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Abstract— Under the framework of spectral clustering, the
key of subspace clustering is building a similarity graph, which
describes the neighborhood relations among data points. Some
recent works build the graph using sparse, low-rank, and
�2-norm-based representation, and have achieved the state-of-
the-art performance. However, these methods have suffered from
the following two limitations. First, the time complexities of these
methods are at least proportional to the cube of the data size,
which make those methods inefficient for solving the large-scale
problems. Second, they cannot cope with the out-of-sample data
that are not used to construct the similarity graph. To cluster
each out-of-sample datum, the methods have to recalculate the
similarity graph and the cluster membership of the whole data
set. In this paper, we propose a unified framework that makes
the representation-based subspace clustering algorithms feasible
to cluster both the out-of-sample and the large-scale data. Under
our framework, the large-scale problem is tackled by converting
it as the out-of-sample problem in the manner of sampling,
clustering, coding, and classifying. Furthermore, we give an
estimation for the error bounds by treating each subspace as a
point in a hyperspace. Extensive experimental results on various
benchmark data sets show that our methods outperform several
recently proposed scalable methods in clustering a large-scale
data set.

Index Terms— Error bound analysis, least square
regression (LSR), low-rank representation (LRR), out-of-sample
problem, scalable subspace clustering, sparse subspace
clustering (SSC).

I. INTRODUCTION

CLUSTERING analysis aims to group similar patterns
into the same cluster by maximizing the intercluster

dissimilarity and the intracluster similarity. Over the past
two decades, a number of clustering approaches have been
proposed, for example, partitioning-based clustering [1],
kernel-based clustering [2], and subspace clustering [3].
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Subspace clustering aims at finding a low-dimensional
subspace to fit each group of data points. It mainly contains
two tasks: 1) projecting the data set into another space
(encoding) and 2) calculating the cluster membership of the
data set in the projection space (clustering). Popular sub-
space clustering methods include but not limit to statistical
methods [4], [5] and spectral clustering [6], [7]. Spectral
clustering finds the cluster membership of the data points by
using the spectrum of an affinity matrix. The affinity matrix
corresponds to a similarity graph of which each vertex denotes
a data point, with the edge weights representing the similarities
between connected points. Thus, at the heart of the spectral
clustering is a similarity graph construction problem.

There are two widely used approaches to build a similarity
graph: 1) pairwise distance (PD) and 2) reconstruction
coefficients (RCs). In particular, the PD computes the similar-
ity based on the distance (e.g., the Euclidean distance) between
any two data points. However, PD cannot reflect the global
structure of the data set, because its value only depends on
connected data points. In contrast, the RC denotes each data
point as a linear combination of the other points and uses
the representation coefficients as a similarity measurement.
Several recent works have shown that the RC is superior to
PD in subspace clustering, for example, sparse representa-
tion [8]–[13], low-rank representation (LRR) [14]–[17], latent
LRR [18], and �2-norm-based representation [19], [20].

Although representation-based subspace clustering has been
extensively studied, how to solve the large-scale and out-of-
sample clustering problems are less explored. Taking sparse
subspace clustering (SSC) [8], [9] as an example. SSC itera-
tively computes the sparse codes of n data points and performs
eigendecomposition over an n × n graph Laplacian matrix. Its
computational complexity is more than O(mn3) even though
the fastest �1-solver is used, where m is the dimensionality of
the data set. Thus, any medium-sized data set will bring up a
large-scale problem with SSC. Moreover, SSC cannot handle
out-of-sample data that are not used to construct the similarity
graph. To cluster each previously unseen datum,1 SSC has to
recompute the similarity graph and the cluster membership
of the whole data set. In fact, the most representation-based
subspace clustering methods [14], [15], [17]–[19], [21] have

1In this paper, we assume that any previously unseen datum (i.e., out-of-
sample datum) belongs to one of the subspaces spanned by in-sample data.
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Fig. 1. Architecture of the proposed framework for scalable representation-based subspace clustering. The framework can be summarized as sampling (step 1),
clustering (steps 2–4), coding (step 5), and classifying (step 6). Solid and dotted lines are used to show the processes of clustering of in-sample data and
out-of-sample data, respectively. For the out-of-sample problem, only steps 5 and 6 are needed.

suffered from similar limitations when dealing with the large-
scale or out-of-sample data.

To address such issues, we propose a unified framework
for the representation-based subspace clustering algorithms.
Our framework treats the large-scale problem as the
out-of-sample problem in the manner of sampling, clustering,
coding, and classifying (Fig. 1). In particular, we split a
large-scale data set into two parts: 1) in-sample data X and
2) out-of-sample data Y. Then, we obtain the cluster mem-
bership of X and assign each out-of-sample datum to the
nearest subspace (NS) spanned by X. Under our framework,
three scalable methods are presented: 1) scalable SSC (SSSC);
2) scalable LRR (SLRR); and 3) scalable least square regres-
sion (SLSR). The proposed methods remarkably improve the
computational efficiency of the original approaches while
preserving a good clustering performance.

This paper is a substantial extension of our conference
paper [22], which is further improved from the following
aspects. First, we perform error analysis for our framework
by treating each subspace in a well-defined hyperspace.
The presented lower and upper error bounds are helpful in
understanding the working mechanism of the NS classifier
(specifically, sparse representation-based classifier (SRC) [23].
To the best of our knowledge, this is the first work to perform
errors analysis for SRC. Second, we additionally propose
two scalable methods, i.e., SLRR and SLSR, which make
LRR [15] and LSR [19] feasible to cluster large-scale data and
out-of-sample data. Third, we perform extensive experiments
to compare our methods with more scalable clustering methods
on more data sets. Finally, we conduct comprehensive analysis
for our approaches, including the performance with different
out-of-sample grouping strategies and the influence of different
parameters.

The rest of this paper is organized as follows. Section II
gives a brief review of the representation-based clustering
algorithms and some scalable spectral clustering methods.
In Section III, we propose our framework and three scal-
able representation-based clustering algorithms, and further
present some theoretical results on the error bound analy-
sis of our framework. To demonstrate the performance of
our proposed methods, we compare them with five recently
proposed scalable clustering approaches on nine data sets
in Section IV. Finally, we give the conclusions and the further
work in Section V.

TABLE I

NOTATIONS

II. REPRESENTATION-BASED SUBSPACE CLUSTERING

In this paper, we use lower-case bold letters to represent col-
umn vectors and upper-case bold letters to represent matrices.
AT and A−1 denote the transpose and pseudoinverse of the
matrix A, respectively. I denotes the identity matrix. Table I
summarizes some notations used throughout this paper.

A. Sparse Representation-Based Subspace Clustering

Recently, Elhamifar and Vidal [8], [9] proposed SSC with
well-founded recovery theory for independent subspaces and
disjoint subspaces. SSC calculates the similarity among data
points by solving the following optimization problem:

min
C,E,Z

‖C‖1 + λE‖E‖1 + λZ ‖Z‖F

s.t. D = DC + E + Z, diag(C) = 0 (1)

where C ∈ Rn×n is the sparse representation of the data
set D ∈ Rm×n , E corresponds to the sparse outlying entries,
Z denotes the reconstruction errors for the limited represen-
tational capability, and the parameters λE and λZ balance
these three terms in the objective function. Equation (1) is
convex and can be solved by a number of �1-solvers [24]. After
getting C, the SSC builds a similarity graph via A = |C|T +|C|
and performs spectral clustering [6] over the graph.

SSC is effective but inefficient. It needs O(tn2m2 + tmn3)
to build the similarity graph even if the fastest �1-solver
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is used, where t is the number of iterations of the solver.
In addition, SSC takes O(n3) to calculate the eigenvectors
of the Laplacian matrix L. Considering that L is a sparse
matrix, the time complexity of this step could be reduced to
O(mn + mn2) when Lanczos eigensolver is used. However, it
is still a daunting task even for a moderate n > 100 000.

B. Low-Rank Representation-Based Subspace Clustering

Different from SSC, LRR [15], [18], [25] uses the low-
est rank representation rather than the sparsest representa-
tion to build the similarity graph. The objective function of
LRR is

min
C,E

‖C‖∗ + λ‖E‖� s.t. D = DC + E (2)

where ‖ · ‖∗ denotes the nuclear norm, ‖ · ‖� could be chosen
as �2,1-norm, �1-norm, or Frobenius norm, depending on prior
knowledge of the error structure. In general, �2,1-norm is
adopted to deal with sample-specific corruption and outlier,
�1-norm is used to characterize the random corruption, and
Frobenius norm is used to handle the Gaussian noise.

LRR, which adopts augmented Lagrange multipli-
ers (ALMs) method to solve (2), takes O(m2n + n3) to
perform singular value decomposition over a dense matrix at
each iteration. In addition, LRR will take O(n3 + t2nk2) to
perform clustering, where t2 is the number of iterations of
the k-means method. Therefore, the overall time complexity
of LRR is O(t1m2n + t1n3 + t2nk2), where t1 is the number
of iterations of ALM.

C. �2-Norm-Based Methods

SSC, LRR, and their extensions solve a convex optimization
problem, of which the computational complexities are very
high. Recently, LSR [19] has shown that �2-norm-based repre-
sentation can achieve the competitive result with faster speed.
LSR aims at solving

min
C

‖D − DC‖2
F + λ‖C‖2

F s.t. diag(C) = 0 (3)

where ‖ · ‖F denotes the Frobenius norm, the nonnegative
real number λ is used to avoid overfitting, and the constraint
guarantees that the i th coefficient over di ∈ D is zero.

Lu et al. [19] provided two solutions to (3) and the compu-
tational complexities of these solutions are O(m2n) at least.
Thus, the overall computational complexity of LSR is about
O(m2n + n3 + tnk2), where t is the number of iterations of
the k-means method. Clearly, LSR has also suffered from the
large-scale problem as SSC and LRR did.

Besides the large-scale clustering problem, SSC, LRR, and
LSR have suffered from the out-of-sample problem, i.e., they
cannot cope with the data that are not used to construct the
similarity graph. For each previously unseen datum, SSC,
LRR, and LSR have to perform the algorithm over the
whole data set once again. This makes them impossible to
cluster incremental data. SSC, LRR, and LSR are summarized
in Algorithm 1.

There are some methods have been proposed to reduce
the time cost of minimizing lowest rank matrix [26], [27].

Algorithm 1 Representation-Based Subspace Clustering

Input: A set of data points D ∈ Rm×n and the number of
clusters k.

1: Obtain the representation C∗ by solving (1), (2) or (3).
2: Get the affinity matrix via A = |C∗|T + |C∗|.
3: Construct a Laplacian matrix L = I − B−1/2AB−1/2

using A, where B = diag{bi } with bi = ∑n
j=1 Ai j .

4: Obtain the eigenvector matrix U ∈ Rn×k which consists of
the first k normalized eigenvectors of L corresponding to
its k smallest eigenvalues.

5: Get the segmentations of the data by performing k-means
algorithm over the rows of U.

Output: The cluster assignment of D.

However, the methods mainly focused on speeding up the
encoding process without consideration of the clustering
process.

D. Scalable Spectral Clustering Algorithms

Recently, some works have focused on solving the large-
scale clustering problem of the traditional spectral clustering.
One natural way is to reduce the time cost of eigen-
decomposition over the Laplacian matrix. For example,
Fowlkes et al. [28] adopted Nyström method to get the
approximation of the eigenvectors of the whole similarity
matrix. Chen et al. [29] solved the generalized eigenvalue
problem in a distributed computing platform.

Another way is reducing the data size by replacing the
original data with a small number of samples. Yan et al. [30]
presented a fast spectral clustering algorithm by selecting
some representative points from the input and got the cluster
assignment based on the chosen samples. Chen and Cai [31]
proposed the landmark-based spectral clustering algorithm.
The algorithm chooses p representative points as the land-
marks and constructs a Laplacian matrix via L = AT A,
where the element of A ∈ Rp×n is the PD between the
input data and the landmarks. Wang et al. [32] selected
the landmarks by performing selective sampling technique
and running spectral clustering over the chosen samples
based on PD. Nie et al. [33] proposed spectral embedded
clustering (SEC) that groups out-of-sample data in a linear
projection space. The main difference among the above works
is the method to handle out-of-sample data. Different from
the above sampling-based method, Belabbas and Wolfe [34]
proposed a quantization-based method with a theoretical jus-
tification to select in-sample data in a deterministic way.
By extending the quantization-based method with self-
organizing maps (SOMs), Taşdemir [35] recently proposed
a novel method by utilizing the quantization property of
SOMs and neural gas to handle the large-scale data set.
Extensive experimental studies show that this method has
achieved impressive performance compared with sampling-
based methods on a range of data sets. Although numerous
works have been conducted on speeding up the PD-based clus-
tering methods, very few studies have been done to enhance
the scalability of the representation-based approaches.
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III. SCALABLE SUBSPACE CLUSTERING

AND ERROR ANALYSIS

In this section, we present our framework that makes the
representation-based subspace clustering methods feasible to
handle large-scale data and out-of-sample data. Our method
treats the large-scale problem as the out-of-sample problem
by taking the strategy of sampling, clustering, coding, and
classifying. The first two steps choose a small number of data
points as in-sample data and calculate the cluster membership
of them. The third and fourth steps find a low-dimensional
subspace to fit each group of out-of-sample data and assign the
data to the subspace that has the minimal residual. Note that,
to solve the out-of-sample problem, only the last two steps are
needed.

A. Proposed Methods

Our framework is based on a general assumption as follows.
Assumption 1: Suppose the data set [D]i ∈ Rm×ni is drawn

from the subspace Si , one could use a small portion of [D]i ,
denoted by [X]i ∈ Rm×pi , to learn the structure of Si , where
rank([D]i) = rank([X]i), rank([X]i) ≤ pi � ni , and Si is a
compact metric space.

Assumption 1 is twofold. First, it implies that each data
point could be encoded as a linear combination of a few
basis (i.e., sparsity assumption). Second, it requires that [X]i

and [D]i are independent and identically distributed (i.i.d.) so
that out-of-sample data could be represented by [X]i . The
assumption is very general on which most data mining and
machine learning works are based.

In practice, the sparsity assumption is easily satisfied for
high-dimensional data such as facial images. To satisfy the
assumption of i.i.d., we need to find the representative points
X ∈ Rm×p from D ∈ Rm×n so that out-of-sample data
Y ∈ Rm×(n−p) locate in the subspaces spanned by X. To this
end, some sampling techniques, such as column selection
method [36] can be used. However, these sampling methods
are inefficient and cannot be applied to large-scale setting.
In this paper, we adopt uniform random sampling approach
of which time cost is only O(1). In addition to computational
efficiency, the uniform random sampling method can perform
comparably with the complex sampling techniques, as shown
in [30] and [33]. After sampling and getting the cluster
membership of in-sample data X, we handle out-of-sample
data Y based on the knowledge learnt from X. The simplest
approach is assigning each yi ∈ Y to the nearest x j ∈ X
in terms of the Euclidean distance. However, such approach
implicitly requires some prior knowledge. For example, the
data set must locate in the Euclidean space otherwise yi would
not be correctly clustered.

In this paper, we compute the sparse representation of Y
over X and assign each yi to the NS based on SRC [23]. For
each out-of-sample data point yi , the following optimization
problem is solved:

min ‖ci‖1 s.t. ‖yi − Xci‖2 < ε (4)

where ε > 0 is the error tolerance, yi denotes an out-of-sample
datum, and X denotes in-sample data.

Once the optimal ci is obtained, yi is assigned to the NS
that has the minimum residual by solving

r j (yi ) = ‖yi − Xδ j (ci )‖2 (5)

f (yi ) = argmin
j

{r j (yi)} (6)

where f (yi ) denotes the assignment of yi , and the nonzero
entries of δ j (ci ) ∈ Rp are the elements in ci associating with
the j th subspace.

Although SRC has achieved a lot of successes in pattern
recognition, some recent works [37] showed that nonsparse
representation can achieve comparable results with less time
cost. Therefore, we perform linear coding scheme instead of
sparse one by solving

min
ci

‖yi − Xci‖2
2 + γ ‖ci‖2

2 (7)

where γ > 0 is a positive real number. The second term is
used to avoid overfitting. Zhang et al. [37] named this method
as collaborative representation-based classification and empir-
ically showed that collaborative representation rather than the
sparse one plays an important role in face recognition. After
getting the coefficient of yi via solving (7), yi is assigned to the
subspace that produces the minimal regularized residuals over
all classes. Note that, (7) is also known as linear regression-
based classification [38] when γ = 0.

Under our framework, SSSC, SLRR, and SLSR are pro-
posed, which make SSC [8], [9], LRR [14], [15], and LSR [19]
feasible to cluster the large-scale and out-of-sample data.
Algorithm 2 summarizes our approaches, and Fig. 2 gives
a toy example to show the effectiveness of our framework.
In the example, we use the NodeXL software (a toolkit of
Office) [39] to obtain the visualization of the similarity graphs
[see Fig. 2(c) and (d)].

B. Error Analysis

In this section, we perform error analysis for the framework.
Lemma 1 shows that the clustering partitions solely based on
in-sample data X ∈ Rm×p will converge to the partitions
based on the whole data set D ∈ Rm×n , when n → ∞
and the sampled data are enough. Based on Lemma 1, we
show that the error bound of our framework only depend on
the grouping errors of out-of-sample data Y ∈ Rm×(n−p).
Moreover, Lemma 2 is the preliminary step to our result.

Lemma 1 [40]: Under Assumption 1, if the first k eigenval-
ues of LD have multiplicity 1, then the same holds for the first
k eigenvalues of LX for sufficiently large p, where LD and LX
denote the Laplacian matrix based on D and X, respectively.
In this case, the first k eigenvalues of LX converge to the
first k eigenvalues of LD, and the corresponding eigenvectors
converge almost surely. The clustering partitions constructed
by normalized spectral clustering from the first k eigenvectors
on finite samples converge almost surely to a limit partition
of the whole data space.

From Lemma 1, we can find that the additive clustering
error induced by our framework comes from the process of
grouping out-of-sample data Y. Thus, the problem becomes
finding the error boundary of the NS classifier [(9) or (10)].
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Fig. 2. Toy example based on SSSC and SLRR for showing the effectiveness of our framework. (a) Given data set D satisfying the sparsity assumption,
where the rank of the data equals two. (b) In-sample data X identifying using unique random sampling method. X and D are i.i.d.. (c) Similarity graph of X
achieved by SSSC. (d) Similarity graph of X achieved by SLRR. (e) Out-of-sample data Y locating in the union of subspaces spanned by X. (f) Projection
coefficients of an out-of-sample data point y ∈ S2, of which only the coefficients over S2 are nonzero. y is grouped into the subspace S2 in terms of our
method, which matches with the ground truth. Under Assumption 1, this example shows that our framework can solve the large-scale and the out-of-sample
problems for representation-based subspace clustering without loss of clustering quality.

Algorithm 2 SSSC, SLRR, and SLSR

Input: A given data set D ∈ Rm×n , the desired number of
clusters k, and the rigid regression parameter γ = 10−6.

1: Randomly select p data points from D as in-sample data
X = (x1, x2, . . . , xp). The remaining samples are used as
out-of-sample data Y = (y1, y2, . . . , yn−p).

2: Perform SSC or LRR or LSR (Algorithm 1) over X to get
the cluster membership of X.

3: Project each out-of-sample data point yi into the union of
the subspaces spanned by X via solving

c∗
i = (XT X + γ I)−1XT yi . (8)

4: Calculate the residuals of yi over the j -th subspace by

r j (yi ) = ‖yi − Xδ j (c∗
i )‖2. (9)

or the regularized residuals of yi over all subspaces via
solving

r j (yi ) = ‖yi − Xδ j (c∗
i )‖2

‖δ j (c∗
i )‖2

. (10)

5: Assign yi to the subspace which has the minimal residual
by

f (yi ) = argmin
j

{r j (yi )}. (11)

Output: The cluster membership of D.

The representation-based NS classifiers have been exten-
sively studied in [27], [37], and [41]; however, the theoretical
analysis on it receives little attention. Wang et al. [42] present
a theoretical explanation to SRC [23] from the view of max-
imizing performance margin. However, the error boundary of
SRC is still unknown. In this paper, we mainly investigate the
performance of SRC [i.e., (9)] from the theoretical perspective.
To the best of our knowledge, this is the first work to analyze
the error bounds for the NS classifiers.

It is challenging to perform error analysis on the NS
classifiers because the active sets (the nonzero set of c) of
different data points are different. In other words, it is difficult
to find an invariant set of support vectors to represent each
subspace. Therefore, the classic margin analysis theory cannot

be directly used to the NS classifiers. To solve this problem,
we propose treating each subspace as a point in a hyperspace.
We have the following definition.

Definition 1: The hyperspace H = {S, y} is a set of
subspaces, in which each subspace Sj corresponds to a
point and the distance between yi and Sj is defined as the
residual r j (yi ).

Based on the above definition, the NS classifier could be
regarded as the nearest neighbor classifier in the hyperspace
(see Fig. 3) so that one can avoid to find the support vectors
for each category. Note that, Hamm and Lee [43] treat each
subspace as a data point in the Grassmann space in which
the distance is defined as the principle angle between the
subspaces. Clearly, the adopted distance metric is the major
difference between the Grassmann space and the above-
defined hyperspace. Indeed, Grassmann space can be regarded
as a special case of the hyperspace, which will be further
discussed at the end of this section.

Lemma 2 (Cover–Hart Inequality [44]): For any distribu-
tion of (Y, g(Y)), the asymptotic error R of the nearest
neighbor classifier is bounded by

R∗ ≤ R ≤ R∗
(

2 − k

k − 1
R∗

)

(12)

where g(Y) is the ground truth for Y, k denotes the number of
subject, and R∗ denotes the Bayes error, which is the lowest
possible error rate for a given class of classifier.

Based on Lemma 2, the problem is equivalent to estimating
the Bayes error in the defined hyperspace. Without loss of
generality, we deal with the case of binary classification,
i.e., k = 2 and f (y) = {−1, 1}.

Lemma 3: The error bound of the NS classifier

f (yi ) = argmin
j

{∥
∥yi − Xδ j

(
c∗

i

)∥
∥
}

(13)

is given by

|1 − max(α−1, α1)|
2 + α−1 + α1

≤ R ≤ min

(

0.5,
2 + 2 min(α−1, α1)

|1 − α−1| + |1 − α1|)
)

(14)

where yi ∈ Rm is the input, c∗
i = �yi , α j = ‖[X] j�‖F ,

[X] j ∈ Rm×p replaces the elements of X with zeros unless
the elements belong to Sj , j = {1, 2} denotes the index
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Fig. 3. (a) Two subspaces S1 and S2 spanned by in-sample data. We denote an out-of-sample data point by yi . θ is the principal angle between S1 and S2,
and r1 and r2 are the residuals associating with S1 and S2. (b) Hyperspace in which S1 and S2 are regarded as two data points. (c) Decision boundary of the
NS classifier in the hyperspace.

of subject, � = (XT X + γ I)−1XT , and the nonzero entries of
δ j (c∗

i ) ∈ Rp are the elements in c∗
i associated with the

subspace Sj .
Proof: Let η(yi ) be the conditional probability that the

prediction for a given yi is 1, i.e., η(yi ) � p( f (yi ) = 1|yi).
In this case, the Bayes error R∗ for yi is given by

R∗(yi ) = min{η(yi), 1 − η(yi )}. (15)

According to (15), it is obvious that 0 ≤ R∗(yi) ≤ 0.5.
We define the probability that yi belongs to the subspace Sj

using the residual r j (yi ) = ‖yi − Xδ j (c∗
i )‖2

η(yi ) = 1 − r1(yi )
∑

r j (yi )
. (16)

Let δ j (c∗
i ) = � j c∗

i , where � j ∈ Rp×p is a diagonal matrix
of which nonzero diagonal entries indicate the columns of X
belonging to the subspace Sj . Since c∗

i = �yi , we have

r j (yi ) = ‖yi − [X] j�yi‖2 (17)

where [X] j = X� j .
Thus, to find the bound of (13), we only need to identify

the lower and upper bounds of r j (yi ).
Step 1: From the reverse triangle inequality of vector norm,

we have

r j (yi ) ≥ |‖yi‖2 − ‖[X] j�yi‖2|. (18)

For any vectors x and y, Cauchy–Schwarz inequality sug-
gests that ‖xT y‖2 ≤ ‖x‖2‖y‖2. Since the Frobenius norm is
subordinate to �2-norm, (18) gives that

r j (yi ) ≥ |‖yi‖2 − ‖[X] j�‖F‖yi‖2|
= |1 − ‖[X] j�‖F |‖yi‖2 (19)

where ‖ · ‖F denotes the Frobenius norm.
Step 2: For any vectors x and y, it must hold that

‖x − y‖2 ≤ ‖x + y‖2 ≤ ‖x‖2 + ‖y‖2. Thus, we have

r j (yi ) = ‖yi − [X] j�yi‖2

≤ ‖yi‖2 + ‖[X] j�yi‖2

≤ ‖yi‖2 + ‖[X] j�‖F‖yi‖2

= (1 + ‖[X] j�‖F )‖yi‖2. (20)

Let α j = ‖[X] j�‖F
2 and combine (16), (19), and (20), we

have
|1 − α−1|

2 + α−1 + α1
≤ η(yi ) ≤ 1 + α−1

|1 − α−1| + |1 − α1| (21)

and
|1 − α1|

2 + α−1 + α1
≤ 1 − η(yi) ≤ 1 + α1

|1 − α−1| + |1 − α1| (22)

respectively.
Clearly, the boundary of the expected Bayes error

R∗ = E{R∗(Y)} is independent of the out-of-sample data Y.
From Lemma 2, the following relations hold:

R∗ ≤ R ≤ 2R∗(1 − R∗) ≤ 2R∗. (23)

Since 0 ≤ R∗ ≤ 0.5, then from (21)–(23), we have

|1 − max(α−1, α1)|
2 + α−1 + α1

≤ R ≤ min

(

0.5,
2 + 2 min(α−1, α1)

|1 − α−1| + |1 − α1|
)

.

(24)

This completes the proof. �
From the above analysis, we can conclude that as follows.
1) The error bound only depends on the structure

of the subspaces spanned by in-sample data under
Assumption 1. Indeed, the structure of the subspaces is
also the unique factor to affect the clustering quality, as
shown in [9] and [15]. Thus, we argue that our frame-
work solves the large-scale and the out-of-sample prob-
lems for the representation-based subspace clustering
methods without introducing new error factors. This is
largely different from the traditional methods [30], [45]
whose performance depends on the sampling rate.

2) Considering XT X is well conditioned, then one
sets γ = 0. α j = [X] j X measures the similarity
between the subspace [X] j and X using their inner
product. More generally (i.e., γ > 0), let θi be the i th
principal angle between [X] j and �, then, it holds that
σi = cos θi , where σi is the i th singular value of [X] j�.
According to the definition of the Frobenius norm,
i.e., α j = (

∑r j
i σ 2

i )1/2, we have α j = ‖[X j ]�‖F =
(
∑r j

i cos2 θi)
1/2 which measures the distance

2In practice, we often normalize α j via α j = α j /
∑

j α j .
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Fig. 4. Real-world example to validate the estimated error bounds. (a) and (c) Classification error and error bound of (13) on 37 subsets of ExYaleB. Each
subset consists of the samples from the first category and another category. (b) and (d) Gap between two different error bounds derived from (22) and (25).

between [X] j and � by their principal angles,
where r j is the rank of [X] j�.

Under Assumption 1, our error analysis method is validate
only when the following two conditions are satisfied when:
1) the data are sampled from two subspaces, i.e., k =2. If k >2,
one may extend our method by recursively transforming the
multiple clusters problem into binary one even though this task
may need massive effort and 2) in-sample data [X] j have been
correctly clustered. Otherwise, one needs identify the error
bound for the whole framework not just for grouping out-of-
sample data. The difficulty of this task is how to identify the
influence of perturbation due to sampling. A possible way to
solve this problem is perturbation theory that has been studied
in quantum mechanics. However, this is beyond the main scope
of this paper.

To validate our theoretical results, we perform experiments
on 37 subsets of extended Yale database B (ExYaleB) [46].
Each subset consists of the samples from the first category
and one of the others. We use 64 (32 samples per subject)
samples for training and the remaining samples for testing.
Moreover, we use principle components analysis (PCA) as the
preprocess step to extract 60 features from training and testing
data. Fig. 4 shows the results from which one can find that as
follows.

1) We successfully estimate the error bounds for 33 and
34 out of 37 subsets in the case of γ = 10−6

and γ = 10−12, respectively. The failure cases may be
attributed to the following reasons. First, the classifica-
tion error (solid line) is calculated based on training data
and testing data, whereas the error bounds (dotted lines)
are estimated only based on training data. When training
data cannot represent the distribution of the whole data
space, the estimated bounds will be incorrect. Second,
our analysis is based on Assumption 1, which may
not be perfectly satisfied by real-world data (e.g., the
ExYaleB) since real-world data are often complex.

2) Fig. 4(a) and (c) shows that a larger γ may reduce the
classification error rate, while increasing the failure rate
of our error analysis method. The reason is that γ is used
to avoid overfitting by adding a value to the diagonal
entries of XT X, which actually affects the structure of
the observed data.

3) Besides (22), we derive another bound for 1 − η(yi )
from (21) instead of (16), (19), and (20)

1 − 1 + α−1

|1 − α−1| + |1 − α1| ≤ 1 − η(yi )

≤ 1 − |1 − α−1|
2 + α−1 + α1

. (25)

Fig. 4(b) and (d) shows the gap between these
two different formulations. Clearly, the gaps are close
to zero.
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TABLE II

COMPUTATIONAL COMPLEXITY OF SSC, LRR, LSR, AND THEIR
SCALABLE VERSIONS PROPOSED IN THIS PAPER. t1 , t2 , AND t3

CORRESPOND TO THE NUMBER OF ITERATIONS OF THE

�1-SOLVER, THE RANK-MINIMIZER, AND THE k-MEANS

CLUSTERING METHOD, RESPECTIVELY

C. Complexity Analysis

Suppose p samples are selected from n data points with
dimensionality of m, SSSC needs O(t1 p2m2 + t1mp3 +
p2 + t2 pk2) to get the cluster membership of in-sample
data when the Homotopy optimizer [47] is used to solve
the �1-minimization problem and the Lanczos eigensolver
is used to compute the eigenvectors of L ∈ Rp×p , where
k is the number of clusters, and t1 and t2 is the number of
iterations of Homotopy optimizer and the k-means algorithm,
respectively. To group out-of-sample data points, SSSC needs
to compute the pseudoinverse of the an m × m matrix and
calculate the linear representation of Y ∈ Rm×(n−p) in
O(pm2 + p3 + (n − p)p2).

Putting everything together, the computational complexity
of SSSC is O(t1mp3 + t2 pk2 + np2) since k, m < p � n.
Clearly, the cost of SSSC is largely less than that of SSC
(O(t1mn3 + t2nk2)). In the similar way, one can get the
computational complexities of SLRR and SLSR. Table II
reports the computational complexities of our methods and
the original algorithms.

IV. EXPERIMENTAL RESULTS

In this section, we carry out some experiments to show the
effectiveness and the efficiency of SSSC, SLRR, and SLSR.

The experiments consist of five parts. Section IV-C inves-
tigates the performance of our methods to the varying para-
meters. Section IV-D reports the results of all the evaluated
algorithms with different sampling rates. Section IV-E com-
pares our methods with the corresponding original algorithms
on three facial data sets. Moreover, we also investigate the
performance of two NS classifiers (9) and (10). Section IV-F
reports the clustering quality of the tested methods on three
medium-sized data sets, including facial images, handwritten
digital data, and documental corpus. Section IV-G shows the
results on three large-scale data sets.

A. Data Sets

We perform experiments on nine real-world data sets,
including facial images, handwritten digital data, news corpus,
and so on. The data sets consist of three small-sized data sets,
three medium-sized data sets, and three large-scale data sets.
We presented some statistics of the data sets in Table III and
a brief description as follows.

TABLE III

DATA SETS USED IN THE EXPERIMENTS. THE NUMBER IN THE
PARENTHESES DENOTES THE RETAINING ENERGY BY PCA

In general, facial images are assumed to be located
in the low-dimensional manifold. In the experiments, we
investigate four popular facial data sets, i.e., AR [48],
ExYaleB [46], Labeled Faces in the Wild-a (LFW) [49], and
multi-PIE (MPIE) [50]. AR includes over 4000 face images
of 126 people (70 male and 56 female). In our implementation,
we used a subset of AR that contains 1400 clean faces
randomly selected from 50 male subjects and 50 female sub-
jects. LFW contains 13 123 images captured from uncontrolled
environment with variations of pose, illumination, expression,
misalignment, and occlusion. We use a subset of the aligned
LFW that includes 143 subjects with no less than 11 samples
per subject. MPIE contains the facial images of 286 individuals
captured in four sessions with simultaneous variations in pose,
expression, and illumination.3 We use all frontal images from
all the sessions. For computational efficiency, we downsize
AR images from 165×120 to 55×40 (1/9), ExYaleB images
from 192 × 168 to 48 × 42 (1/16), and MPIE images from
100×82 to 50×41 (1/4). Moreover, we perform PCA over the
downsized data to retain 98% energy. For each LFW image,
divide and conquer strategy is adopted as did in [51]. In details,
each image is partitioned into 2 × 2 blocks; and then, the
discrimination-enhanced feature in each block is extracted;
after that, all blocks’ features are concatenated to form the
final feature vector.

Reuters-21578 (RCV) [52] is a documental corpus. In the
experiments, the first 785 principle components of RCV
are extracted as the features. We also use three UCI data
sets,4 i.e., PenDigits, Covtype [53], and PokerHand [54].
PokerHand is an unbalanced data set, of which the maximal
class contains 501 209 samples, compared with three samples
of the minimal class. We examine the performance of the
tested algorithms using the original data set (PokerHand-2)
and a subset (PokerHand-1) with 971 329 data points from
three largest subjects.

B. Baseline Algorithms and Evaluation Metrics

Spectral clustering and kernel-based clustering methods
are popular to cope with linearly inseparable data. Some
studies [56] have established the equivalence between them.

3Illuminations of the used MPIE: 0, 1, 3, 4, 6, 7, 8, 11, 13, 14, 16,
17, 18, 19.

4http://archive.ics.uci.edu/ml/datasets.html
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In the experiments, we compare the proposed methods with
four scalable spectral clustering algorithms (KASP [30],
Nyström approximation-based spectral clustering [28], [29],
LSC [31], and SEC [33]) and one scalable kernel-based
clustering approach (AKK [45]). Moreover, we report the
results of the k-means clustering algorithm [57] as a baseline.
Besides our own implementation, we also quote some results
directly from the literature.

We investigate the performance of two variants of
Nyström-based methods and LSC, denoted by Nyström,
Nyström_Orth, LSC_R, and LSC_K. The affinity matrix
of Nyström_Orth is orthogonal, whereas that of Nyström
is not. SEC obtains the results by performing k-means in
the embedding space. All algorithms are implemented in
MATLAB. The used data sets and the codes of our algorithms
can be downloaded at www.machineilab.org/users/pengxi/.

The evaluated algorithms take two approaches to find in-
sample data. In particular, SSSC, SLRR, SLSR, Nyström,
Nyström_Orth, LSC_R, SEC, and AKK identify in-sample
data by performing uniform random sampling method,
whereas KASP and LSC_K adopt the k-means clustering
method. To avoid the disparity in data partitions, we prepar-
tition each data set into two parts: 1) in-sample data and
2) out-of-sample data. After that, we run different algorithms
run over these data partitions.

We measure the clustering quality using accuracy [58] and
normalized mutual information (NMI) [52] between the pro-
duced clusters and the ground truth categories. The accuracy
or NMI of 1 indicates perfect matching with the true subspace
distribution, whereas 0 indicates totally mismatch.

To be consistent with [9] and [15], we tune the parameters
of all the evaluated methods to achieve the highest accuracy.
For SSSC, we adopted the Homotopy optimizer to solve
the �1-minimization problem. The optimizer has two user-
specified parameters, sparsity parameter λ and error toler-
ance parameter δ. We tuned the parameters in the range of
λ = (10−7, 10−6, 10−5) and δ = (10−3, 10−2, 10−1). For
SLRR and SLSR, the value of λ is chosen, as shown in Fig. 5.
Referring to the parameter setting in [29]–[31], [33], and [35],
the parameter τ of KASP and Nyström was set as [0.1, 1]
with an interval of 0.1 and [2, 20] with an interval of 1; the
parameter σ of AKK ranges from [0.1, 1] with an interval
of 0.1; SEC has three user-specified parameters, i.e., the size of
neighborhood r , balanced parameters μ, and γ . We set γ = 1,
μ = [10−9, 10−6, 10−3, 100, 10+3, 10+6, 10+9, 10+12, 10+15],
and r from 2 to 20. Moreover, the same value range of r was
used for KASP and LSC.

Following the common benchmarking procedures, we run
each algorithm five times on each data set and report the
final results by the mean and standard deviation of the accu-
racy (NMI) and the mean of time costs.

C. Influence of Parameters

SSSC uses λ > 0 to control the sparsity of the representation
and ε > 0 to measure the reconstruction errors. SLRR uses
λ > 0 to balance different parts in the objective function and
SLSR utilizes λ > 0 to avoid overfitting. The choice of these
parameters depends on the data distribution.

Fig. 5 shows the results of SSSC, SLRR, and SLSR with
different parameter values. When λ or ε of SSSC is assigned
with a small positive value (from 10−7 to 0.01), it achieves a
good performance. When the parameters are assigned with a
big value, the performance of SSSC is degraded. For SLRR,
while λ ranges from 0.5 to 3.9, its accuracy and NMI are
almost unchanged. The SLSR performs worse with increas-
ing λ. This verifies our claim that a small λ is preferable to
the clean data set.

D. Influence of In-Sample Data Size

To study the influences of in-sample data size p, we
perform experiments on ExYaleB by setting p = 38 × p̃,
where p̃ denotes the sample size per subject and it increases
from 6 to 54 with an interval of 6. Fig. 6 reports the result,
from which, we have the following observations.

1) Except SEC and AKK, all the scalable clustering meth-
ods outperform the k-means method in accuracy and
NMI. SSSC, SLRR, and SLSR are superior to the other
investigated approaches by a considerable performance
margin. For example, SLRR achieves 15.1% gain in
accuracy and 13.1% gain in NMI over the best baseline
algorithm (Nyström) when p = 228.

2) In most cases, all the algorithms except Nyström and
Nyström_Orth perform better with increasing p. The
possible reason for this result is that Nyström and
Nyström_Orth speed up the clustering process by reduc-
ing the size of affinity matrix rather than data size.

3) The accuracy of SLRR decreased when p increased
from 912 to 1368. The result seems inconsistent with
the common sense that more data tend to bring better
performance. This result can be attributed to the char-
acteristic of SLRR, i.e., SLRR is based on LRR that
incorporates the relations among different subspaces.
Increasing p would result in more intersections among
different subspaces and weaken the discrimination of
model. To obtain an optimal p, some model selection
methods, such as M-estimator [59] could be used.

E. Clustering on Small Scale Data

We carry out the experiments on three facial data sets:
1) AR; 2) ExYaleB; and 3) LFW. Moreover, we investigate the
performance of our methods when the classifiers (9) and (10)
are used to group out-of-sample data. In the experiments, we
fix ε = 10−3 for SSSC and SSC.

From Table IV, we can find that as follows.
1) Our framework successfully makes SSC, LRR, and LSR

feasible to group out-of-sample data with acceptable loss
in clustering quality. For example, the accuracy of SSC
on AR data set is 9.73% higher than that of SSSC,
whereas the time cost of SSC is about three times that
of SSSC. With the increase in data size, SSC, LRR, and
LSR will fail to get the results, whereas SSSC, SLRR,
and SLSR can get the results with an acceptable time
cost.

2) Compared with the other scalable methods
(i.e., KASP, Nyström, Nyström_Orth, LSC_R, LSC_K,
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Fig. 5. Influence of the parameters. A half of images (1212) are chosen from ExYaleB as in-sample data and the rest are used as out-of-sample data.
The x-coordinate denotes the values of the parameters, and the y-coordinate corresponds to the clustering quality (accuracy and NMI). (a) Influences of the
parameter λ of SSSC, where δ = 10−3. (b) Influences of the parameter δ of SSSC, where λ = 10−3. (c) Influences of the parameter λ of SLRR. (d) Influences
of the parameter λ of SLSR.

Fig. 6. Clustering quality of the competing algorithms on the ExYaleB. The x-coordinate denotes in-sample data size and the y-coordinate denotes the
clustering quality (accuracy or NMI). (a) Accuracy versus the varying in-sample data size. (b) NMI versus the varying in-sample data size.

SEC, and AKK), SSSC, SLRR, and SLSR find an
elegant balance between the clustering quality and the
time costs. Although SSSC, SLRR, and SLSR are not
the fastest, they achieve the best results.

3) SLRR performs better than SSSC in the tests.
The possible reason is that the LRR could cap-
ture the structure among different categories, whereas

sparse representation cannot, as pointed out in [21].
Moreover, the regularized residual-based classifier (10)
perform slightly better than the nonregularized residual-
based classification method (9).

4) Nie et al. [33] investigated the performance of SEC on
ExYaleB. The highest accuracy of SEC is ∼42.8% in
their tests, compared with 22.02% in our experiment.
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TABLE IV

PERFORMANCE COMPARISON (MEAN ± STD) AMONG DIFFERENT ALGORITHMS OVER THREE POPULAR FACIAL DATA SETS

TABLE V

PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS ON THREE MEDIUM-SIZED DATA SETS, i.e., MPIE, RCV, AND PENDIGITS

The potential reason for the performance difference
is that they adopted spectral rotation to get the clus-
ter membership, whereas we use the k-means clus-
tering method. Note that, the best result (42.8%)
of SEC reported in their work is remarkably lower
than the results achieved by SSSC (55.5 ± 1.26),
SLRR (68.9 ± 1.19), and SLSR (58.9 ± 1.45).

F. Clustering on Medium Scale Data

This section investigates the performance of our methods
on MPIE (facial images), RCV (documental corpus), and
PenDigits (handwritten digital data). The tuned ε of SSSC are
10−4, 0.1, and 0.01, respectively. Table V reports the clustering
quality and the time cost (seconds) of the tested methods, from
which we can find the following.

1) Our methods outperform the other scalable methods.
For example, SLRR achieves a 10.4% gain in accu-
racy on MPIE over the best competing algorithm

(Nyström_Orth), and the gains achieved by SSSC and
SLSR are ∼7.3% and 8.6%, respectively.

2) The running time is a weakness of SSSC, SLRR, and
SLSR even though they are more efficient than the origi-
nal approaches. We have found that most of the time was
consumed to handle in-sample data. For example, SSSC
takes 840.6 s to cluster in-sample data and 220.63 s to
handle out-of-sample data in the case of RCV. Since in-
sample data clustering is an offline process, we assume
that our algorithms are more competitive in large-scale
setting, as shown in Section IV-G.

3) In most cases, LSC_K outperforms LSC_R with a little
improvement, which verifies the claim [60] that the
complex sampling techniques actually cannot produce
a better result than the random sampling method.

4) Chen and Cai [31] also investigated the accuracy
of LSC_R, LSC_K, Nyström_Orth, and KASP on
the PenDigits data set. The highest accuracies of
these algorithms are 79%, 79.3%, 73.9%, and 72.5%,
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TABLE VI

PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS OVER THREE LARGE-SCALE DATA SETS, i.e., COVTYPE (n = 581 012),
POKERHAND-1 (n = 971 329), AND POKERHAND-2 (n = 1 000 000)

which is close to the results achieved in our experiments
(i.e., 77.7%, 79.9%, 67.3%, and 73.1%).

G. Clustering on Large-Scale Data

Table VI reports the performance of our algorithms on three
large-scale data sets. For each data set, 1000 samples are
selected as in-sample data, and the remaining samples are used
as out-of-sample data. We assign ε = 0.2 to SSSC on Covtype
and PokerHand-2 and fix ε = 0.1 in the case of PokerHand-1.
We have the following observations.

1) SSSC, SLRR, and SLSR outperform the other
approaches in all the tests. For example, the accuracy of
SSSC is at least 4.7% higher than the other tested meth-
ods on Covtype. On PokerHand-1 and PokerHand-2,
the gains are 3.7% and 2.1%, respectively.

2) The NMI achieved by all the tested methods is close
to 0. This shows that the metric NMI failed to distinct
the performance of the evaluated algorithms.

3) In [31], the highest accuracies on Covtype achieved
by LSC_R, LSC_K, Nyström_Orth, and KASP are
24.7%, 25.5%, 22.3%, and 22.4%, respectively. In our
experiments, the accuracies of these four algorithms are
22%, 22%, 23.3%, and 23.9%, respectively. The possible
reason may attribute to the subtle engineering details,
e.g., the in-sample and out-of-sample data partitions.

4) With the increase in data size, our methods demonstrate
a good balance between the running time and the cluster-
ing quality. Moreover, the used memory of our methods
only depends on in-sample data size, which makes our
methods are very competitive in large-scale setting.

In summary, we can conclude that the three new methods
outperform the competing algorithms in all the tests. In par-
ticular, SSSC is more advantageous on large-scale data sets
(e.g., Covtype and PokerHand), while SLRR outperforms on
high-dimensional data clustering problems (e.g., facial images
and documental corpus). SLSR can achieve comparable clus-
tering performance with SSSC and SLRR, but has higher
computational efficiency than the latter.

V. CONCLUSION

In this paper, we proposed a general framework to solve
the large-scale and the out-of-sample clustering problems for

the representation-based subspace clustering. Under our frame-
work, we further presented three scalable methods, i.e., SSSC,
SLRR, and SLSR, which largely reduce the computational
complexity of the original methods while preserving a good
performance. We proved that the performance of our method
only depends on the latent structure of the data set and is
independent of the sampling rate. Moreover, we proposed a
novel method to analyze the error bounds of the NS classifier
in terms of binary case and applied it to SRC. Both the
theoretical and experimental results show the effectiveness of
our methods in large-scale clustering.

This paper may be extended or improved from the follow-
ing aspects. First, the proposed framework is based on the
assumption that the out-of-sample data can be represented by
in-sample data. Hence, the method may fail to handle the out-
of-sample datum when it comes from a new subspace that
does not emerge from in-sample data. It is worth to explore
how to overcome this problem in the future. Second, the
proposed error analysis method only considers the binary case
(i.e., k = 2). It is more practical but challenging to explore
the error analysis method with respect to k > 2.
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