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Abstract—Dimension reduction is a fundamental task
of machine learning and computer vision, which is widely
used in a variety of industrial applications. Over past
decades, a lot of unsupervised and supervised algorithms
have been proposed. However, few of them can auto-
matically determine the feature dimension that could be
adaptive to different data distributions. To obtain a good
performance, it is popular to seek the optimal dimension
by exhaustively enumerating some possible values. Clearly,
such a scheme is ad-hoc and computational extensive.
Therefore, a method which can automatically estimate the
feature dimension in an efficient and principled manner
is of significant practical and theoretical value. In this
paper, we propose a novel supervised subspace learning
method called multiple marginal fisher analysis (MMFA),
which can automatically estimate the feature dimension. By
maxing the inter-class separability among marginal points
while minimizing within-class scatter, MMFA obtains low-
dimensional representations with outstanding discrimina-
tive properties. Extensive experiments show that MMFA not
only outperforms other algorithms on clean data but also
show robustness on corrupted and disguised data.

Index Terms—Automatic dimension reduction, super-
vised subspace learning, graph embedding, manifold learn-
ing.

I. INTRODUCTION

IN the era of big data, it is challenging and crucial to
develop effective and efficient methods to explore the latent

value from massive data. However, this is a daunting task due
to the increasing dimension of data accompanying very sparse
useful information along with a large number of unwanted
redundancy and noises [1]. Besides, the high dimension also
brings extra computational overhead, i.e., so-called curse of
dimension.

In the past decades, many dimension reduction or called
representation learning algorithms [2]–[9] have been proposed
to solve the curse of dimension. In general, existing algorithms
can be roughly classified into unsupervised methods and
supervised methods. Unsupervised methods aim to find a low
dimensional representation of original data without utilizing
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any label information. The most popular method is probably
the principal components analysis (PCA) [2], which preserves
the global structure of data with the maximum variance.
More recently, the manifold learning methods are proposed to
achieve the nonlinear dimension reduction, and typical works
include ISOMAP [10], Locally linear embedding (LLE) [3],
Neighborhood preserving embedding (NPE) [11], Laplacian
eigenmaps (LE) [12], Locality preserving projections (LPP)
[13], and their variants [14]–[23]. The key idea of them
is to utilize the local manifold structure embedded in the
high-dimensional space. The other well-known methods in-
clude sparsity preserving projections (SPP) [24] and L1-graph
[25]. Recently, Peng et al. [26], [27] theoretically discovered
the connections between nuclear norm and Frobenius norm.
Based on the Frobenius-norm representation, the principal
coefficients embedding (PCE) method [28] was proposed
and has achieved state-of-the-art performance in unsupervised
subspace learning. Supervised methods utilize the label in-
formation to obtain more discriminative features. The most
representative method is perhaps the linear discriminative
analysis (LDA) [29], [30] and its variant [31], which aim
to minimize the within-class scatter while maximizing the
between-class scatter. In [5], Yan et al. showed that most
of the aforementioned methods [32]–[35] can be unified into
the graph embedding framework. Based on this framework,
they proposed a new algorithm called marginal fisher analysis
(MFA) [5] which maximizes the separability between pairwise
marginal data points.

Despite the success of these methods, most of them cannot
estimate the dimension of feature space in a data-driven way.
In general, they obtain the optimal feature dimension by
exhaustively enumerating all possible values based on the clas-
sification accuracy. Clearly, such a strategy is computationally
extensive and may cause the overfitting problem. Recently,
some methods have been proposed to solve this problem, e.g.
PCE [28] and MFA [5]. PCE reduces the dimension without
the help of label information, which could also automatically
estimate the dimension. Though PCE achieves impressive
results, it is highly desirable to develop supervised automatic
dimension reduction methods. In practice, however, only a
few efforts have been devoted. Under the framework of graph
embedding [5], MFA is proposed, which builds two graphs
based on the marginal data points with the help of labels. One
major advantage of MFA is that the feature dimension could
be determined by using the number of between-class marginal
pairs. However, MFA does not give mathematical detail on
the feature dimension range, hence it is more like a heuristic
method. In fact, MFA and its variants [36] barely explore the
connection between feature dimension and the the number of
between-class marginal pairs in theory.
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Fig. 1. A toy example to show the difference between LDA and our
MMFA. In LDA, the data points move towards to the data center. And
the data center of each class keep away from the center of all data.
In this binary class example, they keep away from each other. Thus
only the data follows Gaussian distribution, LDA succeeds in separating
the different classes. MMFA solves this problem by considering only the
marginal data points. As we can see, the data points move towards to
their neighbors in the same class and only the marginal points keep
away from their neighbors in different classes.

MFAMMFA

Between-class graph

Fig. 2. A toy example to show the difference between MFA and our
MMFA. One major advantage of MMFA over MFA is that the so-called
class-isolation issue is addressed by the former. More specifically, MFA
only connects the neighbors in different classes of marginal data points.
As a result, the connections may only exit into the closest classes. As
shown in the figure, in the between-class graph of MFA, there are no
edges between red (blue) points and yellow (green) points which come
from two far away classes. As a result, MFA will only try to separate the
red (yellow) and blue (green) classes, while ignoring the separability of
red-blue and yellow-green class. This probably lead to the mixture of
between-class data points in the feature space and sub-optimal results.
Different from MFA, our MMFA addresses this issue by considering the
connections between all pairwise classes, i.e. multiple marginal points.

In this paper, we proposed a novel supervised dimension
reduction method called Multiple Marginal Fisher Analysis
(MMFA), which could enjoy the advantage of automatic
dimension estimation. Unlike the well-known LDA which
assumes that data points follow the multivariate Gaussian
distribution [37], [38], MMFA estimates the feature dimension
using the marginal data points and the local consistence (i.e.
manifold structure), thus avoiding the requirement of data
distribution assumption and enjoying promising performance
in practical applications. A comparison between LDA and
MMFA is shown in Fig. 1. Furthermore, different from other
fisher rule based methods such as MFA, our method could
solve the class-isolation issue, i.e. when some classes are
isolated from the others, the embeddings may overlap in the
feature space and ignore the separability between the isolated
classes and other classes. More details could refer to Fig. 2.
In order to overcome this disadvantage, MMFA constructs the
between-class graph by considering the multiple marginal data
pairs which are also shown in Fig. 2.

Notations: For ease of presentation, we first define the used

mathematical notations through this paper. To be exact, the
lower-case letters denote scalars, the lower-case bold letters
denote vectors, and the upper-case bold ones denote matrices.
Besides, for a given matrix A, r(A) denotes the rank of A
and Tr(A) denotes the trace of A.

Organization: The rest of this paper is organized as fol-
lows: In Section II, we briefly introduce some related works.
Section III introduces our proposed method MMFA. The
experiment results are shown in Section IV. Finally we give
the conclusion and further discussion of this paper in Section
V.

II. RELATED WORKS

In this section, we briefly introduce some related works for
dimension reduction including unsupervised method PCE [28]
and supervised methods including LDA [30] and MFA [5].

A. Principal Coefficients Embedding (PCE)

Recently [26] have shown that Frobenius-norm based repre-
sentation could enjoy the low-rank structure owned by nuclear-
norm based representation. Based on this theoretical study,
[28] proposed a novel unsupervised subspace learning method
called principal coefficient embedding which could achieve
both robustness and automatic dimension estimation.

For a given data X = {x0,x1, · · · ,xn}, PCE aims to
remove the noise E from X to recover the clean data with self-
representation regularization of X0. The objective function is
given as follows:

min
C,X0,E

1

2
‖C‖2F +

λ

2
‖E‖2F

s.t. X = X0 +E︸ ︷︷ ︸
Robustness

,X0 = X0C︸ ︷︷ ︸
Self-expression

,
(1)

where C denotes the representation matrix, which is obtained
by performing SVD on the original data.

After obtaining the representation C, PCE yields the low
dimensional features by embedding C into the feature space
as an invariance. Although PCE has achieved state-of-the-art
performance in image feature extraction, it does not utilize
available label information to boost the performance for clas-
sification tasks.

B. Linear Discriminant Analysis (LDA)

Different from PCE, LDA [30] is a supervised subspace
learning method, which aims to learn a space in which within-
class data points (i.e. the points belonging to the same class)
are as close as possible and between-class data points (i.e. the
points belonging to different classes) are as far as possible.

For a given data X = {x0,x1, · · · ,xn} distributed over the
classes {c0, c1, · · · , cnc

}, LDA obtains the low-dimensional
features Y with the help of the learned projection matrix A
via Y = ATX. The objective function is as below:

argmax
A

ATSBA

ATSWA
, (2)
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where SB and SW denote the between-class and within-class
scatter matrix with the following definition:

SB =

nc∑
i=1

Ni(x̂i − x̂)(x̂i − x̂)T

SW =

nc∑
i=1

∑
xk∈Xi

(xk − x̂i)(xk − x̂i)
T ,

(3)

where x̂ denotes the mean vector of X, Xi denotes the data
set belonging to the class ci whose mean vector is x̂i, and Ni

is the number of samples in Xi.
LDA learns discriminative features by utilizing within-class

similarity SW and between-class separability SB . In theory,
the maximal feature dimension of LDA is nc − 1 due to the
rank of matrix SB is less than nc − 1. Thus, it would lead
inferior performance for a large scale dataset since nc − 1
features may be insufficient to keep crucial information of the
input space as explained in [30].

C. Marginal Fisher Analysis (MFA)
Yan et al. [5] has shown that most dimension methods

can be unified into a graph embedding framework. Under
this framework, the dimension reduction methods obtain low
dimensional features by preserving the graph geometric struc-
ture from input space into a feature space. Along with this
framework, a new supervised algorithm called marginal fisher
analysis was proposed, of which major novelty lies on con-
structing a between-class and within-class graph as below:
• Within-class: Wij = Wji = 1 if xj is among the k1

nearest neighbors of xi in the same class.
• Between-class: W ′ij = W ′ji = 1 if (xi,xj) is among the
k2 shortest pairs among the set {(xi,xj)|xi ∈ Xc,xj /∈
Xc}.

where W and W′ are the affinity matrixes which denote the
similarity of within-class and separability of between-class
respectively. MFA minimizes the similarity and simultaneously
maximizes the separability in the low-dimensional space like
LDA.

III. MULTIPLE MARGINAL FISHER ANALYSIS

In this section, we propose the multiple marginal fisher anal-
ysis (MMFA) which enjoys three advantages, namely, data-
adaptive feature dimension estimation, discriminative feature
thanks to available data annotation, and a provable feature
dimension lower bound.

A. Multiple Marginal Fisher Analysis
Most of dimension reduction methods could be regarded as

preserving the geometric structure and label information which
correspond to an affinity graph and penalty graph, respectively.
As discussed in Fig. 1, LDA suffered from the limitation of the
Gaussian distribution assumption. Then MFA [5] was proposed
to solve this limitation by characterizing the between-class
separability which only depends on the marginal data points.
However MFA suffers from the class-isolation issue as shown
in Fig. 2. Hence, we propose a novel dimension reduction

method called multiple marginal fisher analysis, which not
only applies to the non-Gaussian cases but also solves the
class-isolated issue.

For a given xi, we define the corresponding low dimensional
feature yi with the projection matrix A as below:

yi = ATxi. (4)

A certain criterion motivated by LDA [30] is to mini-
mize the within-class similarity and maximize between-class
separability in the low-dimensional space. In MMFA, we
characterize the within-class similarity in the embedding space
by following [12]:

SW =
n∑
i

n∑
j

‖yi − yj‖2Wij

=
n∑
i

n∑
j

(yT
i yi − 2yT

i yj + yT
j yj)Wij

=
n∑
i

(
n∑
j

Wij)y
T
i yi +

n∑
j

(
n∑
i

Wij)y
T
j yj

− 2
n∑
i

n∑
j

yT
i yjWij

=2
n∑
i

Diy
T
i yi − 2

n∑
i

n∑
j

yT
i yjWij

=2Tr(YTDY)− 2Tr(YTWY)

=2Tr(ATX(D−W)XTA).

(5)

Furthermore, the between-class separability SB is charac-
terized by the multiple marginal pairs as below:

SB =
n∑
i

n∑
j

‖yi − yj‖2W ′ij

=2Tr(ATX(D′ −W′)XTA),

(6)

where D and D′ are defined as:

Dii =
∑
j

Wij , D′ii =
∑
j

W ′ij , (7)

And the W and W′ are computed from the within-class
and between-class data points as follows:
• Within-class graph: We put an edge on the data points xi

and xj if xj is among the k1 nearest neighbors of xi.

Wij =


‖xi − xj‖2, if xi and xj are connected in

the within-class graph.
0 ,otherwise

(8)
• Between-class graph: We put an edge on the data points

xi and xj if (xi,xj) is among the k2 shortest pairs of
two different classes, i.e. xi ∈ ca and xj ∈ cb.

W ′ij =


‖xi − xj‖2, if xi and xj are connected in

the between-class graph.
0 ,otherwise

(9)
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Within-class graph Between-class graph

Fig. 3. An illustration on the graph construction of MMFA, where k1 =
4 for the within-class graph and k2 = 3 for the between-class graph.
Note that, the within-class graph is built by the nearest neighbors and
the between-class graph is built by the shortest pairs among every two
classes.

Note that here we define the weights by the distance of
data pairs. Another simple alternative approach is to define
the weights by 0 (connected) and 1 (disconnected).

By maximizing the between-class separability defined in
Eq. 6 and minimizing the within-class similarity in Eq. 5, we
propose the following objective function:

argmax
A

Tr(ATX(D′ −W′)XTA)

Tr(ATX(D−W)XTA)
, (10)

which can be solved with the following generalized eigende-
composition problem:

X(D′ −W′)XTai =λ1X(D−W)XTai. (11)

To be specific, the optimal A consists of the eigenvectors
corresponding to the d largest eigenvalues, i.e.,

A = {a0,a1, · · · ,ad−1}. (12)

B. Dimension Estimation
As we have proved that the optimal projection matrix A

consists of d eigenvectors in Eq. 11. A crucial problem is
how to automatically determine the feature dimension d. Most
of the existing methods find the dimension d by exhaustively
enumerating all possible dimension based on the classification
accuracy, which is ad-hoc and computationally extensive.
The proposed method MMFA can automatically estimate the
dimension with the rank of the between-class matrix W′ using
the following theorem:

Theorem 1. For a given data set X, the feature dimension d
can be estimated by the rank of D′ −W′, i.e.

n− k2 × nc ≤ d ≤ min(m,n). (13)

Theorem 1 helps determine the feature dimensions and the
feature dimension set to the lower bound in our experiments,
i.e. d = n− k2 × nc. Due to space limitation, we present the
proof in the supplementary material. A detailed algorithm of
MMFA is summarized in Algorithm 1.

C. Discussion
Different from existing automatic dimension reduction

methods such as LDA and MFA, MMFA is with provable
lower and upper bounder in feature dimension. More specifi-
cally, LDA has nc − 1 features at most, whereas MMFA has

Algorithm 1 Multiple Marginal Fisher Analysis
Input: A given data set X = {xi}ni=1 ∈ Rm×n, the label

information c, and the nearest neighbor number k1 and
k2 of within-class graph and between-class graph.

1: Construct the between-class separability and within-class
similarity matrixes:

- Within-class graph: For each sample xi, set Wij =
Wji = ‖xi−xj‖2 or 1 if xj is among the k1 nearest
neighbors of xi in the same class otherwise 0.

- Between-class graph: For every two classes ca and
cb, set Wij = Wji = ‖xi − xj‖2 or 1 if xj if the
pair (i, j) is among the k2 shortest pairs among the
set{(i, j)|xi ∈ ca,xj ∈ cb} otherwise 0.

2: Compute the eigenvalues and eigenvectors as:

X(D′ −W′)XTai = λiX(D−W)XTai

Thus A = {a0,a1, · · · ,ad−1}, d = n − k2 × nc, and
ai is the eigenvector corresponding to the i-th largest
eigenvalue λi.

Output: The low dimensional embeddings are obtained by:

Y = ATX

n − k2 × nc at least. Therefore, the feature learned by LDA
will be informatively less than that by our MMFA, especially
the dataset is large. Moreover, compared with MFA, MMFA
has a smaller parameter selecting range on k2, which can save
much computation time. In MMFA, k1 and k2 range between
1 and ni, where ni denotes the mean number of samples for
each class. In contrast, MFA needs to set k2 from 1 to n.

D. Computational Complexity Analysis

For a given data set X ∈ Rm×n, MMFA constructs the
aforementioned graphs in O

(
(k1+k2 ∗ nc∗(nc−1)

2 )n2
)
. Finally

MMFA performs Eigen-decomposition on Eq. 11 in O(m3).
Thus the time complexity of MMFA is O(n2cn

2 +m3) due to
k1, k2 � n2c .

IV. EXPERIMENTS AND RESULTS

In this section, we compare the proposed MMFA with seven
state-of-the-art dimension reduction methods including LDA
[30], MFA [5], LDE [39], PCE [28], PCA [2], NPE [11]
and NMF [40]. The baseline results without any dimension
reduction are also provided.

A. Experiment Settings and Datasets

We carry out experiments on three real-world datasets
including AR facial database [41], Extended Yale dataset B
[42], CASIA-3D FaceV11, and UPSPS dataset2. To evaluate
the performance of the tested methods, we use the extracted
features for classification and accuracy as the performance.
The used datasets are:

1CASIA-3D FaceV1, http://biometrics.idealtest.org/
2USPS, http://archive.ics.uci.edu/ml/datasets.html
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TABLE I
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS USING THE AR FACES. ALL METHODS EXCEPT PCE, MMFA, MFA AND LDA EXTRACT
300 FEATURES FOR CLASSIFICATION. NOTE THAT S1/S2 DENOTES S1 TRAINING SAMPLES FOR EACH SUBJECT, S2 DENOTES n TESTING SAMPLES

FOR EACH SUBJECT. THE SIGNIFICANT LEVEL IS FIXED TO 0.05.

S1/S2 7/7 5/9 3/11

Algorithms Accuracy (%) Time (s) Para. Accuracy (%) Time (s) Para. Accuracy (%) Time (s) Para.

Baseline 61.17±2.23 - - 51.97±1.97 - - 38.65±1.28 - -

MMFA1 92.94±1.45 10.08±0.42 3, 6 87.82±1.07 8.15±0.35 2, 4 76.38±0.69 7.09±0.42 1, 2

MMFA2 93.20±0.85 9.67±0.61 3, 5 88.48±2.09 8.31±0.75 2, 3 76.56±0.66 7.23±0.32 1, 2

MFA 92.62±1.00 8.12±0.90 3, 200 87.51±1.60 7.59±0.74 2, 120 74.61±1.02 6.89±0.41 2, 80

LDA 92.74±1.34 8.62±0.47 99 87.62±2.20 6.57±0.58 99 75.72±0.69 5.62±0.43 99

LDE 91.54±1.45 11.58±0.88 1, 40 82.08±1.67 8.76±0.52 1, 20 66.78±0.66 6.70±0.64 1, 70

PCE 87.40±1.89 9.59±0.86 20 80.00±0.69 8.57±0.65 25 66.20±2.62 9.01±0.85 60

PCA 61.37±1.98 8.94±1.18 - 51.75±1.63 9.79±1.09 - 38.83±0.86 10.37±0.50 -

NPE 81.42±1.03 5.30±0.33 98 77.68±1.28 4.02±0.47 110 68.05±1.77 1.31±0.20 55

NMF 61.54±4.49 71.92±0.74 - 50.62±4.38 65.26±0.86 - 29.61±5.42 59.29±0.65 -

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS USING THE EXTEND YALEB FACES. THE SIGNIFICANT LEVEL IS FIXED TO 0.05.

S1/S2 29/29 15/43 10/48

Algorithms Accuracy (%) Time (s) Para. Accuracy (%) Time (s) Para. Accuracy (%) Time (s) Para.

MMFA1 98.38±0.44 21.49±1.30 18, 10 95.50±0.52 13.07±0.55 5, 5 91.77±0.35 12.18±0.51 3, 3

MMFA2 98.11±0.47 22.81±1.12 22, 9 95.45±0.45 12.89±0.83 6, 4 92.09±0.62 11.18±0.62 3, 4

MFA 76.27±1.80 14.78±1.13 1, 780 82.09±0.67 11.81±0.69 1, 740 91.75±0.30 11.52±0.53 3, 780

LDA 97.96±0.35 27.84±2.18 37 94.82±0.37 11.86±1.08 37 90.00±0.73 10.12±0.40 37

LDE 98.16±0.35 22.68±0.69 8, 100 95.55±0.42 14.38±1.14 3, 10 91.39±0.34 12.84±1.19 2, 80

PCE 96.33±0.38 15.04±1.04 15 93.28±0.76 14.06±0.65 35 89.52±0.72 13.94±1.00 75

PCA 77.36±1.34 14.90±1.12 - 63.53±0.68 13.32±1.13 - 53.27±1.44 16.14±2.40 -

NPE 89.78±1.29 20.07±0.77 288 89.64±0.65 2.39±0.10 30 87.97±0.83 1.19±0.17 20

NMF 83.68±2.28 88.71±0.63 - 73.24±0.89 73.19±0.37 - 58.49±2.67 67.91±1.00 -

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS USING THE CASIA 3DV1 FACES. THE SIGNIFICANT LEVEL IS FIXED TO 0.05.

S1/S2 5/5 4/6 3/7

Algorithms Accuracy (%) Time (s) Para. Accuracy (%) Time (s) Para. Accuracy (%) Time (s) Para.

Baseline 83.63±2.17 - - 78.66±1.62 - - 71.71±1.50 - -

MMFA1 91.40±1.70 20.05±2.05 1, 1 90.43±1.30 21.87±2.84 1, 2 85.08±0.87 18.74±1.47 1, 1

MMFA2 91.44±2.18 21.23±1.87 1, 1 90.36±1.15 22.45±2.33 1, 2 84.59±1.21 19.12±1.68 1, 1

MFA 90.24±1.47 17.49±1.14 2, 120 88.66±1.80 17.91±1.66 2, 180 83.48±1.11 18.08±1.50 1, 140

LDA 90.99±1.27 16.71±0.49 99 89.53±1.71 16.96±1.58 99 83.97±1.26 17.24±0.89 99

LDE 90.84±1.12 23.15±3.79 1, 50 86.16±1.20 21.66±3.00 1, 30 80.85±1.76 20.61±3.43 1, 90

PCE 90.42±1.19 24.83±2.12 20 88.03±1.96 23.41±2.05 15 84.17±2.89 21.69±2.42 60

PCA 91.08±1.68 18.13±0.91 - 89.20±1.84 19.58±1.55 - 84.08±2.41 16.86±0.43 -

NPE 91.24±1.61 4.07±0.35 95 89.16±1.63 3.63±0.30 95 84.94±2.52 2.93±0.29 115

NMF 74.40±3.69 80.24±0.43 - 68.16±7.44 77.85±0.49 - 42.42±6.53 73.70±0.71 -

AR face images: The used AR dataset [28] contains three
subsets. One contains 1400 clean faces of 100 subjects with

different facial expressions and illuminations. The other two
subsets are disguised by sunglasses or scarves, both of them
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contain 600 samples of 100 subjects. Each image is with the
size of 55× 40.

Extend Yale B face image: The used dataset [28] contains
2204 samples of 38 subjects (58 samples each) and all images
are cropped to the size of 54× 48.

CASIA-3D FaceV1: The dataset contains 4624 samples
of 123 subjects under different illumination, expression and
poses. In the experiment, we use all front faces which contain
1000 images from 100 subjects (10 samples each). All the
images are with the size of 60× 50.

USPS digits: The dataset contains 11000 samples of 10
digits (0 ∼ 9). All the images are with the size of 16× 16.

Like [28], we employ the nearest neighbor (NN) classifier
to investigate the performance of these feature extraction
methods in terms of classification accuracy and time cost.
Note that, MMFA, LDA, MFA and PCE can automatically
estimate the feature dimension with different values. We set
d = n − k2 × nc in MMFA as described in Section III.
Following the experiment settings in [28], all nonadaptive
methods reduce the dimension to 300. Like [5], [30], we first
perform PCA on the input data to preserve n− nc dimension
to avoid the singular problem before MMFA, MFA and LDA.
In experiments, we report the best results by exploring some
possible parameter values. More specifically, we set k1 and k2
of MMFA between 1 and ni, where ni denotes the number
of samples for each class. Note that we have provided two
weight definition choices: 0/1 (connected/disconnected) or the
distance of connected pairs. In the following experiments we
use MMFA1 denotes the first method and MMFA2 denotes
the latter one.

For all the evaluated methods, we report the mean and stan-
dard deviation of classification accuracy over five randomly
sampling data partitions.

B. Performance on Clean Data

In this section, we report the experiment results on the clean
datasets including AR, Extend Yale B and CAISA. In order
to investigate the influence of different ratio between training
and testing size, we randomly split each dataset into two parts
with different training-testing ratio. The training/testing data
size is denoted by S1/S2, where S1 denotes the S1 samples
of each subject in training data, S2 denotes the n samples of
each subject in testing data.

In the experiments, we employ the NN classifier to evaluate
the dimension reduction performance. Both the classification
accuracy and time costs are reported in Table I-III from which
one could observe that:

1) In most cases, MMFA remarkably outperforms the other
methods on the three datasets with the NN classifier.

2) For the different training and testing size, MMFA out-
performs the baselines on AR and CASIA. On Extend
YaleB, MMFA obtains better results in the case of 29/29
and 10/48, and is competitive to LDE.

3) Though MMFA considers the multiple marginal pairs, the
computation time increases a little as one could see in the
Tables.

AR faces with Gaussian noise Extend YaleB faces with Gaussian noise
10% 20% 30% 10% 20% 30%

Fig. 4. Some samples from AR faces and Extended YaleB faces with
Gaussian noise, where the noise ratio increases from 10% to 30%.

C. Performance on Corrupted and Disguised Images
In this section, we evaluate the robustness of MMFA against

corrupted and disguised images.
1) Corrupted Data: Firstly we investigate the performance

of MMFA on the AR faces and Extend Yale with Gaussian
noise which is the most common-seeing noise in real-world.
The Gaussian noise is added via x′i = xi + ρn, where ρ
is the noise ratio, and n denotes the noise following the
Gaussian distribution. Fig. 4 shows some sample images with
the corruption. In this experiment, we only randomly add
Gaussian noise into a half of faces, namely, half of the faces
are clean and half of them are corrupted. Similar to the
experiments on the clean data, we evaluate the performance
of different training/testing size using the NN classifier.

Both the mean and standard deviation of classification
accuracy are reported in Table IV and V, from which we can
see that MMFA is more robust than other methods in the most
experiments on AR and Extend Yale data.

Fig. 5. Disguised AR by sunglasses and scarves.

2) Disguised Data: In practice, a large area of images
may be corrupted as shown in Fig. 5. In this section, we
conduct two experiments with such a case by using disguised
AR images. The first experiment is carried out on the AR
faces disguised by scarves (occlusion rate is about 40%). The
used dataset contains 600 clean samples and 600 disguised
samples. The second test is conducted on AR faces disguised
by sunglasses (occlusion rate is about 20%), where the dataset
contains 600 clean samples and 600 disguised samples. In
these two experiments, we randomly generate five different
data partitions and each partition contains training and testing
subsets with equal size. From Table VI and VII, one can
observe that MMFA outperforms all the baselines on these
two disguises.

D. Scalability Evaluation
In this section, we give the scalability analysis of MMFA

on USPS dataset. In this experiment, we randomly split the
dataset into two parts for training and testing, where the
number of training samples increases from 500 to 9500 with
interval 500. We also compared the other two methods LDA
and MFA. The accuracy results are shown in Fig. 6(a). As we
can see, the classification accuracy almost remains unchanged
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TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS USING THE AR FACES CORRUPTED BY GAUSSIAN NOISE. ALL METHODS EXCEPT PCE,

MMFA, MFA, AND LDA EXTRACT 300 FEATURES FOR CLASSIFICATION. THE SIGNIFICANT LEVEL IS FIXED TO 0.05.

Gaussian ratio 10% 20% 30%

Algorithms Accuracy (%) Time (s) Para. Accuracy (%) Time (s) Para. Accuracy (%) Time (s) Para.

Baseline 37.71±1.19 - - 36.57±1.14 - - 34.60±1.29 - -

MMFA1 89.51±1.60 10.92±1.48 3, 6 85.60±0.75 12.23±0.87 3, 6 83.17±1.87 11.54±1.38 3, 6

MMFA2 89.48±1.86 11.31±1.32 3, 5 86.20±1.36 12.42±0.94 3, 5 82.91±1.67 12.03±1.84 3, 5

MFA 88.85±1.30 7.68±0.31 3, 260 85.34±0.64 9.66±0.31 3, 120 82.08±2.46 7.34±0.45 3, 200

LDA 89.28±1.41 9.48±0.57 99 85.22±0.42 12.20±0.38 99 82.71±1.33 9.42±0.57 99

LDE 88.37±1.55 10.81±0.75 1, 20 81.62±2.54 13.39±0.59 1, 40 77.71±0.42 10.10±0.74 1, 40

PCE 86.20±1.27 8.61±0.61 20 84.60±1.75 11.16±0.60 20 80.09±1.29 8.84±0.39 10

PCA 58.62±2.22 9.39±1.23 - 53.28±1.60 8.31±0.87 - 50.48±1.18 9.48±1.30 -

NPE 77,37±2.25 6.15±0.54 110 71.65±1.04 8.01±0.91 115 65.99±1.91 6.75±0.45 115

NMF 54.08±3.37 69.98±0.21 - 54.80±3.34 73.52±0.44 - 53.74±1.79 70.36±0.36 -

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS USING THE EXTEND YALEB FACES CORRUPTED BY GAUSSIAN NOISE. THE

SIGNIFICANT LEVEL IS FIXED TO 0.05.

Gaussian ratio 10% 20% 30%

Algorithms Accuracy (%) Time (s) Para. Accuracy (%) Time (s) Para. Accuracy (%) Time (s) Para.

Baseline 67.78±1.09 - - 64.24±1.15 - - 56.86±1.06 - -

MMFA1 95.91±0.30 19.87±1.24 6, 7 94.30±0.68 24.81±1.15 4, 14 93.08±0.75 21.22±0.89 4, 13

MMFA2 95.89±0.59 20.42±1.74 5, 9 93.66±0.87 25.64±1.75 3, 15 92.03±0.79 21.64±0.59 3, 13

MFA 73.72±2.55 17.28±1.70 1, 780 50.19±3.13 17.20±0.53 3, 760 66.51±0.41 14.62±1.17 1, 760

LDA 95.29±0.64 27.37±1.48 37 92.08±0.46 42.42±2.77 37 90.50±0.29 27.79±3.05 37

LDE 96.17±0.32 24.96±1.98 3, 10 93.92±1.16 29.67±0.81 4, 20 93.03±0.64 23.92±0.45 5, 40

PCE 95.10±0.50 14.48±0.66 10 94.19±0.71 18.12±1.36 5 92.83±0.74 14.52±1.80 5

PCA 77.16±1.04 14.77±0.99 - 74.82±1.21 13.82±1.70 - 69.56±1.21 14.13±1.78 -

NPE 92.86±0.56 10.21±0.38 125 90.12±0.80 13.44±0.99 115 90.19±0.20 10.57±0.72 120

NMF 67.42±1.41 89.25±0.36 - 81.37±1.22 93.89±0.35 - 57.21±1.38 89.08±0.69 300

15

32

49

66

83

100

Training Samples
500 1500 2500 3500 4500 5500 6500 7500 8500 9500

MMFA LDA MFA

(a)

0

15

30

45

60

Training Samples
500 1500 2500 3500 4500 5500 6500 7500 8500 9500

Graph Embedding Total

(b)

Fig. 6. Scalability analysis of MMFA on the whole USPS dataset, where the training samples increase from 500 to 9500. (a) The classification
accuracy of MMFA compared to LDA and MFA. (b) The computation cost of MMFA. Note that the graph time denotes the graph construction cost,
and the embedding time denotes the Eigen-decomposition cost.

when provided 2500 training samples. The computational
complexity is O(n2cn

2 + m3) (Section III-D), which is con-
sistent with the experiment results. To be exact, the increment

of computation cost is mostly due to the cost for graph
construction, while the embedding cost remains unchanged.
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TABLE VI
PERFORMANCE ON THE AR DISGUISED BY SCARVES OF DIFFERENT
DIMENSION REDUCTION METHODS BASED ON THE NN CLASSIFIER

ACCURACY. NOTED THAT, THE TIME COST FOR DIMENSION ESTIMATION
IS ALSO INVESTIGATED. THE SIGNIFICANT LEVEL IS FIXED TO 0.05.

Algorithms Accuracy (%) Time (s) Para.

Baseline 26.56±0.85 - -

MMFA1 83.63±2.11 8.62±0.31 3, 5

MMFA2 84.90±0.94 9.11±0.59 3, 5

MFA 82.93±2.04 7.43±0.62 3, 120

LDA 83.53±1.73 8.77±1.16 99

LDE 76.46±0.33 9.03±0.53 1, 10

PCE 68.58±1.96 7.84±0.90 55

PCA 26.40±1.29 9.14±1.36 -

NPE 59.40±4.95 8.32±0.28 220

NMF 40.80±2.59 67.59±0.29 -

TABLE VII
PERFORMANCE ON THE AR DISGUISED BY SUNGLASSES OF

DIFFERENT DIMENSION REDUCTION METHODS BASED ON THE NN
CLASSIFIER ACCURACY. NOTED THAT, THE TIME COST FOR DIMENSION
ESTIMATION IS ALSO INVESTIGATED. THE SIGNIFICANT LEVEL IS FIXED

TO 0.05.

Algorithms Accuracy (%) Time (s) Para.

Baseline 33.66±1.47 - -

MMFA1 86.40±1.12 9.46±0.32 3, 5

MMFA2 86.56±1.26 9.26±0.69 2, 4

MFA 85.73±1.10 8.19±1.65 1, 140

LDA 86.26±0.98 9.93±0.66 99

LDE 80.23±1.6 8.89±0.44 1, 10

PCE 66.92±1.75 8.39±1.01 50

PCA 33.56±1.04 8.51±1.72 -

NPE 59.40±1.92 4.48±0.52 65

NMF 39.29±3.55 67.24±0.64 -

E. Evaluation on different classifiers

In order to show the effectiveness of MMFA, we investigate
the results of MMFA by using different classifiers compared to
other methods. Here we use three classifiers including nearest
neighborhood (NN), support vector machine (SVM) and multi-
layer perceptron (MLP). Similar to the previous experiments,
we randomly split the dataset into two parts with the same
size for training and testing. Table VIII shows the results on
AR data. As we can see, MMFA outperforms other methods
on all the three classifiers.

F. Compared to the deep neural networks

In addition, to show the superiority of our methods, we
also compared MMFA to VGG19 network [43], which is
pretrained by ImageNet. In the following experiment, we first
give the classification accuracy on extracted features obtained
by VGG19. Furthermore, we also fine-tune the VGG19 model

by adding two full-connection layers to obtain classification
results in an end-to-end manner. Note that we re-trained the
VGG19+fine-tune networks on the training data (i.e. AR, Yale
B and Casia). We randomly split the dataset into two parts
with the same size for training and testing. Table IX shows
the results from the VGG19 and VGG19+fine-tune. As we
can see, both MMFA1 and MMFA2 outperform VGG19 and
VGG19+fine-tune.

G. Influence of Parameters
In this section, we investigate the influence of parameters

k1 and k2 of MMFA. Besides the parameters of MMFA,
we also report the performance with varying k in the k-
NN classifier. MMFA characterizes the similarity within-class
using k1 neighbors from the same class, while characterizing
the separability using k2 shortest marginal pairs among every
two classes. In the experiment, we conduct the experiment on
the Extend Yale B dataset which is randomly divided into two
parts with equal size for training and testing. In other words,
the training data contains 1102 samples over 38 subjects (29
samples each). The evaluation setting is as below:

1) Influence of k in k-NN: We investigate the influence of
k (the k-NN classifier) which ranges from 1 to 28 with
fixed k1 = 5 and k2 = 5.

2) Influence of k1: As the training data consist of 29 samples
for each subject, we fix k2 = 5 and increase k1 from 1
to 28 according the graph construction strategy.

3) Influence of k2: Similar to k1, we investigate the per-
formance of MMFA by increasing k2 from 1 to 28 and
fixing k1 = 5.

Note that, we fix k1 or k2 to 5 in the above experiment for
simplicity. Such a value is not optimal for MMFA.

Fig. 7 shows the influence of parameters. Specifically,
Fig. 7(a) shows the performance on the KNN classifier with
different k. Clearly, MMFA first achieves a competitive result
and then becomes worse when k increases from 2 to 4. After
that, the classification accuracy gradually increases when k
increases from 4 to 13. In general, MMFA is robust to varying
number k in KNN classifier, whose classification performance
almost keeps unchanged in the case of k > 8. Fig. 7(b) and
7(c) show the influence of k1 and k2, respectively. As one
can see that, the accuracy of MMFA remarkably increases
with k1, and then gives a slight change when k1 increases to
4. Regarding to k2, the accuracy of MMFA increases slowly
with k2, and a decline happened when k2 = 28. We find an
interesting observation that the accuracy first increases greatly
and remains unchanged at k1 while the accuracy first increases
slowly and decreases greatly at last. The former phenomenon
should attribute to that k1 = 1 misses a lot of within-
class information, and the latter one may be resulted from
that k2 = 28 cannot keep sufficient information to separate
heterogeneous data.

V. CONCLUSION

In this paper, we proposed a novel supervised subspace
learning method called Multiple Marginal Fisher Analysis.
Unlike the most existing methods, MMFA can automatically
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TABLE VIII
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS WITH DIFFERENT CLASSIFIERS USING AR FACES. NOTE THAT THE TIME REPORTED

HERE ONLY INCLUDES THE DIMENSION REDUCTION COST. THE SIGNIFICANT LEVEL IS FIXED TO 0.05.

S1/S2 NN MLP SVM

Algorithms Accuracy (%) Time (s) Para. Accuracy (%) Time (s) Para. Accuracy (%) Time (s) Para.

MMFA1 92.94±1.45 10.08±0.42 3, 6 90.88±0.70 11.22±0.52 2, 4 96.42±0.37 11.13±0.58 1, 2

MMFA2 93.20±0.85 9.67±0.61 3, 6 88.77±1.68 10.27±0.20 4, 5 95.71±0.64 11.68±0.91 1, 2

MFA 92.62±1.00 8.12±0.90 3, 200 90.62±1.55 7.32±0.39 6, 320 95.37±0.92 7.92±0.43 3, 100

LDA 92.74±1.34 8.62±0.47 99 89.17±0.87 8.51±0.66 99 94.65±0.89 8.81+0.39 99

LDE 91.54±1.45 11.58±0.88 1, 40 90.08±0.75 10.32±0.69 3, 50 95.94±0.71 10.79±0.93 1, 40

PCE 87.40±1.89 9.59±0.86 20 88.37±1.20 10.09±0.43 95 94.14±1.07 10.22±0.39 40

PCA 61.37±1.98 8.94±1.18 - 37.02±2.47 7.21±0.78 - 95.42±0.43 6.95±0.86 -

NPE 81.42±1.03 5.30±0.33 98 90.71±0.84 4.87+0.72 140 93.99±0.52 5.19+0.53 140

NMF 61.54±4.49 71.92±0.74 - 88.31±3.19 68.87±1.74 - 90.82±2.5 69.31±0.96 -
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Fig. 7. (a) The classification accuracy with varying parameter k in k -NN classifier with k1 = 5 and k2 = 5. (b) The classification accuracy with
varying parameter k1 from 1 to 28 by fixing k2 = 5. (c) The classification accuracy with varying parameter k1 from 2 to 28 by fixing k1 = 5. In
addition, we also show the feature dimension with varying k2. Note that we use k -NN classifier in the experiment (a), while the NN classifier is used
in the experiment (b) and (c).

TABLE IX
COMPARISON WITH VGG19 NETWORKS. THE SIGNIFICANT LEVEL IS

FIXED TO 0.05.

Methods AR Yale CASIA

MMFA1 92.94±1.45 98.38±0.44 91.40±1.70

MMFA2 92.83±1.26 98.11±0.47 91.44±2.18

VGG19 80.14±1.68 57.96±0.94 82.28±0.89

VGG19+fine-tune 85.77±1.49 66.63±1.97 73.39±2.56

estimate the feature dimension and obtain the low-dimensional
representation. Extensive experimental investigations showed
that our method could achieve the state of the arts in feature
extraction for classifying clean, noisy, and disguised images.
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