH THE

LRC CLASSIFIER ON THE DISGUISED AR IMAGES. RESULTS IN
BOLDFACE ARE SIGNIFICANTLY BETTER THAN THE OTHERS, ACCORDING

TO THE T-TEST WITH A SIGNIFICANCE LEVEL AT 0.05.

Methods sunglasses scarves
Accuracy Time Accuracy Time

OPCE 91.07±1.37 2.48±0.03 91.35±1.25 3.54±0.01
PCE 86.78±1.21 1.25±0.02 87.08±1.97 1.26±0.01
LPP 67.61±3.08 2.99±0.48 65.95±2.31 2.56±0.54
NPE 81.73±1.43 5.35±0.04 78.72±1.73 4.89±0.03

L1graph 63.85±2.49 307.57±14.25 58.00±1.57 234.42±33.75
NMF 78.28±2.96 23.52±1.10 76.82±2.52 21.70±0.65
RPCA 87.43±2.04 978.95±79.97 89.57±0.98 193.44±4.11

RPCAG 53.23±2.72 38.64±1.00 40.73±2.22 38.96±1.15

from which we can see that: (1) OPCE consistently achieves
the highest accuracy and PCE usually achieves the second best
performance; (2) OPCE is more competitive than the baselines
when more training samples are available. For example, with
the increasing p, the performance gain of OPCE over NPE
increases from 6.99% to 9.27%.

D. Performance comparison on clean data

In this section, we compare our method with several state-
of-the-art subspace learning approaches on the COIL100,
USPS, and Reuters21578 data sets. For COIL100 and USPS,
we randomly select half of samples for training and use the
rest for testing. For the Reuters21578 data set, we use 1,740
documents for training and 607 documents for testing.

Figures 2–4 show the results from which we can see:
• In most cases, our OPCE achieves the best performance

on these three data sets. On COIL100, the best perfor-
mance is achieved by OPCE with the SRC and KNN
classifiers, i.e. 64.40%, which is at least 4.80% higher
than the other methods in all settings.

• On the USPS data set, the highest accuracy rate is also
achieved by OPCE with SRC, which is about 97.65% and
is 1.05% higher than the second best method. Note that,
OPCE and PCE achieve similar recognition rate when
LRC is used as classifier.

• On the Reuters21578 data set, OPCE outperforms all
the evaluated algorithms by a considerable margin. The
highest accuracy of OPCE is achieved by SVM, which is
1.70% higher than the best result of baseline approaches.

TABLE IV
ROBUSTNESS OF DIFFERENT SUBSPACE LEARNING METHODS WITH THE
SRC CLASSIFIER ON THE CORRUPTED EXYALEB IMAGES. RESULTS IN

BOLDFACE ARE SIGNIFICANTLY BETTER THAN THE OTHERS, ACCORDING
TO THE T-TEST WITH A SIGNIFICANCE LEVEL AT 0.05.

Methods Accuracy Time (seconds)

OPCE 82.67±0.76 31.91±3.21
PCE 80.89±1.06 22.84±0.91
LPP 44.56±1.82 50.23±5.38
NPE 62.30±2.12 34.57±0.57

L1graph 39.13±3.24 548.26±15.95
NMF 65.34±1.66 208.84±8.05
RPCA 80.85±0.61 415.13±7.89

RPCAG 77.40±1.28 203.39±9.88

E. Robustness to real disguises and random pixel corruption

In this section, we first investigate the robustness of our
method with LRC using two subsets of the AR data set. The
first subset contains 600 clean images and 600 faces disguised
by sunglasses. The second subset contains 600 clean images
and 600 faces disguised by scarves. Moreover, we compare
the computational efficiency of these methods.

Table III shows that our method is remarkably superior
to the other approaches. When the faces are disguised by
sunglasses (occlusion rate is about 20%), OPCE exceeds
the best baseline method of 3.64% and PCE of 4.29% in
accuracy. In the case of scarves disguise, the corresponding
gains are 1.78% and 4.27%. OPCE not only achieves the
highest accuracy, but also is the one of the fastest algorithms. It
is over 435 and 54 times faster than RPCA w.r.t. the sunglasses
and the scarves disguises.

To examine the robustness of our method against missing
entries, we conduct experiments on the ExYaleB data set with
random pixel corruption. Specifically, we randomly select a
half of images to remove some entries by replacing the value
of 30% pixels with 0 or pmax, where pmax is the largest
pixel value of the current image. The results are summarized
in Table IV which show that OPCE is significantly prior to
the other tested methods in terms of classification accuracy
and efficiency. Our method is 1.78% higher than PCE, which
shows the effectiveness of our orthogonal constraint.

VI. CONCLUSION

In this paper, we proposed an unsupervised subspace learn-
ing algorithm, termed orthogonal principal coefficients em-
bedding (OPCE). With a novel objective function, OPCE
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Fig. 2. Performance comparison on the COIL100 data set.

enforces the projection matrix to be mutually orthogonal in
column space, thus resulting in more discriminative features
from raw data. Moreover, OPCE automatically determines this
parameter based on the data distribution, without requiring
the dimension of feature space to be specified in advance.
Extensive experimental results show the effectiveness and
efficiency of our proposed method on face, object, handwritten
digit image, and text corpus classification in comparison with
several baseline methods.
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