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a b s t r a c t

The models of low-dimensional manifold and sparse representation are two well-known concise models
that suggest that each data can be described by a few characteristics. Manifold learning is usually
investigated for dimension reduction by preserving some expected local geometric structures from the
original space into a low-dimensional one. The structures are generally determined by using pairwise
distance, e.g., Euclidean distance. Alternatively, sparse representation denotes a data point as a linear
combination of the points from the same subspace. In practical applications, however, the nearby points
in terms of pairwise distance may not belong to the same subspace, and vice versa. Consequently, it is
interesting and important to explore how to get a better representation by integrating these two models
together. To this end, this paper proposes a novel coding algorithm, called Locality-Constrained
Collaborative Representation (LCCR), which introduce a kind of local consistency into coding scheme
to improve the discrimination of the representation. The locality term derives from a biologic
observation that the similar inputs have similar codes. The objective function of LCCR has an analytical
solution, and it does not involve local minima. The empirical studies based on several popular facial
databases show that LCCR is promising in recognizing human faces with varying pose, expression and
illumination, as well as various corruptions and occlusions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Sparse representation has become a powerful method to
address problems in pattern recognition and computer version,
which assumes that each data point xARm can be encoded as a
linear combination of other points. In mathematically, x¼Da,
where D is a dictionary whose columns consist of some data
points, and a is the representation of x over D. If most entries of a
are zeros, then a is called a sparse representation. Generally, it can
be achieved by solving

ðP0Þ : min‖a‖0 s:t: x¼Da;

where ‖ � ‖0 denotes ℓ0-norm by counting the number of nonzero
entries in a vector. P0 is difficult to solve since it is a NP-hard
problem. Recently, compressive sensing theory [1,2] have found

that the solution of P0 is equivalent to that of ℓ1-minimization
problem ðP1;1Þ when a is highly sparse.

ðP1;1Þ : min‖a‖1 s:t: x¼Da;

where ℓ1-norm ‖ � ‖1 sums the absolute value of all entries in a
vector. P1;1 is convex and can be solved by a large amount of
convex optimization methods, such as basis pursuit (BP) [3], least
angle regression (LARS) [4]. In [5], Yang et al. make a comprehen-
sive survey for some popular optimizers.

Benefiting from the emergence of compressed sensing theory,
sparse coding has been widely used for various tasks, e.g.,
subspace learning [6], spectral clustering [7,8] and matrix factor-
ization [9]. In these works, Wright et al. [10] reported a remarkable
method that passes sparse representation through a nearest
feature subspace classifier, named sparse representation-based
classification (SRC). SRC has achieved attractive performance in
robust face recognition and has motivated a large amount of works
such as [11–13]. The work implies that sparse representation plays
an important role in face recognition under the framework of
nearest subspace classification [14].
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However, is ℓ1-norm-based sparsity really necessary to
improve the performance of face recognition? Several recent
works directly or indirectly examined this problem. Yang et al.
[15] discussed the connections and differences between ℓ1-opti-
mizer and ℓ0-optimizer for SRC. They show that the success of SRC
should attribute to the mechanism of ℓ1-optimizer which selects
the set of support training samples for the given testing sample by
minimizing reconstruction error. Consequently, Yang et al. pointed
out that the global similarity derived from ℓ1-optimizer but
sparsity derived from ℓ0-optimizer is more critical for pattern
recognition. Rigamonti et al. [16] compared the discrimination of
two different data models. One is the ℓ1-norm-based sparse
representation, and the other model is produced by passing input
into a simple convolution filter. Their result showed that two
models achieve a similar recognition rate. Therefore, ℓ1-norm-
based sparsity is actually not as essential as it seems in the
previous claims. Shi et al. [17] provided a more intuitive approach
to investigate this problem by removing the ℓ1-regularization
term from the objective function of SRC. Their experimental results
showed that their method achieves a higher recognition rate than
SRC if the original data is available. Zhang et al. [18] replaced the
ℓ1-norm by the ℓ2-norm, and their experimental results again
support the views that ℓ1-norm-based sparsity is not necessary to
improve the discrimination of data representation. Moreover, we
have noted that Naseem et al. [19,20] proposed Linear Regression
Classifier (LRC) which has the same objective function with Shi et
al.'s work. The difference is that Shi et al. aimed to explore the role
of sparsity while Naseem et al. focused on developing an effective
classifier for face recognition.

As another extensively studied concise model, manifold
learning (locality preservation model) is usually investigated for
dimension reduction by learning and embedding local consistency
of original data into a low-dimensional representation [21–23].
Local consistency means that nearby data points share the same
properties, which is hardly reflected in linear representation.

Recently, some researchers have explored the possibility of
integrating the locality (local consistency) with the sparsity
together to produce a better data model. Baraniuk and Wakin
[24] successfully bridged the connections between sparse coding
and manifold learning, and have founded the theory for random
projections of smooth manifold; Majumdar and Ward [25] inves-
tigated the effectiveness and robustness of random projection
method in classification task. Moreover, Wang et al. [26] proposed
a hierarchal images classification method named locality-
constrained linear coding (LLC) by introducing dictionary learning
into Locally Linear Embedding [27]. Chao et al. [28] presented an

approach to unify group sparsity and data locality by introducing
the term of ridge regression into LLC; Yang et al. [29] incorporated
the prior knowledge into the coding process by iteratively learning
a weight matrix of which the entries denotes the similarity
between two data points.

In this paper, we proposed and formulated a new kind of local
consistency into the linear coding paradigm by enforcing the
similar inputs (i.e., neighbors) produce similar codes. The idea is
motivated by an observation in biological founds [30] which shows
that L2/3 of rat visual cortex activates the same collection of
neurons in response to leftward and rightward drifting gratings.
Fig. 1 shows an example to illustrate the motivation. There are
three face images A, B and C selected from two different indivi-
duals, where A and B came from the same person. This means that
A and B lie on the same subspace and could represent with each
other. Fig. 1(b) is a real example corresponding to Fig. 1(a).
Either from the Eigenface [31] matrices or the coefficients of
the two coding schemes, we can see that the similarity between
A and B is much higher than the similarity between C and either
of them.

Based on the observation, we proposed a representation learn-
ing method for robust face recognition, named Locality-
Constrained Collaborative Representation (LCCR). The algorithm
obtains a representation for each data point by enforcing the codes
of neighboring points are as similar as possible. Furthermore, the
objective function of LCCR has an analytic solution, does not
involve local minima. Extensive experiments show that LCCR
outperforms SRC [10], LRC [17,19], CRC-RLS [18], CESR [13], LPP
[32], and linear SVM with Eigenface [31] in face recognition.

Except in some specified cases, lower-case bold letters repre-
sent column vectors and upper-case bold ones represent matrices,
AT denotes the transpose of the matrix A, A�1 represents the
pseudo-inverse of A, and I is reserved for identity matrix.

The remainder of paper is organized as follows: Section 2
introduces three related approaches for face recognition based on
data representation, i.e., SRC [10], LRC [17,19] and CRC-RLS [18].
Section 3 presents our LCCR algorithm. Section 4 reports the
experiments on several facial databases. Finally, Section 5 contains
the conclusion.

2. Preliminaries

We consider a set of N facial images collected from L subjects.
Each training image is denoted as a vector diARM corresponding to

A

B
C

Fig. 1. A key observation. (a) Three face images from two different sub-manifolds are linked to their corresponding neighbors, respectively. (b) The first column includes
three images which correspond to the points A, B and C in (a). The second column shows the Eigenface feature [31] matrices for the testing images; The third column
includes two parts: the left part is the coefficients of SRC [10], and the right one is of CRC-RLS [18]. From the results, we could see that the representations of nearby points
are more similar than that of non-neighboring points, i.e., local consistency could be defined as the similar inputs have similar codes.
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the ith column of the dictionary DARM�N . Without generality, we
assume that the columns of D are sorted according to their labels.

2.1. Sparse representation-based classification

Sparse coding aims at finding the most sparse solution of P1;1.
However, in many practical problems, the constraint x¼Da cannot
hold exactly since the input x may include noise. Wright et al. [10]
proposed Sparse Representation-based Classifier (SRC) which
relaxes the constraint to ‖x�Da‖2rε, where ε40 is the error
tolerance, then, P1;1 is rewritten as

ðP1;2Þ : min‖a‖1 s:t: ‖x�Da‖2rε:

Using Lagrangian method, P1;2 can be transformed to the
following unconstrained optimization problem:

ðP1;3Þ : argmin
a

‖x�Da‖22þλ‖a‖1;

where the scalar λZ0 balances the importance between the
reconstruction error and the sparsity. Given a testing sample
xARM , its sparse representation anARN can be computed by
solving P1;2 or P1;3.

After getting the sparse representation of x, SRC infers the label
of x by assigning it to the class that has the minimum residual:

riðxÞ ¼ ‖x�DδiðanÞ‖2; ð1Þ

identityðxÞ ¼ argmin
i

friðxÞg: ð2Þ

where the nonzero entries of δiðanÞARN are the entries in an that
are associated with ith class, and identityðxÞ denotes the label for x.

2.2. ℓ2-minimization-based methods

In [19], Naseem et al. proposed a Linear Regression Classifier
(LRC) which achieved comparable accuracy to SRC in the context of
robust face recognition. In another independent work [17], Shi
et al. used the same objective function with that of LRC to discuss
the role of ℓ1-regularization-based sparsity. The objective function
used in [17,19] is

argmin
a

‖x�Da‖22:

In [17], Shi et al. empirically showed that their method
(denoted as LRC in this paper for convenience) requires D to be
an over-determined matrix for achieving competitive results,
while the dictionary D of SRC must be under-determined accord-
ing to compressive sensing theory. Once the optimal code an is
calculated for a given input, the classifiers (1) and (2) are used to
determine the label for the input x.

As another recently proposed ℓ2-norm-based model, CRC-RLS
[18] estimates the representation of the input x by relaxing the
ℓ1-norm to the ℓ2-norm in P1;3. The objective function is as follows:

argmin
a

‖x�Da‖22þλ‖a‖22;

where λ40 is a balance factor.
LRC and CRC-RLS show that ℓ2-norm-based models can achieve

competitive classification accuracy with hundreds of times speed
increase, compared with SRC. Under this background, we aim to
incorporate the local geometric structures into coding process for
achieving better discrimination and robustness to corruptions and
occlusions.

3. Locality-constrained collaborative representation

It is challenging to improve the discrimination and the robust-
ness of facial representation because a practical face recognition

system requires not only a high recognition rate but also the
robustness against various corruptions and occlusions.

3.1. Algorithm description

Locality preservation-based algorithm (LPA) and sparse repre-
sentation (SR) have been extensively studied and successfully
applied to appearance-based face recognition. LPA aims to find a
low-dimensional model by learning and preserving some proper-
ties shared by nearby points from the original space to another
one. Alternatively, SR encodes each testing sample as a linear
combination of the training data, which actually depicts a global
relationship between testing sample and training ones. In this
paper, we aim to propose and formulate a kind of local consistency
into coding scheme for modeling facial data. Our objective func-
tion has the following form:

EðaÞ ¼ ‖x�Da‖22þλ‖a‖pþγEL; ð3Þ

where p¼ f1;2g, EL is the locality constraint, λZ0 and γZ0
dictate the importance of ‖ � ‖p and EL, respectively. Then the key
is to formulate the shared property of the neighborhood with EL.

Motivated by the biological experiment of Ohki et al. [30] as
discussed in Section 1 and the key observation in Fig. 1, we have
the following inequality:

‖yi�Dcni ‖
2
2r‖yi�Dan‖22r‖yi�Dan‖22;

where yi is a training sample which falls into the local neighbor-
hood of the input x, and an and cni denote the representation of yi
and x, respectively. Moreover, an is the optimal code of a data
point that is not close to yi. This inequality shows that it is better
to represent yi using the code of nearby point than using that of
non-nearby point. In other words, similar inputs should have
similar codes.

Thus, EL is defined as follows:

EL ¼
1
K

∑
yi AYðxÞ

‖yi�Da‖22; ð4Þ

which establishes the relationship between a and yi. Replacing (4)
into (3), it is given by

argmin
c

ð1�γÞ‖jx�Da‖22þγ
1
K

∑
yi AYðxÞ

‖yi�Da‖22þλ‖a‖p; ð5Þ

where 0rγo1 balances the importance between the testing
image x and its local neighborhood YðxÞ. YðxÞ is searched from
the training samples according to prior knowledge or manual
labeling. For simplicity, we assume that each data point has K
neighbors. The second term measures the contribution of locality,
which is helpful to the robustness of the model.

The locality constraint (second term) in (5) is a simplified
model to formulate the property of similar inputs having similar
codes. From another view, it actually enforces that the reconstruc-
tion of x is still into the local neighborhood of x.

Consider the recent findings [17,18], i.e., ℓ1-norm-based spar-
sity might not bring a higher recognition accuracy than ℓ2-norm-
based methods in face recognition, we simplify our objective
function (5) as follows:

argmin
c

ð1�γÞ‖x�Da‖22þγ
1
K

∑
yiðxÞAYðxÞ

‖yiðxÞ�Da‖22þλ‖a‖22: ð6Þ

Clearly, (6) achieves the minimum when its derivative with
respect to a is zero. Hence, the optimal solution is

an ¼ ðDTDþλIÞ�1DT ð1�γÞxþγ
1
K

∑
yiðxÞAYðxÞ

yiðxÞ
" #

: ð7Þ
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Let P¼ ðDTDþλIÞ�1DT whose calculation requires re-formulat-
ing the pseudo-inverse, it can be calculated in advance and only
once as it is only dependent on training data D.

Given a testing image x, the first step is to determine its
neighborhood YðxÞ from the training set according to prior knowl-
edge, or manual labeling, etc. In practical applications, there are
two widely-used variations for finding the neighborhood:

1. ϵ-ball method: The training sample di is a neighbor of the
testing image x if ‖di�x‖2oϵ, where ϵ40 is a constant.

2. K-nearest neighbors (K-NN) searching: The training sample di

is a neighbor of x, if di is among the K-nearest neighbors of x,
where K40 can be specified as a constant or determined
adaptively.

Once the neighborhood of the testing image x is obtained, LCCR
just simply projects x and its neighborhood YðxÞ onto space P via
(7). In addition, the matrix form of LCCR is easily derived, which
can used in batch prediction.

An ¼ ðDTDþλIÞ�1DT ð1�γÞXþγ
1
K

∑
K

i ¼ 1
YiðXÞ

" #
;

where the columns of XARM�J are the testing images whose codes
are stored in AnARN�J , and YiðXÞARM�J denotes the collection of
ith-nearest neighbor of X.

The proposed LCCR algorithm is summarized in Algorithm 1,
and an overview is illustrated in Fig. 2.

Algorithm 1. Face recognition using locality-constrained colla-
borative representation (LCCR).

Input: A matrix of training samples
D¼ ½d1;d2;…;dN�ARM�N which are sorted according
to the label of di; 1r irN; A testing image xARM;
The balancing factors λZ0, 0rγr1, and the size of
neighborhood K.

1: Normalize the columns of D and x to have a unit ℓ2-
norm, respectively.

2: Calculate the projection matrix P¼ ðDTDþλIÞ�1DT

and store it.
3: For each testing sample x, find the neighborhood

YðxÞ ¼ fy1ðxÞ; y2ðxÞ;…; yK ðxÞg from the training
samples D.

4: Code x over D via

an ¼ P ð1�γÞxþγ
1
K

∑
yiðxÞAYðxÞ

yiðxÞ
" #

:

5: Compute the regularized residuals over all classes by

riðxÞ ¼ ‖x�DnδiðanÞ‖2
‖δiðanÞ‖2 ; (8)

where i denotes the index of class.
Output: identityðxÞ ¼ argmini friðxÞg.

3.2. Discussions

From the algorithm, we can see that the performance of LCCR is
positively correlated with that of K-NN searching method. Thus, it is
possible to assume that LCCR will be failed if K-NN cannot find the
correct neighbors for the testing sample. Here, we give a real
example (Fig. 3) to illustrate that LCCR would largely avoid such
situations from happening. In the example, the classification
accuracy of LCCR is about 94% by using 600 AR images with
sunglasses as testing image and 1400 clean ones as training samples.

Fig. 3(a) demonstrates the coefficients and residual of LCCR and
CRC-RLS. For LCCR, we adopt Cityblock distance as metric to deter-
mine the neighborhood for each querying sample. From the results,
we can see that these two methods correctly predicted the identity of
the input, whereas K-NN searching could not find the correct
neighbors (see Fig. 3(b)). It illustrates that LCCR could work well even
though K-NN is failed to get the results. Fig. 3(c) and (d) illustrates
another possible situation. That is, CRC-RLS fails to get the correct
identity of the input, whereas LCCR successfully obtains the correct
identity. Moreover, we could see that the locality constraint of LCCR
shrinks the trivial coefficients and redistributes the representation of
CRC-RLS. This verifies another claim [26] that locality must lead to
sparsity, but not necessary vice versa. The property might play an
important role in immunization of LCCR from K-NN failure.

3.3. Computational complexity analysis

The computational complexity of LCCR consists of two parts for
offline and online computation, respectively. Suppose the diction-
ary D contains n samples with m dimensionality, LCCR takes
Oðmn2þn3Þ to compute the projection matrix ðDTDþλIÞ�1DT and
O(mn) to store it.

Input: x

Fig. 2. Overview of the coding process of LCCR, which consists of three steps separated by dotted lines. For a given input x, LCCR find its neighborhood YðxÞ from training
data; and then, encodes x over D by calculating the optimal representation a (see bar graph) which produces the minimal reconstruction errors for x and YðxÞ
simultaneously; after that, assigns the input to the class which produces the minimum residual. In the middle part of the figure, we use a red rectangles to indicate the basis
vectors which produce the minimum residual. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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For each querying sample x, LCCR needs O(mn) to search the K-
nearest neighbors of x from D. After that, the algorithm projects x
into another space via (7) in Oðm2nÞ. Thus, the computational
complexity of LCCR is Oðm2nÞ for each unknown sample. Note that,
the computational complexity of LCCR is same with that of LRC
[17,19] and CRC-RLS [18]. Moreover, it is more competitive than
SRC [10] even though the fastest ℓ1-solver is used to obtain the
sparse representation. For example, SRC takes Oðt1m2nþt1mn2Þ to
encode each sample over D when Homotopy optimizer [33] is
adopted to get the sparsest solution, where Homotopy optimizer is
one of the fastest ℓ1-minimization algorithm according to [5] and t
denotes the number of iterations of Homotopy algorithm. From the
above analysis, it is easy to find that a medium-sized data set may
bring up the scalability issues with the models. To address this
problem, a potential choice is to perform dimension reduction and
sampling techniques to reduce the size of problem in practical
application as suggested in [34].

4. Experimental verification and analysis

In this section, we report the performance of LCCR over five publicly
accessed facial databases, i.e., Labeled Faces in the Wild-a database
(LFW) [35], AR [36], ORL [37], the Extended Yale database B [38], and
Multi-PIE [39]. We examine the recognition results of the proposed
algorithm with respect to (1) discrimination, (2) robustness to corrup-
tions, (3) and robustness to continue occlusions.

4.1. Experimental configuration

We compared the classification results of LCCR with four linear
coding models (SRC [10], CESR [13], LRC [17,19] and CRC-RLS [18])
and a subspace learning algorithm (LPP [32]) with the nearest
neighbors classifier (1NN). Moreover, we also reported the results

of linear SVM [40] over the original inputs. Note that SRC, CESR,
LRC, CRC-RLS and LCCR directly code each testing sample over
training data without usability of dictionary learning method. SRC
and CESR get classification results by finding which subject
produces the minimum reconstruction error, whereas LRC, CRC-
RLS and LCCR (these algorithms without ℓ1-regularization) get the
result by finding which subject has the minimum regularized
residual. Moreover, in these models, only LCCR incorporates
locality constraint into coding scheme. For a comprehensive
comparison, we report the performance of LCCR with five basic
distance metrics, i.e., Euclidean distance (ℓ2-distance), Seuclidean
distance (standardized Euclidean distance), Cosine distance (the
cosine of the angle between two points), Cityblock distance (ℓ1-
distance), and Spearman distance.

For computational efficiency, as did in [10,18], we performed
Eigenface [41] to reduce the dimensionality of data set throughout
the experiments. Moreover, SRC requires the dictionary D to be an
under-determined matrix, and Shi et al. [17] claimed that their
model (named as LRC in [19]) will achieve competitive results when
D is over-determined. For an extensive comparison, we investigate
the performance of the tested methods except SRC over two cases.

We solved the ℓ1-minimization problem in SRC by using the
CVX [42], a package for solving convex optimization problems, and
got the results of LRC, CRC-RLS and CESR by using the source codes
from the homepages of the authors. All experiments are carried
out using MATLAB on a 2.5 GHz machine with 2.00 GB RAM.
Moreover, the MATLAB code of LCCR and the used databases can
be downloaded at http://www.machineilab.org/users/pengxi/.

4.2. Recognition results with varying parameters

Parameter determination is a big challenge in pattern recogni-
tion and computer vision. To examine the influence of parameters
over the recognition result, we carried out some experiments

Fig. 3. The effectiveness of the proposed model. (a) A testing face disguised by sunglass comes from the 7th subject of AR database, where the figures (in the red rectangle) in
the second row are the coefficients and residual of the input learned by LCCR (λ¼0.005, γ¼0.9, and k¼2), and the figures in the first row are the results of CRC-RLS [18]
(λ¼0.001 for the best accuracy). (b) The 10 nearest neighbors of the input in terms of Cityblock distance (y-axis). (c) and (d) are the results of another testing sample from the
same individual. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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using AR database. In each test, we varied the value of one
parameter and fixed the value of the others. Fig. 4 illustrates the
recognition rates of LCCR with varying K, λ, and γ. From the results,
we could see that LCCR performs stable when λ is in the range of
[0.0005 0.01] and γ is assigned to a small value. γ and K are used to
incorporate locality, whose optimal value are dependent on the
prior of data distribution. If pairwise distance is better than linear
coefficient in finding neighbors, a bigger γ and K is helpful to
improve the discrimination of LCCR. Otherwise, a smaller one is
preferable. Moreover, if the data set is well-sampled, the optimal
value of K should be the dimensionality of subspace for integrating
enough discrimination into the representation.

In the following experiments, as did in [6,7], we report the best
classification results of all the tested methods under different
parameter configurations. The value range used to find the best
values for LCCR has been shown into Fig. 4, and these possible
values of λ also are tested for SRC and CRC-RLS. In all tests, we
randomly split each data set into two parts for training and testing
and compare the performance of the algorithms using the same
partition to avoid the difference in data sets.

4.3. Recognition with various features

In this section, we evaluate the performance of LCCRs using
Labeled Faces in the Wild-a database (LFW) which contains 13,123
images captured from uncontrolled environment with variations
of pose, illumination, expression, misalignment and occlusion, etc.
By following [29], we use a subset of aligned LFW [35] which
consists of 143 subjects with no less than 11 samples per subject,
and the first 10 samples are used for training and the remaining
samples are used for testing. Moreover, we extract four features,
e.g., intensity value (Gray value), low-frequency Fourier transform
feature (FFT) [43], Gabor magnitude [44] and Local Binary Pattern
(LBP) [45], for all the tested algorithms. For each feature, “divide
and conquer” strategy is adopted. In details, each image is
partitioned into 2�2 blocks; and then LDA [31] is performed in
each block to get the discrimination-enhanced feature; after that,
all blocks’ features are concatenated to form the final feature
vector.

From Table 1, we can conclude

� LCCRs generally outperform the other methods in the all tests.
For example, LCCR with Cosine distance has more than 2.63%,
1.93%, 3.5%, and 4.7% higher rate than the second best
algorithm over four different features.

� Cosine and Spearman distance are more helpful than the other
three metrics to improve the recognition rate of LCCR.
Moreover, the combination of LCCR with Spearman distance
achieves the highest classification rate (73.62%) for the data set.

� CESR and SRC obtain the second and third best result in most
cases, especially, when Gabor and FFT features are used. In fact,
we have found that LRC, CRC and LCCRs will achieve better
results if the classification is performed by finding which
subject has the minimal residual but the regularized minimal
residual, i.e., the classifier 1 but 8 is used. However, this case is
validate only for LFW data set. In the following experiments,
the classifier 8 is a better choice for LRC, CRC and LCCRs.

4.4. Recognition on clean images

In this section, we examine the performance of seven compet-
ing methods over 4 clean facial data sets. Here, clean image means
an image without occlusions or corruptions, just with variations in
illumination, expression, etc.

(1) ORL database [37] consists of 400 different images of 40
individuals. For each person, there are 10 images with the varia-
tion in lighting, facial expression and facial details (with or
without glasses). For computational efficiency, we cropped all
ORL images from 112�96 to 56�48, and randomly selected
5 images from each subject for training and used the remaining
5 images for testing.

Table 2 reports the classification accuracy of the tested algo-
rithms over various dimensionality. Note that the Eigenface with
200D retains 100% energy of the cropped data, which makes the
investigated methods achieve the same rates over 2688D. From
the results, LCCRs outperform the other algorithms, and the best
results are achieved when Cityblock distance is used to search the
nearest neighbors. Moreover, we can find that all the algorithms
achieve a higher recognition rate in the original space except LRC.
One possible reason is that the cropped operation degrades the

Table 1
The recognition accuracy of competing algorithms on the LFW database with four
features.

Algorithms Gray (%) FFT [43] (%) Gabor [44] (%) LBP [45] (%)

SVM [40] 3.10 5.76 42.35 18.48
LPP [32] 5.72 6.86 54.88 53.46
SRC [10] 7.29 33.56 68.66 61.63
CESR [13] 9.62 37.57 65.74 63.05
LRC [17,19] 7.11 13.99 25.40 26.28
CRC-RLS [18] 7.25 14.03 25.40 26.31

LCCR þ Cityblock 8.93 21.96 64.14 64.10
LCCR þ Seuclidean 8.78 20.77 63.81 62.03
LCCR þ Euclidean 9.59 22.19 64.58 66.55
LCCR þ Cosine 12.25 39.50 72.16 67.75
LCCR þ Spearman 11.48 39.54 73.62 66.51
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Fig. 4. Recognition accuracy of LCCR using Cityblock distance on a subset of AR database with dimensionality 2580. (a) The recognition rates versus the variation of the
neighborhood parameter K, where λ¼0.005 and γ¼0.2. (b) The recognition rates versus the variation of the sparsity parameter λ, where K¼5 and γ¼0.2. (c) The recognition
rates versus the variation of the locality constrained coefficient γ, where K¼3 and λ¼0.005.
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performance of LRC, another reason may attribute to the used
classifier. We have found that if another nearest subspace classifier
[10] is adopted with linear regression-based representation, the
accuracy of LRC is slightly decreased from 89% to 88.00% over the
original data and from 91% to 90% with 120D.

(2) AR database [36] includes over 4000 face images of 126
people (70 male and 56 female) which vary in expression,
illumination and disguise (wearing sunglasses or scarves). Each
subject has 26 images consisting of 14 clean images, 6 images with
sunglasses and 6 images with scarves. As did in [10,18], we used a
subset that contains 1400 clean faces randomly selected from 50
male subjects and 50 female subjects. For each subject, we
randomly permute the 14 images and take the first half for
training and the rest for testing. Limited by the computational
capabilities, as did in [18], we resized all images from original
165�120 to 60�43 (2580D) and convert it to gray scale.

(3) Extended Yale B database [38] contains 2414 frontal-face
images with size 192�168 over 38 subjects, as suggested in
[10,18], we carried out the experiments using the cropped and
normalized images of size 54�48. For each subject (about 64
images per subject), we randomly split the images into two parts
with equal size, one for training, and the other for testing. Similar
to the above experimental configuration, we calculated the recog-
nition rates over dimensionality 54, 120 and 300 using Eigenface,
and 2592D in the original data space. Table 4 shows that LCCRs
again outperform its counterparts across various spaces, especially
when the Spearman distance is used to determine the neighbor-
hood of testing samples.

(4) Multi-PIE database (MPIE) [39] contains the images of 337
subjects captured in 4 sessions with simultaneous variations in
pose, expression and illumination. As did in [18], we used 14
frontal images with 14 illuminations1 and neutral expression from
Session 1 for training, and used 10 frontal images2 from Sessions
2 to Session 4 for testing. Note that, we used all the 249 subjects
from Session 1 and discarded the images that not belong to the
subjects of Session 1 from Session 2 to 4. Moreover, all images are
downsized from 100�82 to 50�41.

From Tables 2 to 5, we draw the following conclusions:

1. LCCRs generally outperforms SVM (original input), SRC (sparse
representation), CESR (robust sparse representation), LRC
(linear regression-based model) and CRC-RLS (collaborative
representation) over the tested cases.

2. LCCRs perform better in a low-dimensional space than a high-
dimensional ones. For example, on the Extended Yale B, the
difference in accuracy between LCCR and CRC-RLS (the second
best method) changed from 4.06% (54D) to 2.49% (120D) and to
1.17% (300D). It again corroborates our claim that local con-
sistency is helpful to improving the discrimination of data
representation, since the low-dimensional data contain few
information than higher one.

3. CESR is more competitive in the original space at the cost of
computing cost. For example, it outperforms the other models
over MPIE-S4 in classification accuracy where its time cost
about 11003.51 s, compared with 3104.82 s of SRC, 54.59 s of
LRC, 54.79 s of CRC-RLS and 59.82 s of LCCR.

4. SRC, LRC and CRC-RLS achieve the similar performance, and
SRC is more competitive in the low-dimensional feature spaces.
The results are consistent with the reports in [18]. For example,
in the experiments of Zhang over MPIE-S2 with 300D, the
accuracy scores of SRC and CRC-RLS are about 93.9% and 94.1%,
respectively, comparing with 93.13% and 94.88% in our

experiments. Moreover, CRC-RLS and LRC achieve similar
recognition rates with the difference less than 1% across
various feature spaces.

4.5. Recognition on partial facial features

The ability to work on partial face features is very interesting
since not all facial features play an equal role in recognition.
Therefore, this ability has become an important metric in the face
recognition researches [46]. We examine the performance of the
investigated methods using three partial facial features, i.e., right
eye, nose, as well as mouth and chin, sheared from the clean AR
faces with 2580D (as shown in Fig. 5(a)). For each partial face
feature, we generate a data set by randomly selecting 7 images per
subject for training and the remaining 700 for testing. It should be

Table 2
The maximal recognition accuracy of competing algorithms on the ORL database.

Dim 54 (%) 120 (%) 200 (%) 2688(%)

SVM [40] 90.00 92.50 93.50 93.00
LPP [32] 86.00 86.50 86.50 86.50
SRC [10] 92.00 96.50 86.00 –

CESR [13] 89.50 88.50 89.00 97.50
LRC [17,19] 92.50 91.00 89.00 89.00
CRC-RLS [18] 94.50 94.00 94.50 95.00

LCCR þ Cityblock 97.50 97.50 98.00 98.00
LCCR þ Seuclidean 96.00 96.50 96.00 96.50
LCCR þ Euclidean 96.00 96.00 96.50 96.50
LCCR þ Cosine 96.00 96.50 96.50 96.50
LCCR þ Spearman 96.00 96.00 96.00 96.00

Table 3
The maximal recognition accuracy of competing algorithms on the AR database.

Dim 54 (%) 120 (%) 300 (%) 2580(%)

SVM [40] 73.43 81.00 82.00 83.14
LPP [32] 39.29 43.57 53.86 53.86
SRC [10] 81.71 88.71 90.29 –

CESR [13] 74.00 81.43 84.57 84.57
LRC [17,19] 80.57 90.14 93.57 82.29
CRC-RLS [18] 80.57 90.43 94.00 94.43

LCCR þ Cityblock 86.14 92.71 95.14 95.86
LCCR þ Seuclidean 85.00 91.86 94.43 95.43
LCCR þ Euclidean 84.00 91.29 94.14 94.86
LCCR þ Cosine 83.43 90.86 94.00 94.57
LCCR þ Spearman 84.71 90.71 94.14 94.43

Table 4
The maximal recognition accuracy of competing algorithms on the extended Yale B
database.

Dim 54 (%) 120 (%) 300 (%) 2592(%)

SVM [40] 84.52 92.72 95.28 95.45
LPP [32] 35.93 54.55 70.78 75.66
SRC [10] 93.71 95.12 96.44 –

CESR [13] 92.30 94.95 95.53 96.11
LRC [17,19] 92.88 95.61 97.85 90.48
CRC-RLS [18] 92.96 95.69 97.90 98.26

LCCR þ Cityblock 93.21 96.03 97.93 98.34
LCCR þ Seuclidean 93.21 95.70 97.93 98.34
LCCR þ Euclidean 93.21 95.70 97.93 98.34
LCCR þ Cosine 93.46 95.78 97.93 98.59
LCCR þ Spearman 97.02 98.18 99.10 99.59

1 Illuminations 0,1,3,4,6,7,8,11,13,14,16,17,18,19.
2 Illuminations 0,2,4,6,8,10,12,14,16,18.
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noted that [10] conducted the similar experiment on Extended
Yale B which includes less subjects, smaller irrelevant white
background, and more training samples per subject than our case.

Fig. 5(b) shows that LCCRs achieve better recognition rates than
SVM, SRC, LRC and CRC-RLS for right eye as well as mouth and
chin, and the second best rates for the nose. Some works found
that the most important feature is the eye, followed by the mouth,
and then the nose [47]. We can see that the results for SVM, CRC-
RLS and LCCR are consistent with the conclusions even though the
dominance of the mouth and chin over the nose is not very
distinct.

4.6. Face recognition with block occlusions

To examine the robustness to block occlusion, similar to
[10,17,18], we get 700 testing images by replacing a random block
of each clean AR image with an irrelevant image (baboon) and use
700 clean images for training. The occlusion ratio increases from
10% to 50%, as shown in Fig. 6(a). We investigate the classification
accuracy of the methods across Eigenface space with 300D (Fig. 6
(b)) and cropped data space with 2580D (Fig. 6(c)).

Fig. 6(b)–(d) shows that LCCRs generally outperform the other
models with considerable performance margins. Especially, with
the increase of the occlusion ratio, the difference in recognition
rates of LCCRs and the other methods becomes larger. For
example, when the occlusion ratio is 50%, in 300 dimensional
space, the accuracy of LCCR with Cityblock distance is about 19.7%
higher than SVM, about 44.1% higher than LPP, about 26.0% higher
than SRC (CVX), about 35.1% higher than CESR, about 19:6% higher
than LRC, and about 15.1% higher than CRC-RLS. Note that,

different ℓ1-solvers will lead to different results for SRC. For
Example, if SRC adopts Homotopy algorithm [33] to get the sparest
solution, the recognition rate will increase from 25.43% (with CVX)
to 36.14% such that the performance dominance decreases from
26% to 15.3%. Moreover, CESR achieves the best results at the cost
of computational cost when the original data is available and the
occluded ratio ranges from 20% to 40%.

On the other hand, it is easy to find that LRC, CRC-RLS and
LCCRs are more robust than SRC and SVM, which implies that the
ℓ1-regularization term cannot yield better robustness than the
ℓ2-regularization term, at least for the Eigenface space. Moreover,
the models achieve better results in higher dimensional space,
even though the difference of classification accuracy between
higher dimensional space and lower ones is less than 1% except
CESR has an obvious improvement.

4.7. Face recognition with real occlusions

In this sub-section, we examine the robustness to real possible
occlusions of the investigated approaches over the AR data set. We
use 1400 clean images for training, 600 faces wearing by sun-
glasses (occluded ratio is about 20%) and 600 face wearing by
scarves (occluded ratio is about 40%) for testing, separately. In [10],
Wright et al. only used a third of disguised images for this test, i.e.,
200 images for each kind of disguises. In addition, we also
investigate the role of K-NN searching in LCCR.

We examine two widely used feature schemes, namely, the
holistic feature with 300D and 2580D, as well as the partitioned
feature based on the cropped data. The partitioned feature scheme
firstly partitions an image into multiple blocks (8 blocks as did in

Table 5
The maximal recognition accuracy of competing algorithms on the multi PIE database.

Dim 300 2050

Dataset MPIE-S2 (%) MPIE-S3 (%) MPIE-S4 (%) MPIE-S2 (%) MPIE-S3 (%) MPIE-S4 (%)

SVM [40] 91.33 85.13 89.20 91.45 85.75 89.43
LPP [32] 40.12 27.44 31.20 31.49 31.00 31.49
SRC [10] 93.13 90.60 94.10 – – –

CESR [13] 92.41 87.38 91.94 94.46 92.06 96.17
LRC [17,19] 94.64 89.88 93.37 83.19 70.25 75.03
CRC-RLS [18] 94.88 89.88 93.60 95.30 90.56 94.46

LCCR þ Cityblock 95.36 91.25 95.54 96.08 91.94 95.89
LCCR þ Seuclidean 95.06 91.25 94.51 95.84 91.56 95.20
LCCR þ Euclidean 95.06 91.31 94.57 95.84 91.63 95.14
LCCR þ Cosine 95.12 90.88 94.69 95.78 91.38 95.14
LCCR þ Spearman 95.12 91.75 94.40 95.78 92.19 95.20

Features Right Eye Mouth and Chin Nose
Dim 308 798 224

SVM [40] 70.71% 41.29% 37.14%
LPP [32] 58.57% 14.43% 53.71%
SRC [10] 84.00% 70.71% 78.00%

CESR [13] 81.57% 56.00% 70.43%
LRC [17, 19] 72.86% 32.86% 70.57%

CRC-RLS [18] 83.14% 73.86% 73.57%
LCCR Cityblock 86.86% 76.29% 75.86%
LCCR Seuclidean 84.86% 75.57% 75.29%
LCCR Euclidean 85.29% 75.00% 76.00%

LCCR Cosine 84.43% 74.57% 75.29%
LCCR Spearman 84.57% 75.86% 75.14%

Fig. 5. Recognition accuracy with partial face features. (a) An example of the three features, right eye, mouth and chin, and nose from left to right. (b) The recognition rates of
competing methods on the partial face features of the AR database.
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[10,18,29], see Fig. 7(a) and (c), then conducts classification on
each block independently, and after that, aggregates the results by
voting.

Fig. 7(e) reports the recognition rates of all the tested methods.
For the images occluded by sunglasses, LCCR with Cityblock
distance and CESR achieve remarkable results with the holistic
feature scheme, their recognition accuracy are nearly double that
of the other methods. This considerable performance margin
contributes to the accuracy of K-NN searching based on Cityblock
distance (see Fig. 7(b)).

For the images occluded by scarves, LCCR achieves the highest
recognition rate over the full dimensional space, and the second
highest rates using Eigenface. However, the difference in rates
between LCCR and other non-iterative algorithms (LRC, CRC-RLS)
is very small due to the poor accuracy of K-NN searching as shown
in Fig. 7(d). Furthermore, the partitioned feature scheme produces
higher recognition rates than the holistic one for all competing
methods, which is consistent with previous report [10].

From the above experiments, it is easy to conclude that the
preservation of locality is helpful to coding scheme, especially
when the real structures of data cannot be found by traditional
coding scheme. Moreover, the performance ranking of LCCR with
five distance metrics is same with that of K-NN searching with the
used metrics.

4.8. Face recognition with corruption

We test the robustness of LCCR against two kinds of corruption
using the AR data set containing 2600 images of 100 individuals.
For each subject, we use 13 images for training (7 clean images,
3 images with sunglasses, and 3 images with scarves), and the
remaining 13 images for testing. Different from [10] which tested
the robustness to corruption using the Extended Yale B database,
our case is more challenging for the following reasons. First, AR
images contain real possible occlusions, i.e., sunglasses and
scarves, while Extended Yale B is a set of clean images without
disguises. Second, AR includes more facial variations (13 versus 9),
more subjects (100 versus 38), and a smaller samples for each
subject (26 images per subject versus 64 images per subject).
Third, we investigated two kinds of corruption, white noise
(additive noise) and random pixel corruption (non-additive noise)

which are two commonly assumed in face recognition problem
[10,17,19]. For the white noise case (the top row of Fig. 8), we add
random noise from normal distribution to each testing image x,
that is, ~x ¼ xþαn, and restrict ~xA ½0 255�, where α is the corrup-
tion ratio from 10% to 90% with an interval of 20%, and n is the
noise following a standard normal distribution. For the random
pixel corruption case (the bottom row in Fig. 8), we replace the
value of a percentage of pixels randomly chosen from each test
image with the values following a uniform distribution over
½0 pmax�, where pmax is the largest pixel value of current image.

To improve the anti-noise ability of SRC [10], Wright et al.
generate a new dictionary ½D I� by concatenating an identity
matrix I with the original dictionary D, where the dimensionality
of I equals to that of data. The use of I has been verified to be
effective in improving the robustness of ℓ1-norm-based models
[48,10] at the cost of time-consuming. Therefore, it is a tradeoff
between robustness and efficiency for the algorithms. Will the
strategy still work for ℓ2-minimization-based models? In this
sub-section, we fill this gap by comparing the results by coding
over these two dictionary.

Tables 6–9 are the recognition rates of the tested methods
across feature space (Eigenface with 300D) and full dimensional
space (2580D). We did not reported the results of SVM and LPP
with the strategy of expanding dictionary since the methods are
not belong to the facility of linear coding scheme. Moreover, SRC
requires the dictionary is an over-completed matrix to obtain the
sparse solution via ℓ1-optimazation program. Based on the results,
we have the following conclusions:

First, the proposed LCCRs are much superior to SVM, LPP, SRC,
CESR, LRC and CRC-RLS. For example, in the worst case (the white
Gaussian noise corruption ratio is 90%, the best result of LCCR is
about 90.54% (Table 7), compared to 82.92% of SVM (Table 7),
2.62% of LPP (Table 6), 84.08% of SRC (Table 8), 73% of CESR
(Table 6), 87.15% of LRC (Table 9), and 88.39% of CRC-RLS (Table 7).
In the case of random pixel corruption, one can see when the
corruption ratio reaches 70%, all methods fail to perform recogni-
tion except LCCR in the two data spaces and CESR in the full
dimensional space.

Second, all investigated algorithms perform worse with
increased corruption ratio and achieve better results in white
noise corruption (additive noise) than random pixel corruption
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Dim 300 (Eigenface) 2580
Occlusionratio 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

LCCR Cityblock 90.71% 84.43% 74.14% 61.43% 51.43% 91.57% 85.57% 76.43% 62.29% 52.29%
LCCR Seuclidean 90.00% 80.14% 67.86% 53.71% 39.57% 91.00% 82.14% 70.57% 56.29% 41.71%
LCCR Euclidean 88.86% 80.86% 68.14% 55.00% 43.29% 89.71% 81.86% 71.00% 57.00% 43.86%

LCCR Cosine 88.57% 80.29% 69.29% 56.57% 44.00% 89.00% 82.43% 71.00% 57.29% 45.57%
LCCR Spearman 88.29% 81.00% 70.00% 57.14% 43.29% 89.57% 83.00% 72.57% 59.43% 44.14%

Fig. 6. Experiments on AR database with varying percent block occlusion. (a) From top to bottom, the occlusion percents for test images are, 10%, 30%, and 50%, respectively.
(b) and (c) are the recognition rates under different levels of block occlusion on AR database with 300D (Eigenface) and 2580D, respectively. (d) The recognition rates of
LCCRs with 300D and 2580D.

X. Peng et al. / Pattern Recognition 47 (2014) 2794–28062802



1 2 3 4 5 6
10

20

30

40

50

60

70

80

90

100

Neighborhood size: K

A
cc

ur
ac

y 
(%

)

Cityblock
Cosine
Euclidean
Seuclidean
Spearman

1 2 3 4 5 6
6

7

8

9

10

11

12

13

14

15

Neighborhood size: K

A
cc

ur
ac

y 
(%

)

Cityblock
Cosine
Euclidean
Seuclidean
Spearman

Disguise sunglasses scarves
Feature Holistic Partitioned Holistic Partitioned

Dim 300 2580 2580 300 2580 2580
SVM [40] 47.83% 48.67% 40.17% 13.50% 13.83% 41.67%
LPP [32] 14.83% 18.50% 88.83% 20.33% 24.17% 82.00%
SRC [10] 57.00% - 93.00% 69.83% - 91.83%

CESR [13] 21.17% 95.50% 97.50% 31.50% 16.67% 91.33%
LRC [17, 19] 52.83% 49.17% 88.17% 68.50% 57.50% 91.83%

CRC-RLS [18] 53.00% 71.50% 88.33% 68.50% 89.17% 92.17%
LCCR Cityblock 93.00% 93.50% 91.17% 68.67% 89.17% 92.50%
LCCR Seuclidean 57.83% 74.50% 91.50% 68.50% 89.17% 92.17%
LCCR Euclidean 66.00% 79.00% 90.83% 68.67% 89.17% 92.50%

LCCR Cosine 76.83% 85.33% 93.83% 68.83% 89.50% 93.83%
LCCR Spearman 70.67% 81.17% 95.83% 68.67% 89.33% 93.83%

Fig. 7. Recognition on AR faces with real possible occlusions. (a) The top row is a facial image occluded by sunglass, whose partitioned blocks are shown as below.
(b) The accuracy of K-NN searching using Cityblock distance, Cosine distance, Euclidean distance, Seuclidean distance and Spearman distance on the AR images with
sunglasses (2580D). (c) Similar to (a), the top row is a face occluded by scarf, and its partitions below. (d) The precision of K-NN searching using Cityblock, Cosine, Euclidean,
Seuclidean, Spearman as distance metrics on the AR images with scarves (2580D). (e) The recognition rates of competing methods across different experimental
configurations.

Fig. 8. Testing images from AR database with additive noise and non-additive noise. Top row: 10%, 30%, 50%, 70%, 90% white noises are added into test image; Bottom row:
the case of random pixel corruption with 10%–90% percentages, respectively.
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Table 6
The robustness of different methods over AR database with 300D (coding over D).

Corruptions White Gaussian noise Random pixel corruption

Corrupted ratio 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

SVM [40] 91.77 91.38 90.23 88.62 82.69 91.54 81.92 45.46 8.23 2.00
LPPþ1NN [32] 29.31 8.46 4.08 2.38 2.62 5.69 2.62 2.00 1.46 1.17
SRC [10] 92.62 91.23 86.54 78.31 62.62 89.62 72.31 38.85 8.23 2.00
CESR [13] 89.69 87.85 85.38 80.85 73.00 87.38 76.31 43.23 12.38 1.46
LRC [17,19] 93.39 92.39 88.85 81.85 67.62 91.77 77.00 45.77 13.62 2.54
CRC-RLS [18] 94.77 94.39 92.85 90.92 87.31 84.08 88.69 65.46 20.77 2.92

LCCR þ Cityblock 97.00 96.00 94.54 92.31 89.08 96.54 92.31 79.69 37.08 5.23
LCCR þ Seuclidean 96.31 95.85 94.46 92.39 88.54 95.69 90.08 65.85 20.77 3.00
LCCR þ Euclidean 95.77 95.23 94.23 92.31 88.31 95.39 90.39 67.23 20.92 3.23
LCCR þ Cosine 95.62 95.31 93.92 92.15 88.69 94.85 89.46 65.62 20.85 3.69
LCCR þ Spearman 96.15 95.39 94.69 93.08 89.77 95.54 92.54 83.00 59.31 13.69

Table 7
The robustness of different methods over AR database with 2580D (Coding over D).

Corruptions White Gaussian noise Random pixel corruption

Corrupted ratio 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

SVM [40] 91.92 91.31 89.85 88.62 82.92 91.69 81.46 44.77 7.69 1.92
LPPþ1NN [32] 37.69 10.31 4.54 3.00 2.54 6.92 2.54 2.15 1.46 1.47
CESR [10] 90.85 86.69 84.38 78.85 70.08 91.00 90.77 90.54 66.08 13.08
LRC [17,19] 78.69 33.77 4.62 4.62 2.69 21.77 3.77 2.39 0.92 1.15
CRC-RLS [18] 94.85 94.77 93.23 90.85 88.39 94.15 89.08 67.08 22.69 2.62

LCCR þ Cityblock 97.54 96.08 95.08 93.15 90.54 96.85 93.23 78.77 29.77 4.54
LCCR þ Seuclidean 96.92 96.23 95.39 92.92 89.00 96.00 90.77 67.31 22.69 3.00
LCCR þ Euclidean 96.08 95.62 94.85 92.23 88.92 95.62 91.15 68.31 22.92 3.00
LCCR þ Cosine 96.08 95.46 94.39 92.54 89.46 95.31 90.77 67.15 23.23 3.62
LCCR þ Spearman 96.54 95.23 94.69 93.31 90.39 95.85 92.92 83.31 60.69 13.85

Table 8
The robustness of different methods over AR database with 300D (Coding over [D E]).

Corruptions White Gaussian noise Random pixel corruption

Corrupted ratio 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

SRC [10] 92.62 91.08 90.46 87.92 84.08 91.62 83.38 56.31 14.92 2.08
CESR [13] 85.69 82.46 80.31 73.69 63.15 83.38 69.00 34.69 10.62 2.92
LRC [17,19] 92.62 92.15 91.00 88.85 86.31 91.15 84.46 49.92 8.31 1.85
CRC-RLS [18] 92.62 92.15 91.00 88.85 86.31 91.15 84.46 49.92 8.31 1.85

LCCR þ Cityblock 93.08 92.39 91.69 89.62 86.62 92.62 87.54 69.46 34.00 4.92
LCCR þ Seuclidean 92.85 92.39 91.69 89.62 86.46 91.85 85.23 50.00 8.31 2.46
LCCR þ Euclidean 92.85 92.39 91.69 89.92 86.62 91.92 85.15 51.23 10.23 2.54
LCCR þ Cosine 92.69 92.69 91.92 89.92 87.00 92.15 84.92 49.92 8.38 2.62
LCCR þ Spearman 92.85 92.85 92.15 90.15 87.54 92.69 87.85 75.92 56.54 1.38

Table 9
The robustness of different methods over AR database with 2580D (coding over [D E]).

Corruptions White Gaussian noise Random pixel corruption

Corrupted ratio 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

CESR [13] 91.85 87.15 82.08 71.85 57.62 91.38 91.15 90.23 76.85 8.08
LRC [17,19] 93.00 92.46 91.69 90.15 87.15 92.15 84.92 51.15 8.54 1.77
CRC-RLS [18] 93.00 92.46 91.69 89.23 87.15 92.15 84.92 51.15 8.54 1.77

LCCR þ Cityblock 93.39 93.00 92.15 90.15 87.39 93.08 88.23 70.15 34.08 5.08
LCCR þ Seuclidean 93.31 93.00 92.15 90.15 87.31 92.69 85.85 51.39 8.62 2.46
LCCR þ Euclidean 93.31 92.77 91.92 90.31 87.62 92.62 86.00 52.46 10.69 2.54
LCCR þ Cosine 93.15 93.23 92.23 90.39 87.77 92.69 85.62 51.59 8.62 2.77
LCCR þ Spearman 93.39 93.15 92.62 90.54 88.31 93.31 88.54 77.00 56.54 13.62
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(non-additive noise). Moreover, the improvement of CESR is
obvious when the original data is used to test. As discussed in
the above, the improvement is at the cost of computational
efficiency. For the other methods, they perform slightly better
(less than 1%) in the full-dimensional space except LRC.

Third, the results show that coding over ½D I� is helpful in
improving the robustness of SRC and LRC, but it has negative
impact on the recognition accuracy of CESR, CRC-RLS and LCCR. For
example, when white noise ratio rises to 90% for the Eigenface
(Table 6), expanding D leads to the variation of the recognition rate
from 62.62% to 84.08% for SRC, from 73.00% to 63.15% for CESR,
from 67.62% to 86.31% for LRC, from 87.31% to 86.31% for CRC-RLS,
and from 89.77% to 87.54% for LCCR with Spearman distance. The
conclusion has not been reported in the previous works.

5. Conclusions and discussions

It is interesting and important to improve the discrimination
and robustness of data representation. The traditional coding
algorithm gets the representation by encoding each datum as a
linear combination of a set of training samples, which mainly
depicts the global structure of data. However, it will be failed
when the data are grossly corrupted. Locality (Local consistency)
preservation, which keeps the geometric structure of manifold for
dimension reduction, has shown the effectiveness in revealing the
real structure of data. In this paper, we proposed a novel objective
function to get an effective and robust representation by enforcing
the similar inputs produce similar codes, and the function pos-
sesses analytic solution.

The experimental studies showed that the introduction of
locality makes LCCR more accurate and robust to various occlu-
sions and corruptions. We investigated the performance of LCCR
with five basic distance metrics (for locality). The results imply
that if better K-NN searching methods or more sophisticated
distance metrics are adopted, LCCR might achieve a higher
recognition rate. Moreover, the performance comparisons over
two different dictionaries show that it is unnecessary to expand
the dictionary D with I for ℓ2-norm-based coding algorithms.

Each approach has its own advantages and disadvantages.
Parameter determination maybe is the biggest problem of LCCR
which requires three user-specified parameters. In the future
works, it is possible to explore the relationship between locality
parameter k and the intrinsic dimensionality of sub-manifold.
Moreover, the work has focused on the representation learning,
however, dictionary learning is also important and interesting in
this area. Therefore, an possible way to extend this work is
exploring how to reflect local consistency in the formation process
of dictionary.
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