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Dual Shared-Specific Multiview
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Abstract—Maultiview subspace clustering has received
significant attention as the availability of diverse of multidomain
and multiview real-world data has rapidly increased in the
recent years. Boosting the performance of multiview clustering
algorithms is challenged by two major factors. First, since
original features from multiview data are highly redundant,
reconstruction based on these attributes inevitably results in
inferior performance. Second, since each view of such multiview
data may contain unique knowledge as against the others,
it remains a challenge to exploit complimentary information
across multiple views while simultaneously investigating the
uniqueness of each view. In this paper, we present a novel
dual shared-specific multiview subspace clustering (DSS-MSC)
approach that simultaneously learns the correlations between
shared information across multiple views and also utilizes
view-specific information to depict specific property for each
independent view. Further, we formulate a dual learning
framework to capture shared-specific information into the
dimensional reduction and self-representation processes, which
strengthens the ability of our approach to exploit shared
information while preserving view-specific property effectively.
The experimental results on several benchmark datasets have
demonstrated the effectiveness of the proposed approach against
other state-of-the-art techniques.

Index Terms—Complementary information, dual learning,
multiview subspace clustering, view-specific property.

I. INTRODUCTION

UBSPACE clustering is a fundamental technique in real-
world applications [1]-[7], in which data points that are
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drawn from multiple subspace are assumed to correspond
to different clusters. In the past decade, a large number
of clustering approaches [8]-[11] have been proposed to
improve performance incrementally. Among several of these
techniques, spectral clustering-based method [12]-[16] has
received notable attention. The spectral clustering algorithm,
first proposed in [16], aims to learn and cluster a similar-
ity matrix based on the data locality. Several adaptations
of subspace clustering approaches based on spectral cluster-
ing framework have also been proposed. For example, sparse
subspace clustering (SSC) [15] aims to find the sparsest rep-
resentation for each sample with respect to the entire dataset
based on the £;-norm. Low-rank representation (LRR) [17]
clustering attempts to reveal cluster structure by using an
LRR. Also, structured SSC (S3C) [18] integrates sparse rep-
resentation and spectral clustering into a unified framework,
which has demonstrated promising results. However, several
of the above methods mainly focus on improving the cluster-
ing performance from a single view. In practice, the overall
performance is limited to single view, and it remains difficult
to extend these methods for multiview clustering problems.

Modern datasets are often collected from diverse domains
and views in many real-world applications thereby lead-
ing to the significantly increased interest in multiview (or
multimodal) learning and analysis techniques [19]-[23]. For
example, single images and continuous stream videos can both
be described by using different visual descriptors, such as
SIFT [24], Gabor [25], LBP [26], HOG [27], etc. In gen-
eral, each type of feature is regarded as an independent view
of the original data, and each view of the data may contain
some unique information that other views do not. Therefore,
the integration of multiple views can provide complemen-
tary information to improve clustering accuracy. Multiview
clustering approaches have been extensively developed in
recent years, and all such approaches can be categorized into
three main types. First, graph-based approaches [28]-[32] that
explore the correlations among different views using multiple
graph fusion strategies. The second type is co-training and co-
regularized-based [33], [34] multiview clustering approaches.
Finally, the third category of approaches includes subspace
learning-based multiview clustering methods [9], [35]-[39],
which assumes that there exists an underlying low-dimensional
subspace rather than distributed uniformly across the entire
feature space.

Despite the progress made within multiview clustering, two
major challenges continue to remain. First, several existing
strategies use the original data directly for reconstruction
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Fig. 1. Basic framework of the proposed DSS-MSC approach.

purposes. However, original (high-dimensional) features con-
tain a high degree of redundancies that could degrade clus-
tering performance. Second, as suggested earlier, each inde-
pendent view offers a unique perspective on the clustering
process. Existing techniques are developed either to exploit
the correlation across views to boost clustering effectiveness or
encapsulate the uniqueness from individual views to strengthen
the diversity of the method. However, most approaches can-
not simultaneously exploit shared information across multiple
views while preserving the uniqueness of particular views
during clustering.

To address the limitations above, we propose a dual
shared-specific multiview subspace clustering (DSS-MSC)
approach. The proposed method simultaneously learns shared
information across views to exploit the underlying correla-
tions between them and at the same time, utilizes view-specific
information to encapsulate the unique attributes of each inde-
pendent view. By projecting the original features onto a
low-dimensional feature space, we can utilize low-dimensional
feature representation to reconstruct data points, thus alleviat-
ing the influence of redundancy. Furthermore, we formulate a
dual learning framework to capture shared-specific information
into the feature projection and self-representation stage, that
can strengthen the ability of our method to exploit the shared
information and preserve view-specific property effectively.
Finally, we build a new similarity matrix by combining shared
and view-specific self-representations. The process flow of
the proposed framework is depicted in Fig. 1. The main
contributions of this paper are listed as follows.

1) We propose a novel multiview subspace clustering
approach, that is, DSS-MSC, that simultaneously exploits
the underlying correlations from multiple views while
capturing view-specific information from each indepen-
dent views.

2) We formulate a dual learning framework to capture
shared-specific information into feature projection and
self-representation stage thus reinforcing the ability
of the proposed approach to handle shared-specific
information from multiple and independent views.

3) Our strategy utilizes low-dimensional features for data
reconstruction, instead of the original high-dimensional
data, that enables handling the influence of redundancy.

4) Extensive experiments have been conducted on bench-
mark datasets, which demonstrate the significant
advantages of our proposed approach over other state-of-
the-art single view and multiview clustering approaches.
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The remainder of this paper is organized as follows. In
Section II, we review related works and discuss the differ-
ences of our method against others in the literature. Section III
presents a detailed description of the proposed multiview
subspace clustering approach and provides an optimization
solution along with detailed computational complexity analy-
sis and convergence analysis. Further, Section IV illustrates the
experimental results on benchmark datasets. Finally, Section V
concludes this paper.

II. RELATED WORK

Self-representation-based subspace clustering has demon-
strated promising results. In this paper, we adopt a widely
accepted assumption that each data point can be expressed as
a linear combination of the original data points themselves.
Specifically, suppose X = [x1, X2, ..., xy] € REN denotes
the data matrix, where each column denotes a sample vector;
and L and N denote the dimensionality of the features and the
number of samples, respectively. A self-representation model
can be formulated as

min £(X. XZ) + 1¥(Z) (1)

where A is the regularization parameter. Z = [z, ..
RN xN

.y ZN] €
is the self-representation matrix and each z; is the cod-
ing coefficient of the original data point x; over the observed
data X, and £(-) and W(-) denote the loss function and regular-
ization term, respectively. Further, to cluster the data into their
potential subspaces, a similarity matrix can be computed by
using S = (|Z] + |ZT|)/2. Next, the similarity matrix is used
as the input of a spectral clustering algorithm [16] to obtain
the final clustering result. A number of subspace clustering
approaches have been proposed to explore the relationships
among samples using self-representation (e.g., SSC [15],
LRR [17], and S3C [18]). However, these approaches only
consider the single view features and utilize the original view
to reconstruct the data points.

To integrate complementary information from multiple
views together, multiview clustering methods [9], [34]-[37]
have been developed. The work [9] assumes that multiple
views originate from one underlying latent representation,
and then performs clustering on the latent representation.
Kumar et al. [34] proposed a co-regularized multiview
spectral clustering method to perform clustering on differ-
ent views simultaneously using co-regularization constraints.
Gao et al. [35] unified the representation learning and spec-
tral clustering models into one framework. Cao et al. [36]
proposed a diversity-induced multiview subspace clustering
approach, which utilizes the Hilbert—-Schmidt independence
criterion [40] to enforce the learned subspace representations
to be novel against each other. Xia et al. [37] presented
a Markov chain method for robust multiview clustering by
recovering a shared transition probability matrix via low-rank
and sparse decomposition.

Our research in this paper is closely related to the following
studies from [9] and [41]-[43]. The work [9] demonstrates the
state-of-the-art performance with the underlying assumption
that multiple views originated from one latent representation,
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and that the latent representation can effectively exploit cor-
relations among various views. However, this method only
considers the shared latent representation, while it ignores
specific attributes of individual views. As in this process,
all views are cascaded together to share the same self-
representation. Canonical correlation analysis (CCA)-based
approaches [41], [42] project multiview data into a standard
lower-dimensional subspace and then apply any existing clus-
tering algorithm such as the k-means clustering to partition
the data. The work [43] proposes a robust subspace clustering
approach for multiview data by exploiting correlation consen-
sus. The work [44] performs a supervised classification task
by learning the shared components among multiviews. Further,
it directly cascades all of the features into a single vector.
These studies in [45]-[47] project the original data into a low-
dimensional feature space, which is adequate for learning a
low-dimensional representation and reducing redundancy. In
this case, the observed data matrix is approximated by the
production of projection matrix and low-dimensional repre-
sentation, among which self-representation can approximate
the low-dimensional representation. In this paper, we extend
the self-representation-based subspace clustering for multi-
view data and, thus, our method can simultaneously exploit
the underlying correlations cross multiple views and capture
view-specific properties.

III. PROPOSED METHOD

In this section, we introduce the formulation of the proposed
multiview subspace clustering approach and then present the
optimization steps, computational complexity analysis, and
convergence analysis.

A. Formulation

Given a data set X, € RN where X, denotes the features
matrix of the vth view (v =1,2,..., V), with L, and N being
the dimension of features from the vth view and the number
of samples, respectively. Using linear projection, X, can be
transformed into low-dimensional representation as

H, =PX, +E! )

where P, € RP*v is the projection matrix and H, € RP»*N
is the low-dimensional representation for the vth view. To
perform multiview subspace clustering and exploit correlation
among various features across multiple views, we extend the
above equation into

[H; H,] = P,X, +E! 3)

where H € RP*N denotes the shared components across
multiple views. As shown in Fig. 1, H, denotes the specific
features for each view while H represents their correspond-
ing shared features. We assume that different views share
partial features in a low-dimensional feature space, which
equalizes the correlation among multiple views. Thus, the
objective function is to infer the multiview low-dimensional
representation model can be written as

min
P, H, El,

“)

2
=

\%4
> |memg - px, g
v

TABLE I
MAIN NOTATIONS USED IN THE PROPOSED FORMULATION

Notation | Description

Xy Feature matrix from the v-th view

P, Projection matrix for the v-th view

H, Low-dimension feature matrix for the v-th view

H Shared low-dimension features among multi-view data
z, View-specific self-representation matrix for the v-th view
Z Shared self-representation matrix among multi-view data
E, Error term

L, Dimension of original features from the v-th view

D, Dimension of view-specific features in low-dimensional space
D Dimension of shared features in low-dimensional space
\% Number of multiple views

v View index

A B Regularization parameters

Further, for the corresponding low-dimensional represen-
tation [H; H, ], the objective function for self-representation-
based subspace clustering can be reformulated as

14
> mn - w0z - 1Bz, - B

v

2
F
&)

where Z denotes shared self-representation coefficient matrix
for all views, while Z, denotes specific self-representation
coefficient matrix for each independent view.

By fusing shared and view-specific information into
multiview subspace clustering framework, the objective func-
tion of our DSS-MSC turns out to be formulated as

min _AZI+2 30 NE 4B ) 12

P, H,.Z,.E,,Z,
s.t. P,X, = [H; H,] +E!
[H: H,] = [H: H,)Z + [H; H,]Z, + E
PP =LE, = [Ei; E&], diag(Z,) = 0
Yw=1,...,V (6)

min _
H,.Z, E2.ZH

where A and B are regularization parameters. .||, is the
matrix nuclear norm, which enforces the subspace represen-
tation to be low-rank. ||.||2,1 denotes the £ j-norm which
encourages the columns of a matrix to be zero [17], [67],
that is, [[Ell2;1 = YN /31, [Ey]?, where E € RM*N. To
provide better clarity to our proposed formulation, we list the
main notations in Table 1. In addition, there are multiple con-
straints and regularization terms in the proposed formulation,
and details of each term are explained below.

1) The first constraint term (e.g., P, X, = [H; H,] —l—Ei)
is utilized to project original features from each view
onto a low-dimensional feature space, and we assume
that different views share partial components in the
low-dimensional feature space (see left subgraph in
Fig. 1).

2) The second ~ constraint term (e.g.,
[H; H,] = [H; H,]Z+[H; H,]Z, + E%) is used to
reconstruct the data points by using low-dimensional
features. In the proposed model, we also assume
that different views share self-representations across
multiple views while each view still has specific
self-representations (see right subgraph in Fig. 1). Note



that the first two constraint terms form a dual learn
framework, which can effectively exploit the correlation
among views by learning shared information while
preserving view-specific attributes.

3) The term P,P] =1 is used to prevent the trivial solu-
tion. Without this constraint, H and H, may be pushed
arbitrarily.

4) For the constraint E, = [Ei; E%], we vertically concate-
nate together along the column of errors corresponding
to low-dimensional features and self-representations.
This mechanism of integration will enforce the columns
of E! and E? to jointly have consistent magnitude
values, and its effectiveness has previously been inves-
tigated in [9]. Since £, 1-norm encourages the columns
of E, to be zero, the underlying assumption here is that
the corruptions are sample-specific, that is, some data
vectors are corrupted while the others are clean.

5) The regularization term ||Z,||; ensures that each spe-
cific self-representations for the individual samples from
the vth view can be sparsely represented using other
samples. Besides, the term diag(Z,) = 0 eliminates the
trivial solution of considering some points as linear
combinations of themselves.

B. Optimization

The problem in (6) can be solved via the alternating direc-
tion method of multipliers (ADMMs) [48], which alternatively
optimizes one variable at one time with the other variables
remaining fixed. To adopt ADMM to our problem, we intro-
duce auxiliary variables J and Q, that make the problem
separable and, further, we define the following equivalent
problem:

min WA B2+ 8 ) IQu

P, H,.Z,,Q,E\Z]J,
s.t. P,X, = [H;H,] +E!
[H; H,] = [H; H,)Z + [H; H,1Z, + E]
E,=[E:E] PPl =1Z=]
Z,= Qv - diag(Qv)
Vvv=1,...,V. @)
Thus, the augmented Lagrangian function can be given by
Z(Py, H,,Z,, Q. E,, Z,J. H) = |J].
A B2+ B I1Zly + @(Yo Z~J)
+>° o(Y.PX, ~ [H: H,] - E})
+Y, @(Y3 H; H,] - [H; H,Z — [H; H,)Z, — E2)
+3° o(Y3 2, - Q +diag@Q)))
st.PP =1, EVZ[Eg;Eﬁ],szl,...,V )
where ®(Y,C) = (Y,C) + (M/2)||C||% with (-, -) denoting
the matrix inner product, and w is a positive penalty scalar.
To find the minimal for %, we update one variable while

keeping the other variables fixed. Therefore, we can divide the
optimization problem into the following multiple subproblems.
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Fig. 2. TIllustration of the processing flow to obtain shared features and view-
specific features in a low-dimensional feature space by using a projection
operation.

P,-Subproblem: While keeping the other variables fixed
except P,, the objective function in (8) is equivalent to
minimizing

min <1><Y5, P,X, — [H: H,] — Ei), st. BPT =L (9)

Equation (9) contains a matrix orthogonality constraint
which has been used in [9] and [49]. We use the same method
from [9] and [49] to obtain an optimal P,.

H\-Subproblem: The associated optimization problem with
respect to H, can be drafted as

min @(Yi, P,X, — [H: H,] — Ei)

+ <I><Y3, [H; H,] — [H: H,)Z — [H; H,]Z, — Ef)
(10)

By ignoring some of the irrelevant terms of the equation,
we have the following optimization problem:

min <1>(Y}C, PX, — H, — ELC)

+ <I><Y§’c, H,—H,7 - H,Z, — E%’C) (11)
where P, = [P}; P¢], PS € RP*Lv denotes the components to
project each view onto shared ones, and P € RPv*Lv denotes
the components to project each view onto view-specific ones
(as shown in Fig. 2). Similarly, E! = [E]*; E!] and E2 =
[E>5: E3C].

By taking the derivative of the above objective with respect
to H,, and setting it to zero, we obtain the following closed-
form solution:

YI,C YZ,cz/T
H, = (ngv —E 4 _/lli + B>z — —VM v )

(1+ Z/Z/T)_1 (12)
vy

where Z'V =1-7— Z,, and I is an identity matrix.
Z,-Subproblem: By fixing the other variables to constant,
we update Z, by solving

min <1>(Y3, Z,—Q,+ diag(Qv))

+ (Y2 [H: H,] - [H; H,)Z — [ H,1Z, - E).
(13)
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By reducing B, = [H; H,] and A, = [H; H,] — [H; H,]Z —
E%, the above problem is equivalent to minimizing

min @(Yg, Z,—Q, + diag(Qv)) + c1>(Y3, A, — szv).
Z,
(14)

Similar to above, by taking the derivative of the above objec-
tive function with respect to Z, and setting it to zero, we have
the following closed-form solution for Z, as:

—1
Z, = (BVTBV + I)
B'YZ-Y3
(Qv _ diag(Q,) + BT A, + T) (15)

0,-Subproblem: Further, we update Q, by solving the
following problem:

min FIQul1 + (Y], 2, Q +diag@)).  (16)
This is equivalent to optimizing
min 210,11 + 3], — diag(@n) — (2, + Vi) [
Q U
a7

This subproblem has a closed-form solution given by
Q, = Q, —diag(Q})

where Q) = J(g/u)(Zy + Yi/1), and 3 is an element-wise
shrinkage thresholding operator [50].

E,-Subproblem: The error term E, can be updated by
solving

(18)

E, = argmin A[E, 2,1 + (Y}, P.X, - [H: H,] - E})
E,
+ o(Y2 [H: H,] - [H; H,)Z — [H; H,1Z, - E2)

— argmin ~[[Ey21 + B, — Gy (19)
E, MU 2
where G, is formed by vertically concatenating the matri-
ces P,X, — [H;H,] + Y}/ and [H;H,] — [H; H,]Z —
[H; H,]Z, ~|—Y5 /. This subproblem can be efficiently solved

by [17, Lemma 3.2].
J-Subproblem: When all the other variables remain fixed

except J, the optimization problem is equivalent to minimizing

min |Jl. + &(Yz. Z - J). (20)
This can be further reduced to
1 1 ~ 2
min -] + 3= Z+ Yo/ 1) [ 21

The above problem can be solved by using a singular value
thresholding operator [51].

Z- Subproblem: While considering the variable Z assuming
that the others remain fixed, the objective function in (8) is
equivalent to minimizing

min (Y, Z —J)
Z

+ZV¢(Y§[ H,] — [H; H,)Z — [H; H,]Z, — )

(22)

For convenience, two auxiliary variables C, and D,, can be

introduced as
min <I> + Z (Y%, C, — sz)

z
(23)

where C, = [H; H,] — [H; H,]Z, — E% and D, = [H; H,].

Similar to the other variables, by taking the derivative of
the above objective function with respect to Z and setting it
to zero, we have the following closed-form solution:

~ -1 Y. Y?2
Z=(t+ X o/m) (-2 4 X o] (e 37 ))
(24)

where I is an identity matrix.
H-Subproblem: Finally, by dropping some of the unrelated
terms, we optimize H as

min Y @(Yl»-‘, PX, - H - El*s)
+3 @(Y%*S, H - HZ — HZ, — E%»S) (25)

whose closed-form solution can be calculated using
YZ,sz/T
: 1,
H= Y (P B )

(>, (1+ ZLZ’J))A (26)

where Z(, =1-7— Z,, and I is an identity matrix.
Multiplier: Besides, all multipliers Y, Yl, Y%, and Yg v =
., V) can be updated by

Y. =Y, +u(Z-1J)

Y, =Y, +u(PX, — [H; H,] - E})

Y2 = Y2 + pu([H; H,] — [H: H,]Z — [H; H,]Z, — E2)
Y} =Y; 4+ u(Z, — Q, + diag(Q,)).

Yl,s
li + E‘Z},Sz:}—r _

27)

After updating all the variables as mentioned above, we
repeat the updates iteratively until convergence. The details
of solving (6) using ADMM algorithm is summarized in
Algorithm 1. By obtaining optimal Z and Z,(v = 1,...,V),
we can deduce the final clustering results by implementing the
spectral clustering algorithm [16] on_the similarity matrix S,
that is, S = (1/V) > (1Z+ Z,| + (Z+Z,)7)). It is impor-
tant to note that the similarity matrix S simultaneously utilizes
the shared and specific self-representations, which effectively
exploits the correlations across multiple views and incorpo-
rates view-specific properties of individual views that benefit
clustering performance.

C. Computational Complexity Analysis

In this section, we provide a detailed computational com-
plexity analysis of our algorithm. A major share of the
computational demand of Algorithm 1 can be attributed to:
1) matrix inversion and multiplication operations that are used
for updating H,, Z,, E,, Z, and H and 2) SVD operation for



Algorithm 1: Solving Problem (8) via ADMM Algorithm

1 Input: Multiview data: Xi, ..., Xy, parameters A, 8, D

and D,.

2 Initialize: Y, =0, Y},..., Y, =0, Y3, ..., Y} =0,
Y3, .. Y3V =0,e=10"° p=12, u=10"°,
max, = 10 initialize H and H, with random values.

3 Output: Z, Z .

4 while not Converged do

5 for v=1,...,V do

6 Update P,, H,, Z,, Q, and E, via Eq. (9),

Eq. (12), Eq. (15), Eq. (18) and Eq. (19),
respectively;

7 end

8 Update J, Z and H via Eq. (21), Eq. (24) and
Eq. (26), respectively;

9 | Update Y, Y., Y2and Y} (v=1,...,V) via
Eq. 27);

10 Update the parameter p via p = min(ou, maxy);

11 Check the convergence conditions:

2 | 1Z-Jls < e and P X, — [H; HV]—E lloo < & and
I[H; H,] — [H; H,]Z — [H; H,]Z, —
Zv - Qv + dlag(Qv))“oo < Eé&.

||OO < & and

13 end

updating P, and J. To account for the complexity in imple-
menting the former, that is, to update H, and Z, would cost
about O(N?), while the complexity of optimizing E, is O(N?)
and updating Z and Z, would costs about 0(N3) On the
other hand, for each view, the complexity of updating P, is
O(LgN), and the complexity of updating J is O(N?) due to
the SVD operation. Thus, the total complexity is determined
as O(T(VL%N +VN24+N?3)), where T is the number of iterations
and V is the number of multiple views. Furthermore, consider-
ing N > V for multiview data settings, the final complexity of
our proposed algorithm can be reported as O(T(VL%N +N3)).

D. Convergence Analysis

We analyze the convergence property of the proposed
optimization algorithm in this section. Although it is difficult
to guarantee its convergence to a local minimum, empiri-
cal evidence on real-world data have demonstrated a stable
convergence behavior of Algorithm 1 as shown in Fig. 10.
Following [52] and [53], we also present a proof of weak
convergence of Algorithm 1 by showing that under mild
conditions, any limit point of the iteration sequence gener-
ated by Algorithm 1 is a stationary point that satisfies the
Karush—Kuhn—Tucker (KKT) conditions [54]. Note that it is
worth providing that any convergence point must be a point
that satisfies the KKT conditions, since they are the neces-
sary condition to obtain a local optimal solution. This result
indicates an assurance about the convergence behavior of the
proposed optimization algorithms.

Assume that the proposed algorithm reaches a stationary
point, the KKT conditions for (7) can be derived as fol-
lows (since the procedure of solving P, do not involve in
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the Lagrange multiplier, thus we ignore to proof the KKT
conditions for it):

X, - [H;H,] -El =0,Z,
[H H,] — [H; HV]Z H;H,]Z, —E2=0,Z—-J =0
dH T —y2e(1—Z] —Z7) - Yy_o
g{ =Y - [H; HV]TYg =0
@: F Y, - Y [H;H,]'Y2=0
=y Y -, Y2 A2~ 2) =0
(Y1 YZ] € 20|Ey 2.1, Y3 € A311Qull1. Y € 3l ]l

-Q + dlag(QV) =0

(28)
Then, we can obtain the following equation as:

E, =3.(0) 29

where J,](t) = P(n, 1) is the £2,1 minimization operation [17]
and o = [P,X, — [H;H,] + Yl/,u,H H,] — [H; HV]Z —
H;H,]Z, + Y%/M] We also obtain the following equation
from the last one relationship as:

(+3)
Z+—
%

where Q,(Z)(Z = 7+ (Y;/n)) denotes the singular value
thresholding operation, which is computed by using

J=¢Q (30)

®l=

QZ,n) = US,(2)VT (31)

where §,(3;) = sgn(¥;)max(0, |X; — n|) is the soft-
thresholding operator and Z = UE V7 is the SVD of Z [51].
Besides, we can obtain the following relation as:

3
QL=S< + 5 é)
non

(32)

where S(x, t) = sgn(x) max(|x| — 7). Therefore, we have the
following KKT conditions as:

—[H:H,]-E! =0,Z, —Qv+d1ag(QV) =0
[HHV]—[HHV]Z H;H,]Z, —E2=0,Z—-J =0
Y2e(I-2Z] —Z7) - Yl =0,Y] - [H,H]TYE_O
Y. - Y H:H]'Y?=0
S-S V(-7 -2) =0

Y,
E,=7P(o, %)J Q(Z X, ﬁ)
- Y_
QV_S<ZV+ ,LL )
(33)

Based on the above analysis, in the following section, we
prove the proposed algorithm converges to a point that satisfies
the above KKT condltlons

Theorem 1: 6 = (P,,H,,Z,,Q,, EV,Z J,H) and {9}
can be generated by Algorithm 1. Assume {9}"01 is bounded
and lim %00{91“ —67} = 0. Then, any point of {9}001 satisfies
the KKT conditions. In particular, whenever {0}001 converges,
it converges to a KKT point.

The detailed proofs of Theorem 1 can be found in the
supplementary material.
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TABLE II
RESULTS (MEAN 4+ STANDARD DEVIATION) ON YALE DATASET

Feature Method NMI ACC AR F-score Precision Recall
Singley, . 0.6544+0.012 0.616+£0.030 0.4404+0.011 0.475+£0.011 0.4574+0.011  0.495+0.010
Single LRRbest 0.709£0.011  0.6974+0.001  0.515+£0.004 0.54740.007 0.52940.003 0.567+0.004
S3Chrest 0.59340.008 0.554+0.013 0.3624+0.010 0.403+0.010 0.3804+0.011  0.428+0.013
FeatConcate | 0.648+0.030 0.60740.043 0.4344+0.042 0.471£0.039 0.44740.043 0.49740.032
ConcatePCA | 0.665+0.037 0.578+0.038 0.396+0.011 0.43440.011 0.419+0.012  0.45040.009
Co-Reg SPC | 0.648+£0.002 0.564+0.001 0.436+0.002 0.4664+0.001 0.45540.004 0.491£0.003
Multiple ConReg SPC | 0.673+0.023 0.611+0.035 0.466+0.032 0.5014+0.030 0.4764+0.032  0.532+0.029
—_— Min-Dis 0.6454£0.005 0.6154+0.043 0.433+£0.006 0.4704£0.006 0.4461+0.005 0.496+0.006
MVSC 0.6504+0.015  0.652+0.023  0.4254+0.009 0.501£0.010 0.4514+0.010 0.53240.011
LMSC 0.7354£0.021 0.75240.026  0.551£0.011 0.56440.019 0.5434+0.015 0.571+£0.013
DSS-MSC 0.7794+0.012  0.782+0.013  0.601+0.009 0.613+0.012 0.5924+0.010 0.6220.015

3) Caltechl01-73: This is a widely used subset of the
image dataset Caltech101 which contains 101 cate-
gories. In this subset, there are 441 total images
selected from seven categories, including Dolla-bill,
Face, Garfield, Motorbike, Snoopy, Stop-sign, and
Windsor-chair [Fig. 3(c)]. Specifically, six types of fea-
tures can be extracted, including CENTRIST (viewl),

IIIIIIIIJI‘]

Garfield

Motorbike " Snoopy | Stop-sign  Windor- chalr

@ ) CMT (view2), GIST (view3), HOG (view4), LBP
QUSSR (view5), and SIFT (view6) [56].

e outdng " Bicycle o e 4) BBCSport*: The dataset includes the documents from

@ the BBC Sport website corresponding to sports news

under five popular areas, which is associated with two
views [9], [37].

5) CMU-PIE®: This multiview face dataset consists of 68
subjects in total, with large variances within the same
subject but in different poses [Fig. 3(b)]. We randomly
select 15 samples from each subject to construct 1020
facial images in the evaluation subset, and all face
images are cropped to 64 x 64 size. Besides, three types
of features: intensity (viewl), LBP (view2), and HOG
(view3) are used in the dataset.

We compare the proposed subspace clustering approach

with some recent state-of-the-art methods.

1) Singley,,: The method performs the standard spectral
clustering algorithm [16] by selectively using the most
informative view.

Fig. 3. Sampling images from (a) Yale, (b) CMU-PIE, (c) Caltech101, and
(d) MSRCV1 datasets.

IV. EXPERIMENTAL RESULTS

In this section, we first give the details about five real-
word multiview datasets, state-of-the-art methods, and basic
experimental settings that have been used in validating our
proposed framework. Further, we present experimental results
and evaluate some properties of the proposed model.

A. Experimental Setup

We evaluate the effectiveness of the proposed approach by
using the following five benchmark datasets.

1) Yale': This dataset contains 165 gray-scale images of 2) LRRpes: The method performs LRR [17] by selectively
15 individuals. Each has 11 images, with different facial using the most informative view with.
expressions and other configurations, including center- 3) S3Cpes [18]: The method carries out clustering on every

light, with glasses, happy, left-light, without glasses,
normal, right-light, sad, sleepy, surprised, and wink

[Fig. 3(a)]. Following [11], three types of features, that 4)
is, intensity (viewl), LBP (view2), and Gabor (view3),

are used.

2) MSRCVI?*: This dataset consists of 240 images and 8 5)
object classes. Similar to [9] and [55], we select seven
classes, that is, Cow, Tree, Building, Airplane, Face, Car,
and Bicycle [Fig. 3(d)]. Following [9], we extract six
types features on in the Caltech101-7 dataset, that is,
CENTRIST (viewl), CMT (view2), GIST (view3), HOG
(view4), LBP (view5), and SIFT (view6).

single view and reports the view that demonstrated the
best performance.

FeatConcate: The method first concatenates features
from all views and then applies the standard spectral
clustering.

ConcatePCA: The method first concatenates features
from all views and then applies PCA [57] to obtain
a low-dimensional subspace representation. Further,
it applies standard spectral clustering on the low-
dimensional representation.

3 http://www.vision.caltech.edu/Image_Datasets/Caltech101/
4http://m] g.ucd.ie/datasets/
5 http://vasc.ri.cmu.edu/idb/html/face/

1 http://cve.yale.edu/projects/yalefaces/yalefaces.html
2http://research.microsoft.com/en—us/proj ects/objectclassrecognition/
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TABLE III
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Feature Method NMI ACC AR F-score Precision Recall
Singley, . 0.574+0.032  0.6684+0.051 0.536+0.010 0.53540.043 0.571+0.009 0.612+0.009
Single LRRpest 0.569+0.008 0.6764+0.009 0.502+0.010 0.52440.009 0.5434+0.009 0.587+0.007
S3Chrest 0.612+0.005 0.6884+0.009 0.514+0.006 0.5834+0.006 0.5724+0.009 0.594+0.010
FeatConcate 0.613£0.042 0.6724+0.031 0.505+0.032 0.57540.024 0.566+0.021 0.586+0.027
ConcatePCA | 0.621£0.022 0.7024+0.015 0.541+£0.009 0.607+£0.014  0.5954+0.011 0.617+£0.015
Co-Reg SPC | 0.569£0.013 0.653+£0.017 0.512+0.010  0.58740.018 0.5434+0.010 0.583£0.011
Multiple ConReg SPC | 0.6704+0.013 0.651£0.011 0.57740.009 0.637£0.014 0.6014+0.021  0.656+£0.010
_— Min-Dis 0.657£0.017 0.7454+0.044 0.567+0.008 0.62840.007 0.615+0.015 0.643+0.010
MVSC 0.615£0.012  0.6954+0.008 0.506+0.014 0.5734+0.015 0.5254+0.013 0.616+0.012
LMSC 0.653+0.011 0.80640.013  0.599+0.017 0.652+0.017 0.6124+0.012 0.663+0.011
DSS-MSC 0.743+0.015 0.846+0.011 0.681+0.014 0.726+0.021 0.711+0.011 0.743+0.013

TABLE IV
RESULTS (MEAN 4 STANDARD DEVIATION) ON CALTECH101 DATASET

Feature Method NMI ACC AR F-score Precision Recall
Singley, ., 0.5894+0.009  0.62940.007 0.523+0.012 0.5764+0.009 0.586+0.014 0.566+0.003
Single LRRpest 0.63940.002 0.6461+0.003 0.580+0.001 0.64940.002 0.631+0.001 0.623+0.003
S3Chest 0.5784+0.000 0.6114+0.007 0.504+0.009 0.55940.007 0.5684+0.010 0.551+£0.006
FeatConcate 0.603+0.017 0.641+0.020 0.526+£0.034 0.6014£0.023  0.6244+0.021  0.579+0.024
ConcatePCA | 0.6514+0.012 0.6724+0.017 0.558+0.009 0.63440.013  0.6394+0.014 0.621+0.010
Co-Reg SPC | 0.623£0.003  0.590+£0.005 0.549+0.005 0.62040.004 0.64540.005 0.598+0.003
Multiple ConReg SPC | 0.6074+0.002 0.695+0.003 0.5704+0.004 0.637£0.004 0.6661+0.003 0.610+0.003
_— Min-Dis 0.62440.004 0.7014+0.023  0.552+0.007 0.62340.006 0.645+0.006 0.603+0.007
MVSC 0.683+0.002 0.7124+0.003  0.596+0.004 0.6754+0.004 0.566+0.003 0.667+0.003
LMSC 0.65240.013  0.7104+0.012  0.593+0.002 0.66440.009 0.6561+0.014 0.661+0.012
DSS-MSC 0.691+0.002 0.737+£0.001 0.6351+0.002 0.703+£0.006 0.698+0.009 0.710-:0.003

6) Co-Reg SPC [34]: The pairwise multiview spectral clus-
tering method co-regularizes the clustering hypotheses to
enforce corresponding data points in each view to have
the same cluster membership.

7) ConReg SPC [58]: A common representation of all
views is first learned. Then, a standard spectral clustering
is applied to the similarity matrix.

8) Min-Dis [59]: This method creates a bipartite graph and
tries to minimize the disagreement. The final result is
obtained through spectral clustering.

9) MVSC [35]: This method performs subspace clustering

on individual views and fuses them to obtain the final

result of clustering.

LMSC [9]: This method assumes that each view is

originated from one underlying latent representation.

In order to evaluate the clustering performance of the
proposed algorithm and compare it against competing base-
lines, six popular metrics, including normalized mutual
information (NMI), accuracy (ACC), adjusted Rand index
(AR), F-score, precision, and recall are utilized in this paper.
Each metric penalizes or favors different properties in the clus-
tering task and, hence, we report results on these different
measures to employ a comprehensive evaluation of our method
against all state-of-the-art methods. Note that a higher value
of each metric indicates better clustering quality.

For a fair comparison in all experiments, we obtain the best
performance for all comparison methods by using the source
codes from the authors with the default or suggestion parame-
ter settings, or directly cite the best experimental results from

10)

their original papers. Specifically, for LRR, we tune the param-
eter X in the range of {0.001, 0.01, 0.02, 0.05, 0.1, 0.2, 1, 2, 5}
according the authors’ suggestion. For S3C, the parameter
spaces are A € {107°,107*,...,10%), « € [0.03,0.3]. For
ConcatePCA, the optimal dimensionality is searched in a
range {100, 200, ..., 500}. For Co-Reg SPC, its parameter A is
searched in a range of {0, 0.02, ..., 0.1} according to authors’
suggestion. For MVSC, its parameters A; and X, are search in
a range of {10’4, 1073,..., 103}. For LMSC, its parameter A
is searched from {10_4, 1073, ..., 103} according to authors’
suggestion.

For our method, we tune the dimension of the view-
specific features in the range of D, € {10, 20, ..., 100}, and
tune the dimension of the shared features in the range of
D e {5,10,...,40}. We also tune the parameters A and
B in the range of {107>,...,10?}. Finally, we report the
mean values and standard deviations for all methods over 30
independent trials.

B. Performance Comparison

We report the detailed clustering results in Tables I[I-VI. In
each table, the values in bold indicate the best performance.

Table II shows the clustering results on the Yale dataset.
From Table II, it can be observed that our method obtains
much better clustering performance than the competing single-
view and multiview methods. The main reason is that our
approach combines shared and specific self-representations
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TABLE V
RESULTS (MEAN 4+ STANDARD DEVIATION) ON BBCSPORT DATASET

Feature Method NMI ACC AR F-score Precision Recall
Singley, . 0.781£0.007 0.84940.018 0.784+0.019 0.83440.015 0.8454+0.008 0.827+0.022
Single LRRpest 0.690£0.002 0.7874+0.003 0.745+£0.004 0.7704£0.002 0.8124+0.003 0.767+0.004
S3Chrest 0.781£0.008 0.8514+0.016 0.787+0.019 0.83740.015 0.84440.007 0.831+0.023
FeatConcate | 0.795+0.021 0.8304+0.033 0.7894+0.035 0.834+0.042 0.8434+0.029 0.836+0.041
ConcatePCA | 0.809+0.027 0.8474+0.048 0.806+0.024 0.8524+0.031 0.8514+0.022 0.854+0.036
Co-Reg SPC | 0.792£0.005 0.764+0.022  0.805+0.012 0.85140.010 0.85840.005 0.844+0.014
Multiple ConReg SPC | 0.8144+0.000 0.898+0.001 0.8414+0.000 0.879£0.000 0.8724+0.002  0.887+0.001
—_— Min-Dis 0.793+0.002 0.8854+0.048 0.792+0.008 0.840+0.006 0.8484+0.003 0.835+0.011
MVSC 0.785+0.018 0.87940.049 0.781£0.045 0.83440.030 0.8304+0.064 0.842+0.020
LMSC 0.826+0.007 0.91240.006 0.842+0.011 0.88740.008 0.8734+0.007 0.877+0.012
DSS-MSC 0.884+0.012 0.966+0.004 0.898+0.009 0.923+0.007 0.9274+0.007 0.918+0.008

TABLE VI
RESULTS (MEAN 4+ STANDARD DEVIATION) ON CMU-PIE DATASET

Feature Method NMI ACC AR F-score Precision Recall
Singley, .o, 0.7634+0.004  0.623+0.011 0.489+0.009 0.48740.009 0.4284+0.009 0.502+0.009
Single LRRpest 0.7924+0.005 0.6674+0.015 0.514+0.017 0.501£0.017 0.4524+0.021 0.562+0.011
S3Chest 0.7474+0.004  0.5554+0.008 0.505+0.008 0.4734+0.008 0.40440.009 0.497+0.008
FeatConcate | 0.719+£0.012 0.5794+0.020 0.512+0.024  0.453+£0.021 0.45940.023 0.481+0.024
ConcatePCA | 0.7724+0.009 0.61940.023  0.508+0.024 0.504+0.024 0.4784+0.029 0.557+0.021
Co-Reg SPC | 0.7284£0.003  0.601£0.003  0.514+0.004 0.47740.014 0.48340.013  0.493+0.015
Multiple ConReg SPC | 0.73940.003 0.607+0.021  0.51740.004 0.481+£0.004 0.4934+0.003  0.514+0.005
—_— Min-Dis 0.7234+0.010 0.6134+0.021  0.528+0.017 0.4774£0.017 0.4974+0.015 0.523+0.020
MVSC 0.7824+0.013  0.7044+0.013  0.568+0.014 0.5284+0.009 0.5174+0.013 0.619+0.015
LMSC 0.8584+0.009 0.75440.023 0.599+0.017 0.60540.013 0.5624+0.015 0.685+0.021
DSS-MSC 0.8784+0.008 0.810+0.014 0.651+0.011 0.653+0.011 0.611+0.014  0.723-+0.010

to form a new ideal similarity matrix, which can simultane-
ously exploit the correlations among multiple views and learn
particular representations to preserve view-specific property
for improving clustering performance. It is also important to
note that our method utilizes the low-dimensional features
to reconstruct the data points, which eliminates the influ-
ence of redundancy to benefit the improved clustering results.
Besides, merely concatenating features from multiview is not a
promising proposition since it does not effectively address the
correlations among multiple views, thereby resulting in poor
performance.

Tables IV and III show the comparison of clustering
results on the MRSCV1 and Caltech101 datasets, respectively.
From Tables III and IV, it can be noticed that our proposed
method obtains the best results in all of the six evaluation
criteria. Relatively, MVSC and LMSC also obtain compara-
ble performances on the Caltech101 dataset. Despite reporting
clustering performance by combining two of the best views,
the Min-Dis method still performs poorly compared to LMSC
and MVSC. One possible reason is the feature redundancy
when Min-Dis method performs clustering on the original
features.

Similar trends can also be inferred from Tables II and III.
A majority of the methods from the literature reports lower
performance compared to the proposed method as shown
in Tables V and VI. Against other baselines, LMSC and
MVSC again obtain more promising performance. Co-Reg
SPC also obtains relatively better performance, particularly,
on the BBCSport dataset. It could be concluded that the

co-regularized-based clustering algorithm is suitable for con-
structing one similarity matrix on this dataset. Overall, our
method demonstrates much better clustering performance than
other state-of-the-art methods on six evaluation metrics, which
verifies the effectiveness of the proposed subspace clustering
approach.

C. Model Property Evaluation

1) Critical Components Verification: Experimental results
so far have clearly demonstrated the effectiveness of the
proposed framework. In addition, there are three critical com-
ponents in our proposed method: 1) dual learning framework;
2) different views share partial features in a low-dimensional
feature space; and 3) our model uses low-dimensional features
to reconstruct the data points. In the following texts, we will
verify the effectiveness of these critical components in our
proposed multiview clustering framework.

First, if we do not consider formulating a dual learning
framework for exploiting shared-specific information into the
dimensional reduction and self-representation processes, our
method will degrade to

min _ [Z« +2Y_ (B2,
P, H,.E,.Z v

st. PX,=H,+E! H,=H,Z +E?
PVPVT=I,EV=[EL;E%],W:L...,V. (34)

Remarks: We first project the original features from each
view into a low-dimensional space to obtain the view-specific
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Fig. 4. Performance comparison between the proposed multiview subspace
clustering approach (DSS-MSC) with the three degraded ones.

Il Specific
(I shared
[_IShared+Specific

Yale MRSCV1 Caltech101 BBCSport CMU-PIE
Datasets

Fig. 5. Performance variation of our algorithm respects to different crit-
ical components (e.g., specific, shared, and combining shared with specific
self-representations).

representations. And then, we assume that different views
share self-representations across multiple views. Thus, the
degraded formulation only employs single shared-specific
learning process, and it is denoted as “Degraded 1.”

Second, if we do not consider the shared feature across
multiple views in the low-dimensional feature space, our
method will degrade to

min

i WZI 423 IBsll2a + B 1Zulh

st. PX,=H,+E!
H, = H,Z + H,Z, + E?
PP =LE, = [Ei; EE], diag(Z,) = 0
Yw=1,...,V. (35)

Remarks: In this formulation, we only exploit the correlation
across multiple views in self-representation process by using
the low-dimensional feature representations. We denote it as
“Degraded 2.” Note that the degraded formulation can also
be regarded as one-time shared-specific learning framework,
that is, we exploit the correlation across multiple views and
preserve view-specific property for each view based on the
low-dimensional features.

Third, if we directly use the original features to reconstruct
the data points without projecting them into a low-dimensional
feature space, our method will degrade to

min |Z], +2° IEula + B8 1Zlh

st. X, =X,Z +X,Z, + E,, diag(Z,) =0

Yv=1,...,V. (36)
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Remarks: In this formulation, we use the original features to
reconstruct the data points without projecting them into a low-
dimensional feature space, and we denote it as “Degraded 3.”

Fig. 4 shows the performance comparison (in terms of ACC)
of our proposed framework and the three degraded counter-
parts. From Fig. 4, we can have the following observations.

1) It can be clearly seen that our proposed approach
performs better than its three degraded formulations.

2) The dual learning framework performs better than
that using one-time shared-specific learning framework,
which aims to strengthen the ability of the proposed
approach for exploiting the shared information and
preserve view-specific property effectively.

3) The comparison results also verify the clear advantages
of the low-dimensional features induced multiview sub-
space clustering over the degraded formulation by using
the original features.

In addition, as described in the previous sections, our
approach effectively learns shared representations to exploit
the correlations among multiple views and simultaneously cap-
tures view-specific representations for each view to depict
its unique property. In this manner, our method combined
shared and specific self-representations to improve subspace
clustering performance. In order to demonstrate the effective-
ness of this fusion process, combining shared and specific
self-representations, against using either specific [i.e., S =
1/v)y>  (Z,| + |Zf )] or shared self-representations (i.e.,
S = |Z|+ |Z |) individually, we show the comparison results in
Fig. 5. It can be seen that our method combining view-specific
and shared self-representations obtain the best performance
in comparison to either specific self-representations or shared
self-representations independently.

Further, in order to intuitively investigate the effectiveness
of our method, we visualize different views and different
self-representations by using t-distributed stochastic neighbor
embedding (t-SNE) algorithm [60] on the MSRCV1 dataset.
It is observed that the learned self-representations [as shown
in Fig. 6(g)—(i)] characterize the underlying cluster structure
much better than all original feature representations [as shown
in Fig. 6(a)—(f)]. Especially, Fig. 6(i) (combining specific
and shared self-representations) shows the advantage of the
proposed subspace clustering method, which also character-
izes the underlying cluster structure much better than specific
or shared self-representations.

2) Parameters Sensitivity: In our proposed approach, there
are two regularization parameters, that is, A and § in (6), which
are used to balance the two constraint terms. Fig. 7 shows the
performance of the proposed approach with respect to ACC
measure for different values of A and B values on five bench-
mark datasets. From Fig. 7, it can be seen that the clustering
performance is good when the values of A are not small, and
the value of 8 is set to smaller than the value of A on these
datasets (please refer to see the details of parameters’ settings
in Section IV-A). Specifically, our proposed multiview cluster-
ing approach can obtain better performance when the values of
A and B fall in {0.1, 1, 10} and {0.001, 0.01, 0.1}, respectively,
which indicates that suitable values of A and § can guarantee
much better clustering performance. In addition, Figs. 8 and 9
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(a) (b)

(e) ®

Fig. 6. Visualization of different views and different self-representations with t-SNE [60].

() Specific. (h) Shared. (i) Shared + Specific.

Fig. 7.
right: Yale, MRSCV1, Caltech101, BBCSport, and CMU-PIE).

Fig. 8.
Yale, MRSCV1, Caltech101, BBCSport, and CMU-PIE).
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Fig. 9. Performance of the proposed approach with respect to ACC measure when varying the parameter D), on five benchmark datasets (from left to right:

Yale, MRSCV1, Caltech101, BBCSport, and CMU-PIE).

show the performance of the proposed approach with respect
to ACC measure for different values of D and D,. From Fig. §,
it is can be seen that our approach obtain relatively better clus-
tering performance when D > 20, especially, the performance
of our approach is not sensitive to the value of D on the
Caltech101 and BBCSport datasets. Besides, from Fig. 9, it
can be seen that our approach obtain relatively better clustering
performance when D,, > 60, especially, the performance of our
approach is not sensitive to the value of D, on the Caltech101
datasets. Some previous works have indicated how to identify
the optimal values of different parameters are data dependent
and still an open problem [53], [61]. Overall, our method
can obtain much better performance when the parameters A

and B are tuned in a small range, that is, {0.1, 1, 10} and
{0.001, 0.01, 0.1}, respectively, and with setting D > 20 and
D, > 60, respectively.

3) Convergence Analysis: We compute the relative errors,
that is, |P,X, — [H; H,] — E}|lo as “errorl,” ||[H; H,] —
H: H))Z — [H; H,]Z, — E}| o as “error2)” |Z, — Q, +
diag(Q,)]lco as “error3,” and ||Z — J|lcc as “errord” to bet-
ter characterize the convergence of our approach. For ease
of illustration, the errors are normalized and summed across
views. Fig. 10 demonstrates the behavior of convergence con-
ditions for the presented optimization algorithm. It can be seen
that on all five real-world datasets, the optimization algorithm
converges within 40—60 iterations.
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V. CONCLUSION

In this paper, we have proposed a DSS-MSC approach,
which learns the shared information to exploit the underlying
correlations cross multiple views and simultaneously cap-
ture view-specific details to depict specific property for each
independent view. Moreover, a dual learning framework is
presented to strengthen the ability of our method in exploiting
the correlation and preserving view-specific properties with-
out being influenced by redundancies or high-dimensionality
of data. Extensive experiments on five benchmark datasets
have demonstrated the effectiveness of the proposed approach
against state-of-the-art methods, including single-view as well
as multiview clustering approaches. Our validation of criti-
cal components have also verified that the enhanced shared
and view-specific information could be regarded as valu-
able complements to benefit multiview subspace clustering
performance. In the future, to capture more complex corre-
lations, some nonlinear methods [62] and deep networks [63]
will be introduced in our model. Moreover, our model can
be extended to unsupervised features learning [64] and other
classification tasks [65], [66].
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