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Transfer Hashing: From Shallow to Deep
Joey Tianyi Zhou , Heng Zhao, Xi Peng , Meng Fang , Zheng Qin, and Rick Siow Mong Goh

Abstract— One major assumption used in most existing
hashing approaches is that the domain of interest (i.e., the target
domain) could provide sufficient training data, either
labeled or unlabeled. However, this assumption may be
violated in practice. To address this so-called data sparsity issue
in hashing, a new framework termed transfer hashing with
privileged information (THPI) is proposed, which marriages
hashing and transfer learning (TL). To show the efficacy of
THPI, we propose three variants of the well-known iterative
quantization (ITQ) as a showcase. The proposed methods,
ITQ+, LapITQ+, and deep transfer hashing (DTH), solve
the aforementioned data sparsity issue from different aspects.
Specifically, ITQ+ is a shallow model, which makes ITQ achieve
hashing in a TL manner. ITQ+ learns a new slack function
from the source domain to approximate the quantization error
on the target domain given by ITQ. To further improve the
performance of ITQ+, LapITQ+ is proposed by embedding
the geometric relationship of the source domain into the target
domain. Moreover, DTH is proposed to show the generality of
our framework by utilizing the powerful representative capacity
of deep learning. To the best of our knowledge, this could be
one of the first DTH works. Extensive experiments on several
popular data sets demonstrate the effectiveness of our shallow
and DTH approaches comparing with several state-of-the-art
hashing approaches.

Index Terms— Deep transfer hashing (DTH), hashing, privi-
leged information, transfer learning (TL).

I. INTRODUCTION

HASHING is an efficient similarity searching method
that has been successfully applied in many applica-

tions [1]–[6]. Hashing aims to design or learn a compact
binary code for each data instance such that the similar/
dissimilar instances in the original space are mapped to
similar/dissimilar binary codes. In consequence, the cost of
data storage can be largely reduced, thus could efficiently
computing the similarity between instances with the hamming
distance using binary operation (XOR).

Most existing data-dependent hashing methods require a
large amount of data to learn a set of hash functions to
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construct binary codes [1]. However, in some scenarios,
the data for the domain of interest (target domain) are likely
to be insufficient to learn a precise hashing model. Such a data
sparsity issue will limit the applications of hashing in many
real-world scenarios. For example, taobao.com is an online
platform for small businesses where individual shopkeepers
can open their own shops each of which has to build a
hashing system for potential customers to retrieve the sold
products. Unfortunately, each individual shop generally has
not enough images to build a good enough hashing system.
A straightforward solution is augmenting data by crawling
images of the same product from other websites such as
amazon.com. However, these two data sources (taobao and
amazon) are largely different. The images in taobao.com are
usually amateur taken by shopkeepers. In contrast, the illus-
trations in amazon.com are usually taken by professional
photographers. Furthermore, it is hard to crawling images of
the exact object from different data sources. In consequence,
a simple accumulation of these two image sources generally
cannot give a desirable hashing system.

To solve the above-mentioned challenges, we introduce
transfer learning (TL) [7] into hashing. We aim at extracting
knowledge rather than simply accumulating raw data from
auxiliary data sources, and then exploiting the knowledge to
learn a hashing system for handling unobserved data from the
target domain. To the best of our knowledge, the proposed
framework, termed “transfer hashing with privileged infor-
mation (THPI),” could be one of the first transfer hashing
works. The concept of “privileged information” was proposed
by Vapnik and Vashist [8], which is defined as the information
x̃ (related to the input x) given by a teacher during training.
In general, the privileged information is denoted by the pair-
wise correlation between the source and the target domain.
Considering the aforementioned example, we aim to utilize
the privileged information from a source domain (amazon)
to obtain hash codes for a target domain instances (taobao).
It should be noted that the privileged information can also be
in different feature spaces. Considering one image contains
multiple captions, we refer all captions of an image as the
privileged information. To intuitively demonstrate the privi-
leged information, we give an illustration example in Fig. 1
with a detailed descriptions.

The proposed THPI framework is different from existing
works. First, THPI is a hashing approach, whereas learning
using privileged information (LUPI) was proposed for clas-
sification. THPI extends LUPI into the scenario of hashing,
and shows a feasible way to solve the data sparsity issue
in hashing with the privileged information. Second, THPI is
different from cross-modal hashing [9], [10]. The former aims
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Fig. 1. THPI: the privileged information is generally defined as the pairwise
correlation between the source and the target domain, which is only available
during training. In the example, privileged information consists of the tags
accompanied with images.

to address the data sparsity issue, whereas the latter assumes
that the training data of different modalities are sufficient to
learn reliable hash codes. Furthermore, given a query from
one modality, cross-modal hashing aims to retrieve relevant
data from other modalities; whereas THPI aims to utilize the
privileged information to learn a good hashing model on the
domain of interest.

To show the effectiveness of THPI, we propose three
variants of the well-known iterative quantization (ITQ) [11]
as showcases, i.e., ITQ+, LapITQ+, and deep transfer hash-
ing (DTH). ITQ+ is a transfer version of ITQ, which makes
the latter handling the data sparsity issue possible. More
specifically, ITQ+ learns a new slack function from auxiliary
data to approximate the quantization error given by ITQ.
LapITQ+ further improves the performance of ITQ+ by using
the local geometric property as an invariance and preserving
it from the source domain into the target domain. Compar-
ing with ITQ and LapITQ+, DTH is a deep hashing (DH)
method that provides a feasible way to make transfer hashing
benefiting from deep learning.

The paper is a substantial extension of our conference
work [12] with following improvements. First, we propose
a new algorithm (i.e., DTH) to show the generality of our
framework. With the proposed three methods, we show that
the privileged information is useful to address the data sparsity
issue in either shallow or DH. It should be pointed out that
it is nontrivial to develop our method from shallow to deep.
To the best of our knowledge, DTH could be one of the
first DH approaches. Second, we carry out more experimental
analysis involving two new recently proposed deep learning-
based hashing methods. The contribution and novelty of this
paper are summarized as follows:

1) To address data sparsity issue on a target domain,
we propose a novel framework termed THPI by transfer-
ring knowledge from the source domain into the target
domain. To the best of our knowledge, it could be one
of the first transfer hashing works.

2) Together with a novel slack function, we propose a new
algorithm termed ITQ+ by incorporating the privileged
information from the source domain into the target
domain to assist hashing.

3) Based on ITQ+, LapITQ+ is proposed by embedding
the underlying graph structure from the source domain
into the target domain. LapITQ+ could give better hash

codes thanks to the preservation of local geometric
relationship.

4) To utilize the powerful representative capacity of DNNs,
we further extend our method from shallow to deep
model. In other words, we show a feasible way to
incorporating advantages of deep learning and hashing.

II. RELATED WORK

Our work is highly related to the following topics including
learning to hash, TL, learning with privileged information,
and DH. In this section, we give a brief discussion.

A. Learning to Hash

Existing hashing approaches can be grouped into two
categories, namely, data-independent and data-dependent fash-
ion. One typical data-independent method is locality-sensitive
hashing (LSH) [13], which performs a set of random projec-
tions followed by thresholding.

Alternatively, the data-dependent methods learn discrete
hash codes through minimizing the quantization error, which
include spectral hashing (SH) [14], ITQ [11], and so on.
The major difference among these methods lies in the ways
of quantizing data. For example, SH considers the graph
structure of data and reformulates the discrete quantization
into the spectral graph partitioning [14] such that the graph
geometry on the hash space resembles the original feature
space. ITQ [11] reduces quantization error between the inputs
and the hashing codes by refining initial projections.

One disadvantage of the data-dependent methods is requir-
ing sufficient data to learn hashing functions for the target
domain. This makes these methods failure in the case of
encountering the data sparsity issue as the aforementioned.
To address this problem, we propose THPI to improve the
hashing performance by exploring and utilizing the knowledge
from the source domains and the knowledge could be regarded
as heterogeneous features.

Our proposed framework THPI is different from the cross-
modal hashing [15], [16], which aims at learning binary codes
from different modalities such that the information retrieval
across modalities can be achieved. In addition, the perfor-
mance of cross-modal hashing largely depends on available
cross-domain correspondences, namely, it requires sufficient
cross-domain correspondences to learn reliable hashing func-
tions. In contrast, the proposed THPI performs hashing by
exploiting all data from the source domain, thus could sig-
nificantly alleviating the dependence of the correspondences
between two domains. More recently, partial multi-modal
hashing (PM2H) [16] considers the situation with partial cross-
domain correspondences and uses the graph to propagate the
dependence of data points. Different from it, we only focus
on improving the performance of the domain of interest rather
than two domains.

B. Transfer Learning

TL [7] aims to transfer the knowledge from the source
domain into the target domain, so that the rich source domain
knowledge can be utilized to train a better classifier for
the target domain. The transferred knowledge includes but
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not limits to labels [17], [18], and cross-domain correspon-
dences [19], [20]. Although TL has achieved huge success
in many tasks, e.g., classification, regression, and clustering,
few efforts have been devoted to developing transferable
hashing approaches. To the best of our knowledge, only two
works [21], [22] study this problem in recent. Comparing
with [21], we focus on how to transfer knowledge across
heterogeneous feature spaces in an unsupervised instead of
supervised manner. Comparing with Domain Adaptive Hash-
ing Networks [22], our proposed methods are more general and
deal with knowledge transfer across heterogeneous domains,
whereas [22] only deals with domain of same feature space.

C. Learning Using Privileged Information
LUPI was introduced by Vapnik and Vashist [8] Vapnik

and Izmailov [8], [23], which uses the auxiliary privileged
information to help training a better model with stronger gen-
eralization ability. It is noted that the privileged information
will be unavailable in the testing phrase. Most existing LUPI-
based works construct a correcting function to control the slack
loss, as the traditional support vector machines (SVMs) does.
Thus, these methods are termed SVM+. For a given training
set {xi , x̃i }l

i=1, SVM+ simultaneously learns a target classifier
f (x) = w�x and a slack approximation function �(x̃) = w̃�x̃
from the original feature vectors and the privileged feature
vectors, respectively. Here, x̃ denotes the privileged feature of
the original feature x. Mathematically, SVM+ aims to solve

min
w,w̃,b

1

2
(�w�2 + λ�w̃�2)+ C

l∑

i=1

�(x̃)

s.t. yi w�xi ≥ 1 − �(x̃i ),∨i = 1, 2, . . . , l

�(x̃) ≥ 0,∨i = 1, 2, . . . , l

Comparing with these LUPI works [24], [25], we aim to
construct a slack function to address the data sparsity issue in
hashing instead of classification. We believe that our work
is complementary to LUPI in the scenario of hashing and
unsupervised learning.

D. Deep Hashing
Deep neural networks (DNNs) [26], [27] has shown promis-

ing performance in learning features from scratch. In recent,
there are emerging DH methods which integrates the deep
learning into hashing for scalable image/document search-
ing [2], [28], [29]. However, most of these works mainly
focus on the traditional supervised hashing setting. For exam-
ple, Lai et al. [30] proposed a supervised hashing method to
jointly learn image representations and binary codes using a
convolutional neural network (CNN). Semantic hashing [28]
stacks a set of restricted Boltzmann machines to learn
hash codes for document searching in unsupervised setting.
DeepBit [31] was proposed specifically for image retrieval by
using a CNN to learn binary descriptors in an unsupervised
manner. Although, these works have achieved impressive
performance with deep learning, they may suffer from fol-
lowing limitations. First, they usually ignore the data sparsity
issue. If the target domain cannot provides sufficient data,

these methods may achieve undesirable performance. Second,
the methods such as DH cannot handle a very large scale prob-
lem since their loss is incompatible with stochastic gradient
descent (SGD). To the best of our knowledge, there is no DH
method proposed in the framework of transfer hashing.

III. ITERATIVE QUANTIZATION WITH PRIVILEGED

INFORMATION (ITQ+)

Let XT = [xT1 . . . , xTn ]� ∈ R
n×dT be the collection

of n given data points from the target domain with the
dimension of dT , hashing aims to learn a binary code matrix
BT ∈ {−1, 1}n×c for XT . Here, c denotes the length of
each code. The key of hashing is learning a binary function
bk

T = sgn(rk
T

�
xT ) for the target xT , where rk

T ∈ R
dT is the

hyperplane for the kth bit and k ∈ {1, . . . , c}. Let RT ∈ R
dT ×c

denote the projection matrix, the hash code matrix could
be computed by BT = sgn(XT RT ), where sgn is the sign
function.

One major challenge of hashing is addressing the data
sparsity issue, i.e., the observed data from the target domain
are insufficient (n is small). To address this issue, various
methods have been proposed but more efforts in this direction
are still deserved. Recent developments in LUPI have proved
that the amount of training data could be significantly reduced
with the privileged information [8], [23], [32]. However, it still
remains unknown whether LUPI is helpful to hashing and
how to develop THPI. In this paper, we present a new
learning-to-hash framework termed THPI. The proposed THPI
shows a feasible way of exploiting the high-level idea of
LUPI to address the data sparsity issue in hashing. Similar
to LUPI, THPI assumes that the available data consist of
insufficient observed data xT from the target domain and
sufficient data xS ∈ R

dS from the source domain, as well
as the pairwise correspondence between xT and xS (i.e., the
privileged information). Formally, there are n data point pairs
{(xS1, xT1)(xS2, xT2), . . . , (xSn , xTn )} for training. For simplic-
ity, we denote XSC = [xS1 . . . xSn ]� ∈ R

n×dS as the data
matrix of n corresponding instances from the source domain,
and XSU = [xSn+1, xSn+2, . . . , xSn+nS

]� ∈ R
nS×dS as the matrix

of the remaining nS instances of the source domain.

A. Iterative Quantization
The ITQ algorithm [11] was proposed to learn hashing

functions by minimizing the quantization error between the
inputs and the binary codes. Specifically, it alternatively learns
an orthogonal projection matrix RT ∈ R

dT ×c and the code
matrix BT ∈ {−1, 1}n×c by optimizing the following problem:

min
BT ,RT

�BT − XT RT �2
F

s.t. R�
T RT = I (1)

where the constraint is used to avoid trivial solutions.

B. Transferable Iterative Quantization (ITQ+)

Let E be the error matrix induced by the quantization
process, we define it by E = BT −XT RT . With the privileged
data XSC ∈ R

n×c, we aim to learn a slack function g(XSC) =
XSCP to approximate the quantization error matrix E, where
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Fig. 2. Illustrative figure to show how the privileged information is used
to model the quantization error, and thus enjoy better generalization ability.
Solid dots: training data from the target domain. Hallowed dots: unseen
data. The curve is the quantization error function constructed with privileged
information from the source domain, which regularizes the quantization error.

P ∈ R
dS×c denotes another orthogonal projection matrix to

incorporate the privileged information from the source domain.
With the above-mentioned definitions, the objective function
of the proposed ITQ with privileged information (ITQ+) is as
follows:

min
BT ∈B,RT ,PT

�E�2
F + λ1�E − g(XSC)�2

F

s.t. R�
T RT = I, and P�P = I (2)

where λ1 > 0 is a tradeoff parameter. In SVM+ [23], the slack
variables is approximated by the privileged information, which
can be regarded as tolerance functions to allow the margin
constraints be violated. Different from [23], ITQ+ only bor-
rows the high-level idea of LUPI to use the source domain
information to approximate the target domain quantization
error E. Clearly, the motivation and objective of these two
works are different. The constructed slack function also eval-
uates the difficulty in quantizing the target domain data with
the privileged information from the source domain. Therefore,
the constructed slack function can regularize the quantization
error to avoid overfitting when the size of target domain
training data is small. Fig. 2 illustrates how the privileged
information is used to model the quantization error function,
thus enjoying better generalization ability.

C. Optimization
To solve the optimization problem in (2), we alterna-

tively optimize the binary code matrix BT , the projection
matrix RT , and P. The optimizing procedure is summarized in
Algorithm 1, and the details are given in this section.

1) Update BT by Fixing RT and P: With the fixed RT and
P, we solve the following problem to obtain the binary code
matrix BT :

min
BT ∈B

�BT − XT RT �2
F

+ λ1�(BT − XT RT )− XSCP�2
F . (3)

As RT and P are fixed, we could rewrite (3) as follows:

max
BT ∈B

tr
(
BT

(
λ1P�X�

SC + (λ1 + 1)R�
T X�

T

))
(4)

where tr(·) denotes the trace of a matrix.
The minimizer to (3) can be achieved by sorting the columns

of M in descending order, where

M = λ1P�X�
SC + (λ1 + 1)R�

T X�
T .

2) Update RT by Fixing P and BT : With the fixed BT

and P, the optimization problem with respect to RT can be
reformulated as follows:

min
RT

�BT − XT RT �2
F

+ λ1�(BT − XT RT )− XSCP�2
F

s.t. R�
T RT = I. (5)

The above-mentioned optimization problem could be further
reduced to

min
RT

∥∥∥∥XT RT −
(

BT − λ1

λ1 + 1
(XSCP)

)∥∥∥∥
2

F

s.t. R�
T RT = I. (6)

The above-mentioned problem is an orthogonal procrustes
problem [33] with an analytical solution. To be exact, the opti-
mal solution is obtained by employing the singular value
decomposition (SVD), that is,

(
BT − λ1

λ1 + 1
(XSCP)

)�
XT = Ŝ�S�

then

RT = ŜS�. (7)

3) Update P by Fixing RT and BT : By fixing RT and BT ,
the corresponding optimization with respect to P is as follows:

min
P

�(BT − XT RT )− XSCP�2
F

s.t. P�P = I. (8)

The above-mentioned optimization is also a standard orthog-
onal procrustes problem, which has the following analytical
solution:

P = Q̂Q� (9)

where Q and Q̂ are results of SVD on (BT − XT RT )
� XSC,

i.e., (BT − XT RT )
� XSC = Q̂�Q�.

Algorithm 1 Alternating Optimization Procedure for ITQ+
(or LapITQ+)

1: Initialize R0
T ,P0 to be the random orthogonal matrices, and

set τ = 0.
2: While not converge
3: Update Bτ+1

T by solving (4) (or (11) for LapITQ+).
4: Update Rτ+1

T via (7).
5: Update Pτ+1 via (9).
6: τ = τ + 1.
7: End While

IV. LAPLACIAN REGULARIZED ITQ+ (LAPITQ+)

ITQ+ learns a hashing model for the target domain
with XSC, which may not fully explore the information in
the source domain. In practice, apart from XSC, one may
have a large amount of training data XSU from the source
domain. Although the corresponding feature vectors of XSU
on the target domain are unknown, it is useful to describe
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the latent structure of the whole data space. To exploit the
underlying information existing in XSU, we further extend
ITQ+ to LapITQ+ with the incorporation of the transferred
graph structure. Our motivation comes from the community of
multiview analysis. To be specific, the latent graph structures
in different views are generally believed to be similar [34].
Thus, when a large amount of training instances on the
source domain are available, one can formulate the local
geometry of the source domain into a graph and embed it
into the target domain. Formally, ITQ is employed to obtain
hashing codes BS using all available source domain data
XS = [X�

SC,X�
SU]� by solving

min
BS,RS

�BS − XSRS�2
F

s.t. R�
S RS = I (10)

where XS ∈ R
(nS+n)×dS , BS ∈ {−1, 1}(nS+n)×c and RS ∈

R
dS×c. Note that this problem could be solved offline in

advance for time saving.
Next, an adjacency graph G is constructed based on the

hash codes BS with the following steps. For each code BSi

(the row of BS), we seek k nearest neighbors for it and assign
a weight of one to the connection. Note that the Euclidean
distance can also be used to measure the affinity among
data points. In our experiments, however, the used hamming
distance has shown our LapITQ+ could achieve desirable
performance. After obtaining the adjacency graph, we compute
the graph Laplacian LC ∈ R

n×n for the target domain data.
In mathematical, the objective of LapITQ+ is as follows:

min
BT ∈B,
RT ,PT

�E�2
F + λ1�E − g(XSC)�2

F + λ2tr
(
B�

T LC BT
)

s.t. R�
T RT = I, and P�P = I

where λ1 and λ2 are two nonnegative parameters. The third
term is used to transfer the geometry structure from the source
domain to the target domain. It should be pointed out that the
graph Laplacian is obtained from the binary codes instead of
the original space. In this way, the local geometric information
on the source domain is quantified and transferred across
domains.

LapITQ+ employs the similar optimization procedure
with ITQ+. The only one difference between them is the
updating scheme on BT . More specifically, there is the graph
Laplacian in LapITQ+. Thus, we only present the details of
this step for simplicity.

A. Updating BT by Fixing P and RT

As the constraint BT ∈ {−1, 1}n×c causes an NP-hard
problem, we relax it to BT ∈ [−1, 1]n×c on the feasible
domain B, thus leading to the following constrained quadratic
programming (QP) optimization:

min
BT ∈B

− 2tr (BT K)+ λ2�BT L�2
F (11)

where K = ((1 + λ1)R�X�
T )+ λ1P�X�

SC and LC = L�L.
After obtaining the optimum of the above-mentioned prob-

lem, we binarize the codes by BT = sgn(BT ).

Fig. 3. Architecture of DTH.

V. COMPLEXITY ANALYSIS

The time cost of the proposed algorithms mainly consists of
two parts: 1) optimizing the binary codes BT and 2) optimizing
the orthogonal rotation matrices RT and P. To update BT ,
ITQ+ takes O(nT log(nT )c) for sorting, and LapITQ+ takes
O(n3

T ) to perform QP. To update the orthogonal rotation
matrices RT and P, the time complexities of ITQ+ and
LapITQ+ are bounded by O(c2 dT +d3

T ) and O(c2 dS + d3
S),

respectively. Here, nT denotes the size of training data from
the target domain, c is the length of code, and dS and dT are
the dimensions of data from the source and target domains.

VI. DEEP TRANSFER HASHING WITH

PRIVILEGED INFORMATION

Recently, learning with DNNs has been widely proven a
powerful tool on a variety of applications. In this section,
we propose an new algorithm termed DTH under our frame-
work of THPI. The proposed DTH (see Fig. 3) is flexible
and can be build on the top of any existing deep feature
extraction models, e.g., CNN and recurrent neural network.
Instead of learning a single transformation matrix RT in
ITQ, DTH aims to learn a set of transformation matrices
cascaded with the nonlinear mapping functions h(·) such that
the quantization error is minimized. Specifically, DTH adopts
two-stream DNN architecture wherein each stream consists
of three modules, namely, nonlinear feature learning, deep
transformation learning, and DTH loss. The DTH is motivated
by the LUPI paradigm. Although LUPI paradigm has many
good theoretical and practical merits, the existing methods
focus on shallow architectures [35], [36] and less attention
has been paid on unifying LUPI and deep learning.

A. Nonlinear Feature Learning
The traditional shallow hashing methods are based on the

handcraft features by utilizing predefined project functions
to transform the data from the input space into the fea-
ture space, such as scale-invariant feature transform [37] for
images or bag-of-words (BOW) for texts. Different from these
hand-craft features, deep learning aims to learn hierarchical
features from raw data. With recent advances of DNNs,
the much powerful features can be extracted for different
applications. For example, CNN features have shown superior
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TABLE I

CONFIGURATION OF THE DEEP TRANSFORMATION LEARNING

performances in various of computer vision tasks [26], [38].
word2vec [39] is built upon the long short-term memory [40],
which could extract deep feature for each single word and
has achieved the state-of-art performances in numerous natural
language processing tasks [41].

To construct the SGD-compatible loss function, we refor-
mulate ITQ as follows:

min
ψT

∑

i

�bTi − ψT (xTi )RT �2
2 (12)

where ψT (xTi ) is the feature of the data xTi . For images,
ψT (xTi ) can be obtained by either hand-craft features like
GIST [42] or pretrained deep CNN models like VGG-16 [43].
For textual data, ψT (xTi ) can be either traditional BOW
features or deep features.

B. Deep Transformation Learning

In ITQ, linear transformation matrices RT and RS are
learned to project the original target and source feature
space into hashing-related space. However, such a transfor-
mation matrix is always inferior to neural network-based
methods especially when the real-world data distribution is
complex [44]. On the other hand, the universal approxima-
tion theorem [45] states that a feed-forward network with
a single-hidden layer containing a finite number of neurons
(i.e., a multilayer perceptron), can approximate any continuous
functions on the compact subsets of R

n , under some mild
assumptions on the activation function.

With these merits, we replace the linear mapping R in ITQ
by an nonlinear linear mapping φT (·) learned through the
neural networks. Based on (12), the problem can be further
reformulated as

min
φT

∑

i

�bTi − φT (ψT (xTi ))�2
2 (13)

where ψT (xTi ) is the nonlinear representation of xTi as
described in Section VI-A.

The deep transformation mapping φT (·) is implemented by
using a neural network consisting of L fully connected layers,
where the lth (l = 1, 2, . . . , L) layer is with the weight of Wl

T
and the nonlinear activation function of σ . The details of the
used neural network is summarized in Table I. Particularly,
hl

Ti
= σ(Wl

T hl−1
Ti
) denotes the output of lth layer of the

neural network for the data point xTi from the target domain,
h1

Ti
= σ(W1

Tψ(xTi )), Wl
T is the weight and we use the tanh

function as σ(·). By feeding the real-value output into the
sign function, it gives the binary hash code bTi = sgn(hTi ),

where hTi denotes the output of deep transformation learning
for xTi (i.e., hL

Ti
).

C. Deep Transfer Hashing Loss

Similar to LapITQ+, the hashing loss used in DTH can be
divided into two parts, namely, quantization loss and graph
structure loss.

The quantization loss is defined by

L Q =
n∑

i=1

�bTi − hTi �2
2 (14)

where hTi is the real-value output of deep transformation learn-
ing for the target data xTi and bTi denotes its corresponding
hash code.

To utilize the local geometric relations on the manifold,
we construct a similarity matrix S = (Si j )

N
i, j=1 whose ele-

ments indicate the similarity between two instances i and j ,
where Si j = 1 indicates similar samples and Si j = 0 indicates
dissimilar samples. To remain the graph structure between the
discrete spaces and the real-valued feature space, we construct
a soft similarity matrix as follows:

S1 = cosine(ψ(xTi ), ψ(xTj x)) (15)

where ψ(xTi ) can be obtained using original features or pre-
trained deep learning features.

Furthermore, we also consider the graph structure of hash
codes bSi in the source domain. To transfer the graph from
the source to the target domain, another similarity matrix is
constructed as follows:

S2 = cosine(bSi ,bS j ). (16)

Combining the above-mentioned equation, the similarity
matrix S is expressed as S = S1 +S2 with normalized vectors.
Then, we define the structure loss by

LG =
∑

i, j

(
1

c
h�

Ti
hTj − Si j

)2

(17)

where c is the length of hashing code and the similarity matrix
Si j models the neighborhood between instances from two
domains. Although the construction of the similarity matrix
is time-consuming, it can be done offline.

The overall objective for the unsupervised DH can be
summarized to

min L = L Q + λ1 LG + λ2reg
(
φL

T

)
(18)

where L Q is the quantization error, LG is the loss in the graph
structure, and reg(φL

T ) is the 
2 regularization enforced on the
mapping φL

T of the Lth fully connected layer for the target
domain.

For the data point xT from the target domain, let hL
T denote

the corresponding feature that is learned through nonlinear
feature learning and deep transformation learning. We use
the second stream of our network (termed slack-DNN) to
model the privileged information from the source domain.
Moreover, φL

S (xS) consists of the features that are learned
from the source domain data xS by the slack DNN. Different
from the existing cross-modality hashing methods, the second
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stream of network, i.e., the loss DNN is not used to learn
hashing codes, but to model the loss of the first stream.
Let F(xS) be the output of the second stream for an input
privileged data xS , similar to ITQ+, the two streams share the
same loss layer defined by

min L P = L + λ
∑

i

�L Q(xTi )− F(xSi )�2
2 (19)

where L has been defined in (18), L Q(xTi ) = bTi − hTi is the
quantization error for xTi , and F(xSi ) is the output of slack
DNN for xSi . Compared with ITQ+/LapITQ+, DTH (19)
approximates the quantization error using a neural network
F(·) instead of a single mapping matrix, thus could enhancing
the representative ability of the privileged information.

D. Optimization

DTH needs to optimize the parameters of two-stream DNNs
(two-stream DNN) and binary hash code bT . Let �S and
�T denote the parameters of slack DNN and loss DNN,
respectively. We adopt an alternating learning strategy to learn
�S , �T , and bT . At each time, we optimize one parameter by
fixing the other two. The algorithm is outlined in Algorithm 2,
and the detailed derivation are introduced as follows.

Algorithm 2 Optimization for DTH
1: INPUT: Source domain data XS , target domain data XT

and graph similarity matrix S
2: Set the neural network parameters ψS and ψT for the

source and the target domain with pretrain models.
3: While not converge
4: Randomly sample a mini-batch from XTi and compute

the corresponding hTi by the forward propagation.
5: Calculate the derivate of �T via (21).
6: Update �T by the back-propagation.
7: End While
8: While not converge
9: Randomly sample a mini-batch from XSi and compute

the corresponding F(xSi ) by the forward propagation.
10: Calculate the derivate of �S according to (22) in

Section VI-D2.
11: Update the �S using back-propagation.
12: End While
13: Update B according to (24) in Section VI-D3.

1) Update �T by Fixing �S and bT : When �S and b are
fixed, we learn the neural network �T from the target domain
by using back-propagation (BP) with SGD. The gradient of
the loss function L in (19) with respect to hTi is computed as
follows:

∂L

∂hTi

= 2(hTi − bTi )+ 2λ1

∑

j

(
1

c
h�

Ti
hTj − Si j

)
hTj (20)

where hTi = φT (xTi ,�T ). Furthermore, the gradient of the
loss with the privileged information L P is computed as follow:

∂L P

∂hTi

= ∂L

∂hTi

+ 2λ(F(xSi )+ hTi − bTi ). (21)

Then, we can compute (∂L P/∂�T ) with (∂L P/∂hTi ) by
using the chain rule and update �T using BP.

2) Update �S by Fixing �T and bT : Similar to updat-
ing �T , we can also learn the neural network parameter �S

of the source domain with fixed �T and bT using BP. The
gradient of the loss L P (19) with respect to hSi is computed
as follows:

∂L P

∂hSi

= 2λ(F(xSi )+ hTi − bTi )
∂F

∂hSi

(22)

where F(xSi ) = φS(xSi ,�S). Then we can compute
((∂L P)/(∂�S))

(1/2) with ((∂L P )/(∂hSi ))
(1/2) by using the

chain rule and update �S using BP.
3) Update bT by Fixing �T and �S: When �T and �S

are fixed, the problem in (19) can be reformulated as follows:

max
bTi

tr
(
b�

Ti
((λ+ 1)hTi + λF(xSi ))

)

s.t. bTi ∈ {−1,+1}c. (23)

One could obtain the optimal solution bTi as follows:

bTi = sgn((λ+ 1)hTi + λF(xSi )). (24)

It is interesting to observe that the updating strategy of bT

in DTH is similar to that in ITQ+ (4). The major difference
between them lies in the transformation and feature represen-
tation method, namely, linear mapping versus neural network.

E. Out-of-Sample Hash Codes Inference

In the setting of TL with the privileged information, the par-
allel privileged data will be unavailable during the testing
phrase. Nevertheless, slack DNN helps to train a better loss
DNN for inferring the hash codes. With the trained networks,
we can easily obtain the binary hash codes for any data point x,
which does not appear in the training data set. Specifically,
we pass x into the loss DNN network and perform a forward
propagation as follows:

bi = sgn(φT (x,�T )). (25)

VII. EXPERIMENTS

A. Experimental Settings

1) Data Sets: In this section, we carry out experiments
using three popular data sets, including British Broadcasting
Corporation (BBC) Collection [46], multilingual Reuters [47],
and NUS-WIDE [48].

BBC collection is a multiview data set of which each
instance consists of three views and each view is constructed
by splitting each article into different segments. In our exper-
iment, we use View 2 as the source domain and View 1 as the
target domain. In the deep learning setting, we feed the original
features into the marginalizing stacked linear denoising auto-
encoders (mSDA) [19], [49].

Multilingual Reuters collection contains about 11 000 arti-
cles sampled from six topics in five different languages,
e.g., English, French, and so on. We represent each document
as a BOW vector and compute the term frequency-inverse
document frequency (TF-IDF) as features. In our experiments,
we follow the setting in [18] and [20] and use the documents
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in English and French as the source and target domain, respec-
tively. For computational efficiency, we reduce the dimension
of the TF-IDF vectors by preserving 60% principal component
analysis energy. For all the tested deep learning methods,
we only preprocess the original TF-IDF features with the
mSDA.

NUS-WIDE data set includes about 200 000 images sam-
pled from 81 subjects with a total number of 5018 unique
tags, which is downloaded from the Flickr websites. In our
experiments, we directly use the features provided in [50].
For the shallow models, the image features (150-dimensional
color moment) and the tag features (60-dimensional textual
vector) are treated as data from the target and source domain,
respectively. For the deep models, the documents are handled
using the word2vec [31], and the images are passed through
a VGG16 network [43].

2) Baselines: The proposed transfer hashing approach is
compared with five shallow hashing methods including cross-
view hashing (CVH) [9], canonical correspondence analysis
(CCA)-ITQ [11], PM2H [16], LSH [51], and data sensitive
hashing (DSH) [52], where the last two are cross-modal
hashing methods. Moreover, we compare the proposed DTH
with five DH baselines including deepITQ (DITQ), deep
cross-modal hashing (DCMH) [15], DH [53], DITQ+, and
DeepLapITQ+ (DLapITQ+). Note that DITQ, DITQ+, and
DLapITQ+ first extract features using the same neural network
adopted in our DTH and then perform CCA-ITQ, ITQ+, and
LapITQ+ to obtain results.

For fair comparisons, we adopt the evaluation protocols used
in [11] and [13] to make a decision. Specifically, a nominal
threshold of the average distance to the 50th nearest neighbor
is used to determine whether a database point returned for a
given query is considered a true positive. Moreover, the widely
used criterion mean average precision (MAP) is used as the
performance metric.

To verify the performance of our method in the case of the
partial cross-domain correspondence, we randomly sample a
subset from training data with a fix ratio α = n/(n + nS) and
use 10% of the rest for testing, where α increases from 0.1
to 0.7 with an interval of 0.2. We adopt the cross validation
to tune the parameters for all the proposed methods. For the
parameter analysis, please refer to Section VII-E for details.
To remove the randomness due to sampling, we repeat each
algorithm 10 times using different data partitions and report
their mean of MAP.

B. Comparison With State of the Arts
We first evaluate the performance of different methods

by varying the number of hashing bits in the range of
{8, 16, 32, 64} with the fixed α = 0.5.

From Table II, one observes that the cross-modal hash-
ing methods (CCA-ITQ, CVH, and PM2H) perform better
than single-modal hashing methods since the other modality
gives additional information to give better hash codes on
the target domain. Note that ITQ+ and LapITQ+ are the
best shallow hashing approaches since they introduce the new
slack function to use the privileged information to regular-
ize the quantization loss, thus improving the generalization

TABLE II

MAP (%) OVER 10 RUNS WITH α = 0.5. THE BEST RESULTS ARE
DENOTED IN BOLDFACE ON NONDEEP LEARNING SETTINGS

TABLE III

MAP (%) OVER 10 RUNS WITH α = 0.5. THE BEST RESULTS ARE
DENOTED IN BOLDFACE ON DEEP LEARNING SETTINGS

and robustness of model, especially when the target data
encounter the data sparsity issue. The results of DH methods
are summarized in Table III. The proposed DTH significantly
outperforms other two single-modal-oriented DH approaches
(DITQ and DH). The results verify the necessity of three
components in DTH, namely, deep feature learning, deep
transformation learning, and privileged loss construction. More
specifically, all DH methods show a large advantage over
shallow hashing methods, which indicates that the deep learn-
ing feature extraction is crucial to the performance boosting.
Comparing with DH, the performance of DITQ is still inferior
to it since DITQ learns a single transformation matrix based
on deep features. In other words, the deep transformation
learning plays an important role in improving the performance.
Furthermore, DH can be deemed as a special case of DTH
with the single-stream architecture and its performance is not
as good as DTH. Therefore, we can conclude that the slack
DNN can transfer the knowledge to the other stream of DNN
such that the performance could be improved.

Although the latest DCMH performs comparable to DITQ+
and DLapITQ+ since it considers both two modalities, it is
still inferior to DTH because DTH aims to optimize the
codes of target domain instead two domains. From the result,
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Fig. 4. Influence of privileged data size. (a) BBC (shallow). (b) Reuters (shallow). (c) NUS-Wide (shallow). (d) BBC (deep). (e) Reuters (deep).
(f) NUS-Wide (deep).

Fig. 5. Influence of the number of retrieved samples. (a) BBC (shallow). (b) Reuters (shallow). (c) NUS-Wide (shallow). (d) BBC (deep). (e) Reuters (deep).
(f) NUS-Wide (deep).

we could conclude that the proposed slack function is a better
way to transfer the source domain knowledge for hashing.
Most cross-modal hashing methods such as CVH and DCMH
require a lot of cross-domain data correspondences, and
learn hashing functions only based on the correspondences.
In contrast, LapITQ+ and DTH utilize all source domain
data including unparalleled data to learn source-domain hash
codes offline, and use the structure underlying these hash
codes to regularize the learning of hash codes on the target
domain. Finally, we also observe that LapITQ+ and PM2H
outperform ITQ+ by an improvement of 1%–2% in MAP
since it incorporates the local geometric structure. Similarly,

in the deep learning setting, we empirically observe that the
incorporation of the similarity matrix S constructed from both
two domains is crucial to get the nontrivial solution.

C. Training Data Size and Retrieved Sample Size
In this section, we vary the training data size by ran-

domly selecting [10%, 30%, 50%, 70%] from the whole target
domain data. The corresponding privileged data are available
during training. Fig. 4 shows the result, from which one
observes that the proposed methods ITQ+, LapITQ+, and
DTH outperform other counterpart baselines by a considerable
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Fig. 6. Weights orthogonality analysis. (a) Layer 1. (b) Layer 2. (c) Layer 3.

Fig. 7. Parameter analysis of LapITQ+/DTH. (a) λ1 (LapITQ+). (b) λ2 (LapITQ+). (c) λ1 (DTH). (d) λ2 (DTH). (e) λ (DTH).

performance margin, especially, when the target training data
size is small.

One major application of hashing is information retrieval.
Under such a scenario, it is more desirable to return K most
similar results. Therefore, we also evaluate the performance
of our methods for information retrieval using the Top-K
precision [54]. To be specific, Fig. 5 reports the result of the
tested methods with different K retrieved samples on the three
data sets with the code length of 32 bits. Again, our algorithms
achieve the highest precisions with different K . Regarding to
different numbers of bits, the similar observations could also
be obtained.

D. Orthogonality Analysis

In DTH, we remove the orthogonal constraint as it is
unnecessary. In this section, we conduct experimental analysis
to support this claim. Note that even though the orthogo-
nal constraint is explicitly optimized by DTH, the obtained
transformation matrix could only approximate an orthogonal
matrix since the constraint will be relaxed during optimizing.

Therefore, we will show that (1/di)W
(l)
T

�
W(l)

T approximates
an identity matrix, where W(l)

T is the transformation matrix

of the lth layer. To the end, Fig. 6 shows (1/di)W
(l)
T

�
W(l)

T
on the BBC data set. From the figure, one observes that the
transformation matrix in each layer approximates an orthogo-
nal matrix after convergence.

E. Parameter Analysis

In this section, we investigate the influence of parameters
of our methods. As LapITQ+ is an extension of ITQ+,
we only examine LapITQ+ which has two user-specified
parameters λ1 and λ2. The value of parameters ranges in
[0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2]. To investigate the
influence of one parameter, we fix another one to 0.01.

Fig. 7(a) and (b) reports the results of LapITQ+.1 From
results, one could observe that LapITQ+ is insensitive to
λ1 and λ2. For the DH method DTH, the range of different
parameters is at different scales and results are summarized
in Fig. 7(c)–(e).

VIII. CONCLUSION

To address the data sparsity issue in hashing, this paper
proposes a transfer hashing framework which exploits the
privileged information from the source domain to learn a slack
function for predicting hash codes of unobserved data from
the target domain. Based on the proposed framework, three
variants of ITQ are developed and have shown promising
performance comparing with several state-of-the-art methods.
One of our future work is to exploit the proposed method in
other computer vision tasks, such as visual tracking [55], [56].
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