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Abstract—In this paper, we address two challenging problems
in unsupervised subspace learning: 1) how to automatically iden-
tify the feature dimension of the learned subspace (i.e., automatic
subspace learning) and 2) how to learn the underlying subspace
in the presence of Gaussian noise (i.e., robust subspace learning).
We show that these two problems can be simultaneously solved
by proposing a new method [(called principal coefficients embed-
ding (PCE)]. For a given data set D ∈ Rm×n, PCE recovers a
clean data set D0 ∈ Rm×n from D and simultaneously learns a
global reconstruction relation C ∈ Rn×n of D0. By preserving
C into an m′-dimensional space, the proposed method obtains a
projection matrix that can capture the latent manifold structure
of D0, where m′ � m is automatically determined by the rank of
C with theoretical guarantees. PCE has three advantages: 1) it
can automatically determine the feature dimension even though
data are sampled from a union of multiple linear subspaces in
presence of the Gaussian noise; 2) although the objective function
of PCE only considers the Gaussian noise, experimental results
show that it is robust to the non-Gaussian noise (e.g., random
pixel corruption) and real disguises; and 3) our method has a
closed-form solution and can be calculated very fast. Extensive
experimental results show the superiority of PCE on a range of
databases with respect to the classification accuracy, robustness,
and efficiency.

Index Terms—Automatic dimension reduction, corrupted data,
graph embedding, manifold learning, robustness.

I. INTRODUCTION

SUBSPACE learning or metric learning aims to find a pro-
jection matrix � ∈ Rm×m′

from the training data Dm×n, so
that the high-dimensional datum y ∈ Rm can be transformed
into a low-dimensional space via z = �Ty. Existing subspace
learning methods can be roughly divided into three categories:
supervised, semi-supervised, and unsupervised. Supervised
method incorporates the class label information of D to obtain
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discriminative features. The well-known works include but
not limit to linear discriminant analysis [1], neighborhood
components analysis [2], and their variants such as [3]–[6].
Moreover, Xu et al. [7] recently proposed to formulate the
problem of supervised multiple view subspace learning as one
multiple source communication system, which provide a novel
insight to the community. Semi-supervised methods [8]–[10]
utilize limited labeled training data as well as unlabeled
ones for better performance. Unsupervised methods seek a
low-dimensional subspace without using any label informa-
tion of training samples. Typical methods in this category
include Eigenfaces [11], neighborhood preserving embed-
ding (NPE) [12], locality preserving projections (LPPs) [13],
sparsity preserving projections (SPPs) [14] or known as
L1-graph [15], and multiview intact space learning [16].
For these subspace learning methods, Yan et al. [17] have
shown that most of them can be unified into the framework
of graph embedding, i.e., low dimensional features can be
achieved by embedding some desirable properties (described
by a similarity graph) from a high-dimensional space into
a low-dimensional one. By following this framework, this
paper focuses on unsupervised subspace learning, i.e., dimen-
sion reduction considering the unavailable label information
in training data.

Although a large number of subspace learning methods have
been proposed, less works have investigated the following
two challenging problems simultaneously: 1) how to automat-
ically determine the dimension of the feature space, referred
to as automatic subspace learning and 2) how to immune
the influence of corruptions, referred to as robust subspace
learning.

Automatic subspace learning involves the technique of
dimension estimation which aims at identifying the number
of features necessary for the learned low-dimensional sub-
space to describe a data set. In previous studies, most existing
methods manually set the feature dimension by exploring all
possible values based on the classification accuracy. Clearly,
such a strategy is time-consuming and easily overfits to the
specific data set. In the literature of manifold learning, some
dimension estimation methods have been proposed, e.g., spec-
trum analysis based methods [18], [19], box-counting based
methods [20], fractal-based methods [21], [22], tensor vot-
ing [23], and neighborhood smoothing [24]. Although these
methods have achieved some impressive results, this problem
is still far from solved due to the following limitations: 1) these
existing methods may work only when data are sampled in
a uniform way and data are free to corruptions, as pointed
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out by Saul and Roweis [25]; 2) most of them can accu-
rately estimate the intrinsic dimension of a single subspace
but would fail to work well for the scenarios of multiple sub-
spaces, especially, in the case of the dependent or disjoint
subspaces; and 3) although some dimension estimation tech-
niques can be incorporated with subspace learning algorithms,
it is more desirable to design a method that can not only auto-
matically identify the feature dimension but also reduce the
dimension of data.

Robust subspace learning aims at identifying underlying
subspaces even though the training data D contains gross cor-
ruptions such as the Gaussian noise. Since D is corrupted by
itself, accurate prior knowledge about the desired geometric
properties is hard to be learned from D. Furthermore, gross
corruptions will make dimension estimation more difficult.
This so-called robustness learning problem has been challeng-
ing in machine learning and computer vision. One of the most
popular solutions is recovering a clean data set from inputs
and then performing dimension reduction over the clean data.
Typical methods include the well-known principal component
analysis (PCA) which achieves robust results by removing the
bottom eigenvectors corresponding to the smallest eigenval-
ues. However, PCA can achieve a good result only when data
are sampled from a single subspace and only contaminated by
a small amount of noises. Moreover, PCA needs specifying a
parameter (e.g., 98% energy) to distinct the principal compo-
nents from the minor ones. To improve the robustness of PCA,
Candès et al. [26] recently proposed robust PCA (RPCA)
which can handle the sparse corruption and has achieved a
lot of success [27]–[32]. However, RPCA directly removes
the errors from the input space, which cannot obtain the low-
dimensional features of inputs. Moreover, the computational
complexity of RPCA is too high to handle the large-scale
data set with very high dimensionality. Bao et al. [33] pro-
posed an algorithm which can handle the gross corruption.
However, they did not explore the possibility to automati-
cally determine feature dimension. Tzimiropoulos et al. [34]
proposed a subspace learning method from image gradient
orientations by replacing pixel intensities of images with gra-
dient orientations. Shu et al. [35] proposed to impose the
low-rank constraint and group sparsity on the reconstruction
coefficients under orthonormal subspace so that the Laplacian
noise can be identified. Their method outperforms a lot of
popular methods such as Gabor features in illumination- and
occlusion-robust face recognition. Liu and Tao [36] have
recently carried out a series of comprehensive works to discuss
how to handle various noises, e.g., Cauchy noise, Laplacian
noise [37], and noisy labels [38]. Their works provide some
novel theoretical explanations toward understanding the role of
these errors. Moreover, some recent developments have been
achieved in the field of subspace clustering [39]–[45], which
use �1-, �2-, or nuclear-norm based representation to achieve
robustness.

In this paper, we proposed a robust unsupervised subspace
learning method which can automatically identify the num-
ber of features. The proposed method, referred to as principal
coefficients embedding (PCE), formulates the possible corrup-
tions as a term of an objective function so that a clean data set

D0 and the corresponding reconstruction coefficients C can be
simultaneously learned from the training data D. By embed-
ding C into an m′-dimensional space, PCE obtains a projection
matrix �m×m′

, where m′ is adaptively determined by the rank
of C with theoretical guarantees.

PCE is motivated by a recent work in subspace clus-
tering [39], [46] and the well-known locally linear embed-
ding (LLE) method [47]. The former motivates us the way to
achieve robustness, i.e., the errors such as the Gaussian noise
can be mathematically formulated as a term into the objective
function and thus the errors can be explicitly removed. The
major differences between [39] and PCE are: 1) [39] is pro-
posed for clustering, whereas PCE is for dimension reduction;
2) the objective functions are different. PCE is based on the
Frobenius norm instead of the nuclear norm, thus resulting a
closed-form solution and avoiding iterative optimization pro-
cedure; and 3) PCE can automatically determine the feature
dimension, whereas [39] does not investigate this challenging
problem. LLE motivated us the way to estimate feature dimen-
sion even though it does not overcome this problem. LLE
is one of most popular dimension reduction methods, which
encodes each data point as a linear combination of its neigh-
borhood and preserves such reconstruction relationship into
different projection spaces. LLE implies the possibility to esti-
mate the feature dimension using the size of neighborhood of
data points. However, this parameter needs to be specified by
users rather than automatically learning from data. Thus, LLE
still suffers from the issue of dimension estimation. Moreover,
the performance of LLE would be degraded when the data is
contaminated by noises. The contributions of this paper are
summarized as follows.

1) The proposed method (i.e., PCE) can handle the
Gaussian noise that probably exists into data with theo-
retical guarantees. Different from the existing dimension
reduction methods such as L1-Graph, PCE formulates
the corruption into its objective function and only cal-
culates the reconstruction coefficients using a clean data
set instead of the original one. Such a formulation
can perform data recovery and improve the robustness
of PCE.

2) Unlike previous subspace learning methods, PCE can
automatically determine the feature dimension of the
learned low-dimensional subspace. This largely reduces
the efforts for finding an optimal dimension and thus
PCE is more competitive in practice.

3) PCE is computationally efficient, which only involves
performing singular value decomposition (SVD) over the
training data set one time.

The rest of this paper is organized as follows. Section II
briefly introduces some related works. Section III presents
our proposed algorithm. Section IV reports the experimental
results and Section V concludes this paper.

II. RELATED WORKS

A. Notations and Definitions

In the following, lower-case bold letters represent column
vectors and upper-case bold ones denote matrices. AT and
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TABLE I
SOME USED NOTATIONS

A† denote the transpose and pseudo-inverse of the matrix A,
respectively. I denotes the identity matrix.

For a given data matrix D ∈ Rm×n, the Frobenius norm of
D is defined as

‖D‖F =
√

trace
(
DDT

) =
√∑min{m,n}

i=1
σ 2

i (D) (1)

where σi(D) denotes the ith singular value of D.
The full SVD and the skinny SVD of D are defined as D =

U�VT and D = Ur�rVT
r , where � and �r are in descending

order. Ur, Vr and �r consist of the top (i.e., largest) r singular
vectors and singular values of D. Table I summarizes some
notations used throughout this paper.

B. Locally Linear Embedding

Yan et al. [17] have shown that most unsupervised, semi-
supervised, and supervised subspace learning methods can
be unified into a framework known as graph embedding.
Under this framework, subspace learning methods obtain low-
dimensional features by preserving some desirable geometric
relationships from a high-dimensional space into a low-
dimensional one. Thus, the performance of subspace learning
largely depends on the identified relationship which is usu-
ally described by a similarity graph (i.e., affinity matrix). In
the graph, each vertex corresponds to a data point and the
edge weight denotes the similarity between two connected
points. There are two popular ways to measure the similarity
among data points, i.e., pairwise distance such as Euclidean
distance [48] and linear reconstruction coefficients introduced
by LLE [47].

For a given data matrix D = [d1, d2, . . . , dn], LLE solves
the following problem:

min
ci

n∑
i=1

‖di − Bici‖2, s.t.
∑

j

cij = 1 (2)

where ci ∈ Rp is the linear representation of di over Bi, cij

denotes the jth entry of ci, and Bi ∈ Rm×p consists of p nearest
neighbors (NNs) of di that are chosen from the collection of
[d1, . . . , di−1, di+1, . . . , dn] in terms of Euclidean distance.

By assuming the reconstruction relationship ci is invariant
to ambient space, LLE obtains the low-dimensional features
Y ∈ Rm′×n of D by

min
Y

‖Y − YW‖2
F, s.t. YTY = I (3)

where W = [w1, w2, . . . , wn] and the nonzero entries of wi ∈
Rn corresponds to ci.

However, LLE cannot handle the out-of-sample data that
are not included into D. To solve this problem, NPE [48] cal-
culates the projection matrix � instead of Y by replacing Y
with �TD into (3).

C. L1-Graph

By following the framework of LLE and NPE,
Qiao et al. [14] and Cheng et al. [15] proposed SPP
and L1-graph, respectively. The methods sparsely encode
each data points by solving the following sparse coding
problem:

min
ci

‖di − Dici‖2 + λ‖ci‖1 (4)

where Di = [d1, . . . , di−1, 0, di+1, . . . , dn] and (4) can be
solved by many �1-solvers [49], [50].

After obtaining C ∈ Rn×n, SPP and L1-graph embed C
into the feature space by following NPE. The advantage of
sparsity based subspace methods is that they can automati-
cally determine the neighborhood for each data point without
the parameter of neighborhood size. Inspired by the success
of SPP and L1-graph, a number of spectral embedding meth-
ods [51]–[56] have been proposed. However, these methods
including L1-graph and SPP have still required specifying the
dimension of feature space.

D. Robust Principal Component Analysis

RPCA [26] is proposed to improve the robustness of PCA,
which solves the following optimization problem:

min
D0,E

rank(D0) + λ‖E‖0s.t.D = D0 + E (5)

where λ > 0 is the parameter to balance the possible corrup-
tions and the desired clean data, and ‖ ·‖0 is �0-norm to count
the number of nonzero entries of a given matrix or vector.

Since the rank operator and �0-norm are nonconvex and
discontinuous, ones usually relax them with nuclear norm and
�1-norm [57]. Then, (5) is approximated by

min
D0,E

‖D0‖∗ + λ‖E‖1 s.t. D = D0 + E (6)

where ‖D‖∗ = trace(
√

DTD) = ∑min{m,n}
i=1 σi(D) denotes the

nuclear norm of D and σi(D) is the ith singular value of D.

III. PRINCIPAL COEFFICIENTS EMBEDDING FOR

UNSUPERVISED SUBSPACE LEARNING

In this section, we propose an unsupervised algorithm for
subspace learning, i.e., PCE. The method not only can achieve
robust results but also can automatically determine the feature
dimension.
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For a given data set D containing the errors E, PCE achieves
robustness and dimension estimation in two steps.

1) The first step achieves the robustness by recovering a
clean data set D0 from D and building a similarity graph
C ∈ Rn×n with the reconstruction coefficients of D0,
where D0 and C are jointly learned by solving an SVD
problem.

2) The second step automatically estimates the feature
dimension using the rank of C and learns the projection
matrix � ∈ Rm×m′

by embedding C into an m′-
dimensional space. In the following, we will introduce
these two steps in details.

A. Robustness Learning

For a given training data matrix D, PCE removes the corrup-
tion E from D and then linearly encodes the recovered clean
data set D0 over itself. The proposed objective function is as
follows:

min
C,D0,E

1

2
‖C‖2

F + λ

2
‖E‖2

p s.t. D = D0 + E︸ ︷︷ ︸
Robustness

, D0 = D0C︸ ︷︷ ︸
self-expression

. (7)

The proposed objective function mainly considers the con-
straints on the representation C and the errors E. We enforce
Frobenius norm on C because some recent works have shown
that the Frobenius norm based representation is more com-
putationally efficient than the �1- and nuclear-norm based
representation while achieving competitive performance in
face recognition [58] and subspace clustering [41]. Moreover,
Frobenius-norm based representation has shared some desir-
able properties with nuclear-norm based representation as
shown in our previous theoretical studies [46], [59].

The term D0 = D0C is motivated by the recent development
in subspace clustering [60], [61], which can be further derived
from the formulation of LLE [i.e., (3)]. More specifically, ones
reconstruct D0 by itself to obtain this so-called self-expression
as the similarity of data set. The major differences between this
paper and the existing methods are: 1) the objective functions
are different. Our method is based on Frobenius norm instead
of �1- or nuclear-norm; 2) the methods directly project the
original data D into the space spanned by itself, whereas we
simultaneously learn a clean data set D0 from D and compute
the self-expression of D0; and 3) PCE is proposed for subspace
learning, whereas the methods are proposed for clustering.

By formulating the error E as a term into our objective func-
tion, we can achieve robustness by D0 = D−E. The constraint
on E (i.e., ‖ · ‖p) could be chosen as �1-, �2-, or �2,1-norm.
Different choices of ‖ · ‖p correspond to different types of
noises. For example, �1-norm is usually used to formulate the
Laplacian noise, �2-norm is adopted to describe the Gaussian
noise, and �2,1-norm is used to represent the sample-specified
corruption such as outlier [61]. Here, we mainly consider
the Gaussian noise which is commonly assumed in signal
transmission problem. Thus, we have the following objective
function:

min
C,D0,E

1

2
‖C‖2

F + λ

2
‖E‖2

F s.t. D = D0 + E, D0 = D0C (8)

where ‖E‖F denotes the error that follows the Gaussian dis-
tribution. It is worthy to point out that, although the above
formulation only considers the Gaussian noise, our experimen-
tal result show that PCE is also robust to other corruptions
such as random pixel corruption (nonadditive noise) and real
disguises.

To efficiently solve (8), we first consider the case of
corruption-free, i.e., E = 0. In such a setting, (8) is simplified
as follows:

min
C

‖C‖F s.t. D = DC. (9)

Note that, D†D is a feasible solution to D = DC, where D†

denotes the pseudoinverse of D. In [46], an unique minimizer
to (9) is given as follows.

Lemma 1: Let D = Ur�rVT
r be the skinny SVD of the data

matrix D �= 0. The unique solution to

min ‖C‖F s.t. D = DC (10)

is given by C∗ = VrVT
r , where r is the rank of D and D is a

clean data set without any corruptions.
Proof: Let D = U�VT be the full SVD of D. The pseudo-

inverse of D is D† = Vr�
−1
r UT

r . Defining Vc by VT =
[

VT
r

VT
c

]

and VT
c Vr = 0. To prove that C∗ = VrVT

r is the unique
solution to (10), two steps are required.

First, we prove that C∗ is the minimizer to (10), i.e., for
any X satisfying D = DX, it must hold that ‖X‖F ≥ ‖C∗‖F .
Since for any column orthogonal matrix P, it must hold that
‖PM‖F = ‖M‖F . Then, we have

‖X‖F =
∥∥∥∥
[

VT
r

VT
c

][
C∗ + (

X − C∗)]
∥∥∥∥

F

=
∥∥∥∥
[

VT
r C∗ + VT

r (X − C∗)
VT

c C∗ + VT
c (X − C∗)

]∥∥∥∥
F
. (11)

As C∗ satisfies D = DC∗, then D(X − C∗) = 0, i.e.,
Ur�rVT

r (X − C∗) = 0. Since Ur�r �= 0, VT
r (X − C∗) = 0.

Denote � = �−1
r UT

r D, then C∗ = Vr�. Because VT
c Vr = 0,

we have VT
c C∗ = VT

c Vr� = 0. Then, it follows that:

‖X‖F =
∥∥∥∥
[

�

VT
c (X − C∗)

]∥∥∥∥
F
. (12)

Since for any matrixes M and N with the same number of
columns, it holds that

∥∥∥∥
[

M
N

]∥∥∥∥
2

F
= ‖M‖2

F + ‖N‖2
F. (13)

From (12) and (13), we have

‖X‖2
F = ‖�‖2

F + ∥∥VT
c

(
X − C∗)∥∥2

F (14)

which shows that ‖X‖F ≥ ‖�‖F .
Furthermore, since

‖�‖F = ‖Vr�‖F = ∥∥C∗∥∥
F (15)

we have ‖X‖F ≥ ‖C∗‖F .
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Second, we prove that C∗ is the unique solution of (10). Let
X be another minimizer, then, D = DX and ‖X‖F = ‖C∗‖F .
From (14) and (15)

‖X‖2
F = ‖C∗‖2

F + ∥∥VT
c

(
X − C∗)∥∥2

F. (16)

Since ‖X‖F = ‖C∗‖F , it must hold that ‖VT
c (X − C∗)‖F =

0, and then VT
c (X − C∗) = 0. Together with VT

r (X − C∗) = 0,
this gives VT(X−C∗) = 0. Because V is an orthogonal matrix,
it must hold that X = C∗.

Based on Lemma 1, the following theorem can be used to
solve the robust version of PCE (i.e., E �= 0).

Theorem 1: Let D = U�VT be the full SVD of D ∈ Rm×n,
where the diagonal entries of � are in descending order, U and
V are corresponding left and right singular vectors, respec-
tively. Suppose there exists a clean data set and errors, denoted
by D0 and E, respectively. The optimal C to (8) is given by
C∗ = VkVT

k , where λ is a balanced factor, Vk consists of the
first k right singular vectors of D, k = argminrr + λ

∑
i>r σ 2

i ,
and σi denotes the ith diagonal entry of �.

Proof: Equation (8) can be rewritten as

min
D0,C

1

2
‖C‖2

F + λ

2
‖D − D0‖2

F s.t. D0 = D0C. (17)

Let D∗
0 = Ur�rVT

r be the skinny SVD of D0, where r is
the rank of D0. Let Uc and Vc be the basis that orthogonal
to Ur and Vr, respectively. Clearly, I = VrVT

r + VcVT
c . By

Lemma 1, the representation over the clean data D0 is given
by C∗ = VrVT

r . Next, we will bridge Vr and V.
Using Lagrange method, we have

L(D0, C) = 1

2
‖C‖2

F + λ

2
‖D − D0‖2

F+ < �, D0 − D0C >

(18)

where � denotes the Lagrange multiplier and the operator
< · > denotes dot product.

Letting ((∂L(D0, C))/(∂D0)) = 0, it gives that

�VcVT
c = λE. (19)

Letting ((∂L(D0, C))/(∂C)) = 0, it gives that

VrVT
r = Vr�rUT

r �. (20)

From (20), � must be in the form of � = Ur�
−1
r VT

r +UcM
for some M. Substituting � into (19), it gives that

UcMVcVT
c = λE. (21)

Thus, we have ‖E‖2
F = (1/λ2)‖UcMVcVT

c ‖ =
(1/λ2)‖MVc‖2

F . Clearly, ‖E‖2
F is minimized when MVc is

a diagonal matrix and can be denoted by MVc = �c, i.e.,
E = (1/λ)Uc�cVT

c . Thus, the SVD of D could be chosen as

D = U�VT = [Ur Uc]

[
�r 0

0
1

λ
�c

][
VT

r
VT

c

]
. (22)

Thus, the minimal cost of (17) is given by

Lmin
(
D∗

0, C∗) = 1

2

∥∥VrVT
r

∥∥2
F + λ

2

∥∥∥∥
1

λ
�c

∥∥∥∥
2

F

= 1

2
r + λ

2

min{m,n}∑
i=r+1

σ 2
i (23)

where σi is the ith largest singular value of D. Let k be the
optimal r to (23), then we have k = argminrr +λ

∑
i>r σ 2

i .
Theorem 1 shows that the skinny SVD of D is automatically

separated into two parts, the top and the bottom one corre-
spond to a desired clean data D0 and the possible corruptions
E, respectively. Such a PCA-like result provides a good expla-
nation toward the robustness of our method, i.e., the clean data
can be recovered by using the first k leading singular vectors
of D. It should be pointed out that the above theoretical results
(Lemma 1 and Theorem 1) have been presented in [46] for
building the connections between Frobenius norm based rep-
resentation and nuclear norm based representation in theory.
Different from [46], this paper mainly considers how to utilize
this result to achieve robust and automatic subspace learning.

Fig. 1 gives an example to show the effectiveness of
PCE. We carried out experiment using 700 clean AR facial
images [62] as training data that distribute over 100 individ-
uals. Fig. 1(a) shows the coefficient matrix C∗ obtained by
PCE. One can find that the matrix is approximately block-
diagonal, i.e., cij �= 0 if and only if the corresponding points
di and dj belong to the same class. Moreover, we perform SVD
over C∗ and show the singular values of C∗ in Fig. 1(b). One
can find that only the first 69 singulars values are nonzero. In
other words, the intrinsic dimension of the entire data set is
69 and the first 69 singular values can preserve 100% infor-
mation. It should be pointed out that, PCE does not set a
parameter to truncate the trivial singular values like PCA and
PCA-like methods [19], which incorporates all energy into a
small number of dimension.

B. Intrinsic Dimension Estimation and Projection Learning

After obtaining the coefficient matrix C∗, PCE builds a sim-
ilarity graph and embeds it into an m′-dimensional space by
the following NPE [12], that is:

min
�

1

2
‖�TD − �TDA‖2

F, s.t. �TDDT� = I (24)

where � ∈ Rm×m′
denotes the projection matrix.

One challenging problem arising in dimension reduction is
to determine the value of m′, most existing methods exper-
imentally set this parameter, which is very computational
inefficiency. To solve this problem, we propose estimating the
feature dimension using the rank of the affinity matrix A and
have the following theorem.

Theorem 2: For a given data set D, the feature dimension
m′ is upper bounded by the rank of C∗, that is

m′ ≤ k. (25)

Proof: It is easy to see that (24) has the following equivalent
variation:

�∗ = argmax
�TD

(
A + AT − AAT

)
DT�

�TDDT�
. (26)

We can see that the optimal solution to (26) consists of
m′ leading eigenvectors of the following generalized Eigen
decomposition problem:

D
(
A + AT − AAT)

DTθ = σDDTθ (27)
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Fig. 1. Illustration using 700 AR facial images. (a) PCE can obtain a block-diagonal affinity matrix, which is benefit to classification. For better illustration,
we only show the affinity matrix of the data points belonging to the first seven categories. (b) Intrinsic dimension of the used whole data set is exactly 69,
i.e., m′ = k = 69 for 700 samples. This result is obtained without truncating the trivial singular values like PCA. In Fig. 1(b), the dotted line denotes the
accumulated energy of the first k singular value.

Algorithm 1 Automatic Subspace Learning via PCE
Input: A collection of training data points D = {di} sam-

pled from a union of linear subspaces and the balanced
parameter λ > 0.

1: Perform the full SVD or skinny SVD on D, i.e. D =
U�VT , and get the C = VkVT

k , where Vk consists of k
column vector of V corresponding to k largest singular
values, where k = argminrr + λ

∑
i>r σ 2

i (D) and σi(D) is
the i-th singular value of D.

2: Construct a similarity graph via A = C.
3: Embed A into a k-dimensional space and get the projec-

tion matrix � ∈ Rm×k that consists of the eigenvectors
corresponding to the k largest eigenvalues of the following
generalized eigenvector problem Eq. (26).

Output: The projection matrix �. For any data point
y ∈ span{D}, its low-dimensional representation can be
obtained by z = �Ty.

where σ is the corresponding singular value of the problem.
As A = AT = AAT , then (27) can be rewritten

DADT� = σDDTθ. (28)

From Theorem 1, we have rank(D) > rank(A) = k, where k
is calculated according to Theorem 1. Thus, the above gener-
alized Eigen decomposition problem has at most k eigenvalues
larger than zeros, i.e., the rank of � is upperly bounded by k.
This gives the result.

Algorithm 1 summarizes the procedure of PCE. Note that,
it does not require A to be a symmetric matrix.

C. Computational Complexity Analysis

For a training data set D ∈ Rm×n, PCE performs the skinny
SVD over D in O(m2n+mn2 +n3). However, a number of fast
SVD methods can speed up this procedure. For example, the
complexity can be reduced to O(mnr) by Brand’s method [63],

where r is the rank of D. Moreover, PCE estimates the fea-
ture dimension k in O(rlogr) and solves a sparse generalized
eigenvector problem in O(mn+mn2) with Lanczos eigensolver.
Putting everything together, the time complexity of PCE is
O(mn + mn2) due to r � min(m, n).

IV. EXPERIMENTS AND RESULTS

In this section, we reported the performance of PCE
and six state-of-the-art unsupervised feature extraction
methods including Eigenfaces [11], LPP [13], [48],
NPE [12], L1-graph [15], non-negative matrix factoriza-
tion (NMF) [64], [65], RPCA [26], NeNMF [66], and robust
orthonormal subspace learning (ROSL) [35]. Noticed that,
NeNMF is one of the most efficient NMF solvers, which can
effectively overcome the slow convergence rate, numerical
instability and nonconvergence issue of NMF. All algorithms
are implemented in MATLAB. The used data sets and the
codes of our algorithm can be downloaded from the website
http://machineilab.org/users/pengxi.

A. Experimental Setting and Data Sets

We implemented a fast version of L1-graph by using
Homotopy algorithm [67] to solve the �1-minimization prob-
lem. According to [49], Homotopy is one of the most
competitive �1-optimization algorithms in terms of accu-
racy, robustness, and convergence speed. For RPCA, we
adopted the accelerated proximal gradient method with partial
SVD [68] which has achieved a good balance between com-
putation speed and reconstruction error. As mentioned above,
RPCA cannot obtain the projection matrix for subspace learn-
ing. For fair comparison, we incorporated Eigenfaces with
RPCA (denoted by RPCA+PCA) and ROSL (denoted by
ROSL+PCA) to obtain the low-dimensional features of the
inputs. Unless otherwise specified, we assigned m′ = 300
for all the tested methods except PCE which automatically
determines the value of m′.
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TABLE II
USED DATABASES. s AND ni DENOTE THE NUMBER OF SUBJECT

AND THE NUMBER OF IMAGES FOR EACH GROUP

In our experiments, we evaluated the performance of these
subspace learning algorithms with three classifiers, i.e., sparse
representation based classification (SRC) [69], [70], support
vector machine (SVM) with linear kernel [71], and the NN
classifier. For all the evaluated methods, we first identify their
optimal parameters using a data partitions and then reported
the mean and standard deviation of classification accuracy
using ten randomly sampling data partitions.

We used eight image data sets including AR facial
database [62], expended Yale database B (ExYaleB) [72],
four sessions of multiple PIE (MPIE) [73], COIL100 objects
database [74], and the handwritten digital database USPS.1

The used AR data set contains 2600 samples from 50 male
and 50 female subjects, of which 1400 samples are clean
images, 600 samples are disguised by sunglasses, and the
remaining 600 samples are disguised by scarves. ExYaleB
contains 2414 frontal-face images of 38 subjects, and we use
the first 58 samples of each subject. MPIE contains the facial
images captured in four sessions. In the experiments, all the
frontal faces with 14 illuminations2 are investigated. For com-
putational efficiency, we downsized all the data sets from the
original size to smaller one. Table II provides an overview of
the used data sets.

B. Influence of the Parameter

In this section, we investigate the influence of parameters of
PCE. Besides the aforementioned subspace clustering meth-
ods, we also report the performance of CorrEntropy based
sparse representation (CESR) [75] as a baseline. Noticed that,
CESR is a not subspace learning method, which performs like
SRC to classify each testing sample by finding which subject
produces the minimal reconstruction error. By following the
experimental setting in [75], we evaluated CESR using the
nonnegativity constraint with 0.

1) Influence of λ: PCE uses the parameter λ to measure the
possible corruptions and estimate the feature dimension m′. To
investigate the influence of λ on the classification accuracy and
the estimated dimension, we increased the value of λ from 1 to
99 with an interval of 2 by performing experiment on a subset
of AR database and a subset of Extended Yale Database B. The
used data sets include 1400 clean images over 100 individuals
and 2204 samples over 38 subjects. In the experiment, we

1http://archive.ics.uci.edu/ml/datasets.html
2Illuminations: 0, 1, 3, 4, 6, 7, 8, 11, 13, 14, 16, 17, 18, 19.

Fig. 2. Influence of the parameter λ, where the NN classifier is used. The solid
and dotted lines denote the classification accuracy and the estimated feature
dimension m′ (i.e., k), respectively. (a) 1400 nondisguised images from the
AR database. (b) 2204 images from the ExYaleB database.

randomly divided each data set into two parts with equal size
for training and testing.

Fig. 2 shows that a larger λ will lead to a larger m′ but
does not necessarily bring a higher accuracy since the value
of λ does reflect the errors contained into inputs. For example,
while λ increases from 13 to 39, the recognition accuracy of
PCE on AR almost remains unchanged, which ranges from
93.86% to 95.29%.

2) PCE With the Fixed m′: To further show the effective-
ness of our dimension determination method, we investigated
the performance of PCE by manually specifying m′ = 300,
denoted by PCE2. We carried out the experiments on ExYaleB
by choosing 40 samples from each subject as training data and
using the rests for testing. Table III reports the result from
which we can find the following.

1) The automatic version of our method, i.e., PCE,
performs competitive to PCE2 which manually set
m′ = 300. This shows that our dimension estimation
method can accurately estimate the feature dimension.

2) Both PCE and PCE2 outperform the other methods by a
considerable performance margin. For example, PCE is
3.68% at least higher than the second best method when
the NN classifier is used.

3) Although PCE is not the fastest algorithm, it achieves
a good balance between recognition rate and computa-
tional efficiency. In the experiments, PCE, Eigenfaces,
LPP, NPE, and NeNMF are remarkably faster than
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TABLE III
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS USING EXYALEB, WHERE TRAINING DATA AND TESTING DATA CONSIST OF 1520

AND 684 SAMPLES, RESPECTIVELY. PCE, EIGENFACES, AND NMF HAVE ONLY ONE PARAMETER. PCE NEEDS SPECIFYING THE BALANCED

PARAMETER λ BUT IT AUTOMATICALLY COMPUTES THE FEATURE DIMENSION. ALL METHODS EXCEPT PCE EXTRACT 300 FEATURES FOR

CLASSIFICATION. “PARA.” INDICATES THE TUNED PARAMETERS. NOTE THAT, THE SECOND PARAMETER OF PCE DENOTES m′ (I.E., k)
WHICH IS AUTOMATICALLY CALCULATED VIA THEOREM 1

TABLE IV
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS USING

EXYALEB). BESIDES m′ = 300, ALL METHODS EXCEPT

PCE ARE WITH THE TUNED m′

other baseline methods. Moreover, NeNMF is remark-
ably faster than NMF while achieving a competitive
performance.

3) Tuning m′ for the Baseline Methods: To show the dom-
inance of the dimension estimation of PCE, we reported the
performance of all the baseline methods in two settings, i.e.,
m′ = 300 and the optimal m′. The later setting is achieved
by finding an optimal m′ from 1 to 600 so that the algorithm
achieves their highest classification accuracy. We carried out
the experiments on ExYaleB by selecting 20 samples from
each subject as training data and using the rests for testing.
Note that, we only tuned m′ for the baseline algorithms and
PCE automatically identifies this parameter. Table IV shows
that PCE remarkably outperforms the investigated methods in
two settings even though all parameters including m′ are tuned
for achieving the best performance of the baselines.

C. Performance With Increasing Training Data and
Feature Dimension

In this section, we examined the performance of PCE with
increasing training samples and increasing feature dimension.
In the first test, we randomly sampled ni clean AR images from
each subject for training and used the rest for testing. Besides
the result of RPCA+PCA, we also reported the performance
of RPCA without dimension reduction.

In the second test, we randomly chose a half of images
from ExYaleB for training and used the rest for testing. We
reported the recognition rate of the NN classifier with the first
m′ features extracted by all the tested subspace learning meth-
ods, where m′ increases from 1 to 600 with an interval of 10.
From Fig. 3, we can conclude the following.

1) PCE performs well even though only a few of training
samples are available. Its accuracy is about 90% when
ni = 5, whereas the second best method achieves the
same accuracy when ni = 9.

2) RPCA and RPCA+PCA perform very close, however,
RPCA+PCA is more efficient than RPCA.

3) Fig. 3(b) shows that PCE consistently outperforms the
other methods. This benefits an advantage of PCE, i.e.,
PCE obtains a more compact representation which can
use a few of variables to represent the entire data.

D. Subspace Learning on Clean Images

In this section, we performed the experiments using MPIE
and COIL100. For each data set, we split it into two parts with
equal size. As did in the above experiments, we set m′ = 300
for all the tested methods except PCE. Tables V–IX report the
results, from which one can find the following.

1) With three classifiers, PCE outperforms the other inves-
tigated approaches on these five data sets by a consider-
able performance margin. For example, the recognition
rates of PCE with these three classifiers are 6.59%,
5.83%, and 7.90% at least higher than the rates of the
second best subspace learning method on MPIE-S1.

2) PCE is more stable than other tested methods. Although
SRC generally outperforms SVM and NN with the
same feature, such superiority is not distinct for PCE.
For example, SRC gives an accuracy improvement of
1.02% over NN to PCE on MPIE-S4. However, the
corresponding improvement to RPCA+PCA is about
49.50%.

3) PCE achieves the best results in all the tests, while using
the least time to perform dimension reduction and clas-
sification. PCE, Eigenfaces, LPP, NPE, and NeNMF are
remarkably efficient than L1-graph, NMF, RPCA+PCA,
and ROSL+PCA.



PENG et al.: AUTOMATIC SUBSPACE LEARNING VIA PCE 3591

Fig. 3. (a) Performance of the evaluated subspace learning methods with the NN classifier on AR images. (b) Recognition rates of the NN classifier with
different subspace learning methods on ExYaleB. Note that, PCE does not automatically determine the feature dimension in the experiment of performance
versus increasing feature dimension.

TABLE V
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS USING THE FIRST SESSION OF MPIE (MPIE-S1).

ALL METHODS EXCEPT PCE EXTRACT 300 FEATURES FOR CLASSIFICATION

TABLE VI
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS USING THE SECOND SESSION OF MPIE (MPIE-S2).

ALL METHODS EXCEPT PCE EXTRACT 300 FEATURES FOR CLASSIFICATION

TABLE VII
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS USING THE THIRD SESSION OF MPIE (MPIE-S3).

ALL METHODS EXCEPT PCE EXTRACT 300 FEATURES FOR CLASSIFICATION

E. Subspace Learning on Corrupted Facial Images
In this section, we investigated the robustness of PCE

against two corruptions using ExYaleB and the NN classifier.

The corruptions include the white Gaussian noise (addi-
tive noise) and the random pixel corruption (nonadditive
noise) [69].
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TABLE VIII
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS USING THE FOURTH SESSION OF MPIE (MPIE-S4).

ALL METHODS EXCEPT PCE EXTRACT 300 FEATURES FOR CLASSIFICATION

TABLE IX
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS USING COIL100.

ALL METHODS EXCEPT PCE EXTRACT 300 FEATURES FOR CLASSIFICATION

TABLE X
PERFORMANCE OF DIFFERENT SUBSPACE LEARNING ALGORITHMS WITH THE NN CLASSIFIER USING THE CORRUPTED EXYALEB. ALL METHODS

EXCEPT PCE EXTRACT 300 FEATURES FOR CLASSIFICATION. RPC IS THE SHORT FOR RANDOM PIXEL CORRUPTION. THE NUMBER IN THE

PARENTHESES DENOTES THE LEVEL OF CORRUPTION

Fig. 4. Some results achieved by PCE over the corrupted ExYaleB data
set which is corrupted by the Gaussian noise. The recovery and the error
are identified by PCE according to Theorem 1. (a) Corruption ratio: 10%.
(b) Corruption ratio: 30%.

In our experiments, we use a half of images (29 images
per subject) to corrupt using these two noises. Specifically,
we added white Gaussian noise into the sampled data d via
d̃ = d + ρn, where d̃ ∈ [0 255], ρ is the corruption ratio, and
n is the noise following the standard normal distribution. For
random pixel corruption, we replaced the value of a percentage
of pixels randomly selected from the image with the values

following a uniform distribution over [0, pmax], where pmax
is the largest pixel value of d. After adding the noises into
the images, we randomly divide the data into training and
testing sets. In other words, both training data and testing data
probably contains corruptions. Fig. 4 illustrates some results
achieved by our method. We can see that PCE successfully
identifies the noises from the corrupted samples and recovers
the clean data. Table X reports the comparison from which we
can see the following.

1) PCE is more robust than the other tested approaches.
When 10% pixels are randomly corrupted, the accuracy
of PCE is at least 9.46% higher than that of the other
methods.

2) With the increase of level of noise, the dominance of
PCE is further strengthen. For example, the improve-
ment in accuracy of PCE increases from 9.46% to
23.23% when ρ increases to 30%.
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TABLE XI
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS USING THE AR IMAGES DISGUISED BY SUNGLASSES.

ALL METHODS EXCEPT PCE EXTRACT 300 FEATURES FOR CLASSIFICATION

TABLE XII
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS USING THE AR IMAGES DISGUISED BY SCARVES.

ALL METHODS EXCEPT PCE EXTRACT 300 FEATURES FOR CLASSIFICATION

F. Subspace Learning on Disguised Facial Images

Besides the above tests on the robustness to corrup-
tions, we also investigated the robustness to real disguises.
Tables XI and XII reports results on two subsets of AR
database. The first subset contains 600 clean images and 600
images disguised with sunglasses (occlusion rate is about
20%), and the second one includes 600 clean images and 600
images disguised by scarves (occlusion rate is about 40%).
Like the above experiment, both training data and testing data
will contains the disguised images. From the results, one can
conclude the following.

1) PCE significantly outperforms the other tested meth-
ods. When the images are disguised by sunglasses, the
recognition rates of PCE with SRC, SVM, and NN are
5.88%, 23.03%, and 11.75% higher than the best base-
line method. With respect to the images with scarves,
the corresponding improvements are 12.17%, 21.30%,
and 17.64%.

2) PCE is one of the most computationally efficient meth-
ods. When SRC is used, PCE is 2.27 times faster than
NPE and 497.16 times faster than L1-graph on the
faces with sunglasses. When the faces are disguised by
scarves, the corresponding speedup are 2.17 and 484.94
times, respectively.

G. Comparisons With Some Dimension
Estimation Techniques

In this section, we compare PCE with three dimension esti-
mators, i.e., maximum likelihood estimation [76], minimum
neighbor distance Estimators (MiNDs) [77], and DANCo [78].
MiND has two variants which are denoted as MiND-ML and

TABLE XIII
PERFORMANCE OF DIFFERENT DIMENSION ESTIMATORS WITH THE NN

CLASSIFIER, WHERE m′ DENOTES THE ESTIMATED FEATURE DIMENSION

AND ONLY THE TIME COST (SECOND) FOR DIMENSION

ESTIMATION IS TAKEN INTO CONSIDERATION

MiND-KL. All these estimators need specifying the size of
neighborhood of which the optimal value is found from the
range of [10 30] with an interval of 2. Since these estima-
tors cannot be used for dimension reduction, we report the
performance of these estimators with PCA, i.e., we first esti-
mate the feature dimension with an estimator and then extract
features using PCA with the estimated dimension. We carry
out experiments with the NN classifier on a subset of the AR
data set of which both the training and testing set include
700 nondisguised facial images. Table XIII shows that our
approach outperforms the baseline estimators by a consider-
able performance margin in terms of classification accuracy
and time cost.

H. Scalability Evaluation

In this section, we investigate the scalability performance
of PCE by using the whole USPS data set, where λ of PCE is
fixed as 0.05. In the experiments, we randomly split the whole
data set into two partitions for training and testing, where the
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Fig. 5. Scalability performance of PCE on the whole USPS data set, where the number training samples increase from 500 to 9500 with an interval of 500.
(a) Recognition rate of PCE with three classifiers. (b) Time costs for different steps of PCE, where total cost is the cost for building similarity graph and
embedding graph.

number of training samples increases from 500 to 9500 with
an interval of 500 and thus 19 partitions are obtained. Fig. 5
reports the classification accuracy and the time cost taken by
PCE. From the results, we could see that the recognition rate
of PCE almost remains unchanged when 1500 samples are
available for training. Considering different classifiers, SRC
slightly performs better than NN, and both of them remark-
ably outperform SVM. PCE is computational efficient, it only
take about seven seconds to handle 9500 samples. Moreover,
PCE could be further speeded up by adopting large scale SVD
methods. However, this has been out of scope for this paper.

V. CONCLUSION

In this paper, we have proposed a novel unsupervised sub-
space learning method, called PCE. Unlike existing subspace
learning methods, PCE can automatically determine the opti-
mal dimension of feature space and obtain the low-dimensional
representation of a given data set. Experimental results on
several popular image databases have shown that our PCE
achieves a good performance with respect to additive noise,
nonadditive noise, and partial disguised images.

This paper would be further extended or improved from the
following aspects. First, this paper currently only considers
one category of image recognition, i.e., image identification. In
the future, PCE can be extended to handle the other category of
image recognition, i.e., face verification which aims to deter-
mine whether a given pair of facial images is from the same
subject or not. Second, PCE is a unsupervised method which
does not adopt the label information. If such information is
available, one can develop the supervised or semi-supervised
version of PCE under the framework of graph embedding.
Third, PCE can be extended to handle outliers by enforcing
�2,1-norm or Laplacian noises by enforcing �1-norm over the
errors term in our objective function.
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