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a b s t r a c t

Multiview clustering has gained increasing attention recently due to its ability to deal with multiple
sources (views) data and explore complementary information between different views. Among various
methods, multiview subspace clustering methods provide encouraging performance. They mainly
integrate the multiview information in the space where the data points lie. Hence, their performance
may be deteriorated because of noises existing in each individual view or inconsistent between
heterogeneous features. For multiview clustering, the basic premise is that there exists a shared
partition among all views. Therefore, the natural space for multiview clustering should be all partitions.
Orthogonal to existing methods, we propose to fuse multiview information in partition level following
two intuitive assumptions: (i) each partition is a perturbation of the consensus clustering; (ii) the
partition that is close to the consensus clustering should be assigned a large weight. Finally, we propose
a unified multiview subspace clustering model which incorporates the graph learning from each view,
the generation of basic partitions, and the fusion of consensus partition. These three components
are seamlessly integrated and can be iteratively boosted by each other towards an overall optimal
solution. Experiments on four benchmark datasets demonstrate the efficacy of our approach against
the state-of-the-art techniques.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Classic clustering methods (Chen et al., 2018; Jain, 2010; Kang,
Pan, Hoi and Xu, 2019; Kang, Xu, Wang, Zhu and Xu, 2019;
Ng, Jordan, Weiss, et al., 2002; Yang, Shen, Huang, Shen, & Li,
2017) aim to identify underlying group structure in single view
data. However, real-world data are often generated from multiple
sources (views) (Li, Shao, & Fu, 2018; Sun, Liu, & Mao, 2019;
Tang et al., 2018). For instance, documents can have different
languages; news can be represented by a combination of texts,
images, and videos; an image/video can be described by different
visual descriptors such as SIFT, LBP, HOG, and GIST. To conduct
clustering with multiview data, the naive way is to treat them
as the single-view data by concatenating multiview features di-
rectly (Kumar & Daumé, 2011; Liu & Fu, 2018). However, this
approach fails to consider view divergence that might prevent

∗ Corresponding author.
∗∗ Correspondence to: B1-201, Main Building, No.2006, Xiyuan Ave, West
Hi-Tech Zone, 611731 Chengdu, Sichuan, P.R.China.

E-mail addresses: cwy@uestc.edu.cn (W. Chen), zlxu@uestc.edu.cn (Z. Xu).

various views forming an ideal solution. Consequently, the key
problem for multiview clustering is how to effectively integrate
the complementary information from different views.

In recent years, numerous multiview clustering techniques
have been developed (Chao, Sun, & Bi, 2017). They can be roughly
divided into three main types. First, Matrix Factorization (MF)
based approaches. In this framework, a common indicator matrix
is sought. Many researchers extended the nonnegative MF (NMF)
to multiview settings (Huang, Kang, & Xu, 2020; Liu, Wang, Gao
and Han, 2013). The classic K-means based multiview clustering
methods also belong to this group (Cai, Nie, & Huang, 2013; Chen,
Xu, Ye, & Huang, 2013; Huang, Kang, & Xu, 2018). Some kernel-
based multiview clustering methods have also been proposed (Liu
et al., 2019; Tzortzis & Likas, 2012; Zhou et al., 2019). Second,
spectral clustering based approaches (Kang et al., 2019). These
methods assume that all the views share the same or similar
eigenvector matrix. The representative methods in this category
are co-training and co-regularization based multiview cluster-
ing (Kumar & Daumé, 2011; Kumar, Rai, & Daume, 2011). Third,
subspace clustering based methods. Subspace clustering (Chen,
Ye, Xu, & Huang, 2012; Huang, Kang, & Xu, 2019; Kang et al.,
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Fig. 1. A flow diagram of our proposed method. We dynamically construct a graph for each view at each iteration, perform spectral clustering to obtain the partition
for each view, and integrate the basic partitions to generate the final clustering result.

2019; Kang, Peng, & Cheng, 2017; Peng et al., 2018; Vidal, 2011)
simultaneously divides data into multiple subspaces and finds
a low-dimensional subspace fitting each group of data points.
In order to take advantage of the complementary information
from multiple views, varieties of multiview subspace clustering
methods have been proposed and achieved great success (Gao,
Nie, Li, & Huang, 2015; Zhang, Hu, Fu, Zhu, & Cao, 2017).

Most multiview subspace clustering methods learn a sample
affinity graph matrix for each view by deploying features of
different views, then a consensus graph Z is built (Gao et al., 2015;
Wang et al., 2016; Zhang et al., 2017). Some other approaches
directly learn a common graph matrix Z (Abavisani & Patel, 2018).
Then the spectral clustering algorithm is implemented on the
graph Laplacian constructed from Z to obtain the final clustering
result. Therefore, a two-step routine is often adopted. Recently,
another class of graph-based multiview clustering methods has
also shown impressive performance (Nie, Cai, & Li, 2017; Nie, Li,
Li, et al., 2016; Zhan, Zhang, Guan, & Wang, 2017). These methods
learn a common affinity graph or fuse different views to one
graph based on adaptive neighbors. To be specific, each data point
xi is connected by xj with a probability sij, and such probability
can be seen as the similarity between them.

Despite the significant progress in multiview clustering
brought by the above automatic graph learning based approaches,
yet the challenge of fully making use of the richness and com-
plementarity of multiview information leaves space for further
improving the clustering results. Orthogonally to achieving the
multiview consensus graph, in this paper, we manage to fuse
multiview information in partition level based on two intuitive
assumptions and reach the consensus clustering. In other words,
we integrate multiview information through finding a shared
clustering from multiple clustering results of views.

The move from the perspective of the data space to the natural
space for clustering, i.e., the space of all partitions, this change
in paradigm accompanies a number of advantages. First, the
interaction between individual partitions from each view and
the final result is incorporated. Second, it inherits the robustness
and empirical good performance of ensemble learning. Third,
integrating multiview information in partition level rather than
graph construction stage enhances the representation ability of
multiview clustering methods. For current methods, once the
common graph is constructed, the final result is fixed. However,
some views might contain an irrelevant or noisy representa-
tion that can severely damage the consensus graph and lead to
degraded performance. More often than not, the similarities be-
tween samples may be manifested differently by different views.
For example, two video clips that present the same content but in
different languages, their audio content will be different. For our

method, we directly fuse multiple partitions into an integrated
one since the premise for multiview clustering is that there exists
a shared cluster structure.

Beyond fusing basic partitions, we further combine it with
graph construction. Consequently, a unified framework which
integrates graph construction, spectral clustering, and consensus
clustering is established. Based on an iterative optimization strat-
egy, the high-quality consensus clustering is employed to guide
the graph construction and the updating of basic partitions, which
later contributes to a new consensus partition. Fig. 1 gives the
illustration of our method. In summary, the main contributions
of this work are two-fold:

• We propose to fuse multiview information in the parti-
tion level. A novel fusion mechanism is developed to find
the consensus partition and assign weights to each basic
partition.

• This paper presents a unified multiview clustering frame-
work which simultaneously learns a graph for each view,
a partition for each view, and a consensus partition. By
leveraging the inherent interactions between these three
subtasks, they can be boosted by each other. Extensive ex-
periments on benchmark datasets validate the superiority of
our model.

2. Related work

2.1. Notation summary

Throughout this paper, matrices are denoted as capital letters
and vectors are written as lower case letters. For an arbitrary
matrix A ∈ Rm×n, Ai,: and A:,j denote the ith row and jth column of
A, respectively. The ℓ2-norm of vector x is represented by ∥x∥ =√
xT · x, where T is the transpose operator. Tr(A) is the trace of A.

The Frobenius norm of A is defined as ∥A∥F =

√∑m
i=1

∑n
j=1 A

2
ij.

A ≥ 0 indicates all entries of A are nonnegative. I is the identity
matrix with a proper size.

2.2. Subspace Clustering (SC)

Given a dataset X = [x1, x2, . . . , xn] ∈ Rm×n, SC can learn
the affinity graph matrix Z by the so-called ‘‘self-expressiveness’’
property, which states that each data point can be represented
as a linear combination of other points. More precisely, for ∀xi, it
can be reconstructed as follows

xi =

∑
j

xjzij s.t. zij ≥ 0, (1)
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where reconstruction coefficient zij behaves like the similarity
between xi and xj.

Based on Eq. (1), a series of SC methods have been developed
under the framework

min
Z

∥X − XZ∥
2
F + αR(Z) s.t. Z ≥ 0, (2)

where α > 0 is the trade-off parameter and R(Z) is some regular-
ization function, which varies in different algorithms (Elhamifar
& Vidal, 2013; Li, Liu, Tang, & Lu, 2015; Liu et al., 2013; Peng, Lu,
Yi and Tang, 2018; Zhang et al., 2019). In this paper, we simply
use the Frobenius norm. Once Z is obtained, spectral clustering is
performed to obtain the final clustering results, i.e.,

min
F ,FT F=I

Tr(F T LF ), (3)

where graph Laplacian L = D − Z with diagonal matrix D
defined as dii =

∑
j zij, F ∈ Rn×c is the cluster indicator matrix,

and c is number of clusters. Constructing a powerful graph that
can effectively depict the intrinsic connection of data points is
the critical step to make the SC algorithms achieve promising
performance.

2.3. Multiview subspace clustering

Let X = [X1
; X2

; · · · ; Xv
] ∈ Rd×N represent the multiview data

matrix which consists of v different views, where X s
∈ Rds×N

denote the sth view data matrix and ds is the dimension of the
data in the sth view. Cao, Zhang, Fu, Liu, and Zhang (2015) and
Gao et al. (2015) propose to learn a graph on individual view by
solving

min
Zs

∑
s

∥X s
− X sZ s

∥
2
F + αf (Z s), (4)

where f denotes some regularization term of Z s. Then the sim-
plest way, i.e., taking the average of individual Z s, is utilized to
achieve consensus graph Z (Cao et al., 2015; Wang et al., 2016).
This approach does not take full advantage of complementary
information.

Other methods just consider the consistency graph of all views
and their objective function can be written as Abavisani and Patel
(2018) and Zhuge et al. (2017)

min
Z

∑
s

∥X s
− X sZ∥

2
F + αR(Z), (5)

One limitation of this approach is that one common Z is hard to
preserve the flexible local manifold structures for all views (Wang
et al., 2016).

We can observe that the above approaches seek to fuse multi-
view information in the data space by construction a shared graph
Z . We argue that fusion in this early stage might fail to obtain
the optimal clustering result since some information might get
lost during this process. For instance, many real-world data are
often contaminated due to noise or outliers, which leads to a poor
quality graph. Consequently, degraded clustering performance is
generated. Multiview clustering searches for the clusters agreeing
across all the views. Hence it makes more sense to fuse multiview
information in partition level since each partition will capture
the intrinsic cluster structure. Moreover, it is easier to find an
agreement in partition space than the data space since the more
informative partitions are deployed. Besides, when the number
of views increases, there is little common space shared by all
the views in the data space. For our method, if some partition is
not suitable, its contribution can be easily controlled by assign-
ing a small weight, so as to prevent it from adversely affecting
consensus clustering.

2.4. Multiview Ensemble Clustering (MVEC)

Recently, Tao et al. proposed MVEC (Tao, Liu, Li, Ding, &
Fu, 2017) method. To deal with multiview data, MVEC adopts
an ensemble way. It generates basic partitions for each view
and integrates them to reach an agreement. It differs from our
method in several aspects. First, a different approach is used
to produce the basic partitions. For each view, a number of
partitions are generated by the random parameter selection strat-
egy. In contrast, only one partition exists for each view in our
method. Second, a low-rank and sparse decomposition technique
is deployed to explore the connection among views and detect
the noises in each view. We develop a straightforward way to
integrate the basic partitions in this paper. Third, the generation
of basic partitions and fusion of basic partitions are conducted
in a two-step approach. On the contrary, our model is a unified
framework. Thus, the high-quality consensus partition is itera-
tively used to guide the generation of basic partitions, which
later contributes to a new consensus partition. In summary, our
method is totally different from MVEC. The experimental re-
sults also demonstrate the superiority of our proposed technique
compared to MVEC.

3. Proposed method

First, we need to obtain the partition for each view. Unlike
many existing subspace clustering methods using a two-step
approach, we combine graph construction and spectral clustering.
Based on Eq. (4), we have

min
Zs,Fs

∑
s

∥X s
− X sZ s

∥
2
F + α∥Z s

∥
2
F + βTr(F T

s L
sFs)

s.t. F T
s Fs = I, Z s

≥ 0,
(6)

where Fs ∈ RN×c is the partition result for view s. With these
basic partitions Fs, how do we integrate them to find a consensus
clustering? To address this key problem, we propose two intuitive
assumptions: (i) each partition is a perturbation of the consensus
clustering; (ii) the partition that is close to the consensus cluster-
ing should be assigned a large weight. Next, we need to express
them in mathematical language.

Foremost, we need to define distances between partitions.
Different from classification or regression, the cluster indicator
matrix for each view is not unique. In general, for each unique
clustering with c clusters, there are c! (c factorial) equivalent
representations. Therefore, it is not correct to directly apply the
Euclidean distance to measure the difference between differ-
ent Fs. To circumvent this obstacle, we can use FsF T

s instead. In
essence, it represents the similarities among all data points in s
view. It is easy to understand that it is invariant with respect to c!
permutations. Then we can measure the disagreements between
partitions in terms of similarities among samples. If two similarity
matrices are close, their corresponding clustering results should
be similar. Based on these, in this paper, we design the following
partitions fusion objective function

min
Y∈RN×c ,Y T Y=I

∑
s

ws∥YY T
− FsF T

s ∥
2
F , (7)

where Y is the consensus cluster indicator matrix and ws is
the weight for view s. As a result, the consensus clustering re-
sides in some partitions’ neighborhood. To some extend, un-
certainties or errors are allowed in individual partitions. This
enhances the representation ability of the consensus clustering.
The smaller the squared distance between a partition and the
consensus clustering Y is, the better the partition is, the larger the
weight is.
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To avoid solving ws and introducing additive hyperparameters
for ws, we set ws to be stationary at the beginning and update
it correspondingly after we update Y according to the following
equation

ws =
1

2∥YY T − FsF T
s ∥F

. (8)

In fact, Eq. (8) is nothing but the inverse distance weighting.
Eventually, by combining Eqs. (6) and (7), our proposed Par-

tition level Multiview Subspace Clustering (PMSC) can be formu-
lated as

min
Zs,Fs,Y

∑
s

∥X s
− X sZ s

∥
2
F + α∥Z s

∥
2
F  

graph construction

+ βTr(F T
s L

sFs)  
spectral clustering

+ γws∥YY T
− FsF T

s ∥
2
F  

partition fusion

s.t. F T
s Fs = I, Z s

≥ 0, Y TY = I.

(9)

Note that Ls is a function of Z s, which is taken cared of in
Eq. (11). The properties of our proposed formulation equation (9)
are summarized as follows.

• Orthogonal to existing multiview clustering methods, our
proposed method integrates multiview information in parti-
tion level. This late fusion is robust to variations in different
representations since each view is assumed to share the
unique cluster structure.

• From the objective function equation (9), we can see that
it seamlessly integrates the graph learning, spectral cluster-
ing, and partition fusion. Based on alternating optimization
strategy, the high-quality consensus partition is used to
guide the graph construction and spectral clustering. This
joint learning strategy facilitates to obtain the optimal final
solution. The diagram of our method is shown in Fig. 1.

• Eq. (9) is a kind of end-to-end learning. With the original
data X s as input, it finally outputs the cluster label matrix
Y .

4. Optimization

To solve the constrained problem in Eq. (9), we design an
alternative algorithm. Z s, F s, Y can be solved effectively by fixing
the others.

Z s-subproblem: By fixing F s and Y to constant, we update Z s

by solving

min
Zs

∑
s

∥X s
− X sZ s

∥
2
F + α∥Z s

∥
2
F + βTr(F T

s L
sFs). (10)

Note that Zs are independent for each view, hence we can solve
them separately. Moreover, Tr(F T LF ) =

∑
ij

1
2∥Fi,: − Fj,:∥2zij. For

convenience, we write Eq. (10) in equivalent vector form and
ignore the subscript/superscript tentatively. We get

min
Z:,i

∥X:,i − XZ:,i∥
2
+ αZT

:,iZ:,i +
β

2
hT
i Z:,i, (11)

where hi ∈ RN×1 is a vector with the jth element as hij =

∥Fi,: − Fj,:∥2. Taking the derivative with respect to Z:,i and setting
it to zero, we have

Z:,i = (XTX + αI)−1(XTX:,i −
β

4
hi). (12)

Note that once parameter α is given, the inverse is fixed in every
iteration. Therefore, we only calculate it once.

Fs-subproblem: After dropping all other unrelated terms with
respect to Fs, we obtain

min
Fs,FTs Fs=I

∑
s

βTr(F T
s L

sFs) + γws∥YY T
− FsF T

s ∥
2
F . (13)

Again, Fs can be solved separately for each view, so we ignore
superscript/subscript. It yields

min
F ,FT F=I

Tr(F TMF ) (14)

whereM = βL−2γwYY T
+γwI . It is well-known that the optimal

solution is the c eigenvectors ofM corresponding to the c smallest
eigenvalues.

Y -subproblem: When Fs and Zs are fixed, we have

min
Y ,Y T Y=I

Tr(Y TPY ), (15)

where P =
∑

s ws(I − 2FsF T
s ). The solution is the eigenvectors

corresponding to the smallest c eigenvalues of P .
We repeat the updates iteratively and stop it if the maximum

iteration number 200 is reached or the relative change of Y is
less than 10−3. In summary, the entire algorithm of solving (9)
is outlined in Algorithm 1. Due to the involvement of matrix
inversion and singular value decomposition (SVD), the complexity
of our algorithm is bounded by O(N3) in general. This is similar
to several state-of-the-art methods, e.g., Chen et al. (2018), Gao
et al. (2015), Kumar and Daumé (2011), Kumar et al. (2011) and
Nie et al. (2016). After obtaining Y , we run K-means to compute
final discrete indicator matrix.

Algorithm 1: Optimization for PMSC

Input: Multiview matrix X1, · · · , Xv , cluster number c ,
parameters α, β , γ .
Output: Z s, Fs, Y .
Initialize: Random matrix Fs, ws = 1/v.
REPEAT
1: for view 1 to v do
2: Update each column of Z according to (12);
3: Solve the subproblem (14);
4: end for
5: Solve the subproblem (15);
6: Update ws via (8) for each view.
UNTIL stopping criterion is met

5. Experiments

5.1. Datasets

For a fair comparison, we manage to use the same datasets
that are widely used in comparison methods, e.g., Gao et al.
(2015), Kumar and Daumé (2011), Kumar et al. (2011), Nie et al.
(2016), Tao et al. (2017) and Xu, Tao, and Xu (2015). The statistics
of these datasets are summarized in Table 1.

BBC dataset consists of 4 views by splitting each document
into four related segments. Each segment contains at least 200
characters and is constituted by consecutive textual paragraphs.

Reuters1 is a textual dataset written in five different lan-
guages. We use the subset that is written in English, while the
other 4 views are its corresponding translations in 4 different
languages.

Handwritten numerals (HW) dataset consists of 2000 images
for 0–9 digit classes, 200 samples for each class. There are six
kinds of features that are available.

Caltech1012 is an object recognition dataset consisting of
images. Following previous work (Gao et al., 2015), the widely
used 20 classes (Caltech20) ‘‘Brain, Camera, Face, Ferry, Rhino,

1 http://archive.ics.uci.edu/ml/datasets.html.
2 http://www.vision.caltech.edu/ImageDatasets/Caltech101/.

http://archive.ics.uci.edu/ml/datasets.html
http://www.vision.caltech.edu/ImageDatasets/Caltech101/
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Table 1
Description of the datasets (# features).
View BBC Reuters HW Caltech20

1 Segment1 (4659) English (2000) Profile correlations (216) Gabor (48)
2 Segment2 (4633) French (2000) Fourier coefficients (76) Wavelet moments (40)
3 Segment3 (4665) German (2000) Karhunen coefficients (64) CENTRIST (254)
4 Segment4 (4684) Spanish (2000) Morphological (6) HOG (1984)
5 – Italian (2000) Pixel averages (240) GIST (512)
6 – – Zernike moments (47) LBP (928)

Data points 145 1200 2000 2386
Classes 2 6 10 20
Type Text Text Image Image

Pagoda, Snoopy, Wrench, Stapler, Leopards, Hedgehog, Garfield,
Binocular, Motorbikes, Windsor Chair, Car-Side, Dolla-Bill, Stop-
Sign, Yin-yang, and Water-Lilly’’ are used. Six kinds of features
are extracted and used in the experiment.

5.2. Experiment setup

To evaluate the performance of the presented method, we
compare it with several state-of-the-art multiview clustering
methods.

• The classic K-means clustering algorithm (KM): It is included
as a baseline method. The concatenated features with equal
weight are used. In other words, we assume that all the
views are of the same importance to the clustering task.

• Co-trained multiview spectral clustering (Co-train) (Kumar
& Daumé, 2011): This method learns multiple Laplacian
eigenspace via a co-training approach over each individual
one.

• Co-regularized multiview spectral clustering (Co-reg) (Ku-
mar et al., 2011): This method utilizes a co-regularization
term to make the partitions in different views agree with
each other.

• Multiview kernel K-means clustering (MVKKM) (Tzortzis &
Likas, 2012): In MVKKM, views are expressed in terms of
given kernel matrices and these kernels are integrated by
assigning a weight for each kernel.

• Robust multiview K-means clustering (RMKMC) (Cai et al.,
2013): This method integrates data’s multiple representa-
tions via structured sparsity-inducing norm to make it more
robust to outliers.

• Multiview clustering with self-paced learning (MSPL) (Xu
et al., 2015): MSPL learns the multiview model from easy to
complex examples/views. A probabilistic smoother weight-
ing scheme is proposed to define easy and complex.

• Autoweighted multiple graph learning (AMGL) for multi-
view clustering (Nie et al., 2016): AMGL is a multiview
extension of spectral clustering. A weight is automatically
learned for each graph which is constructed based on adap-
tive neighbors.

• Multiview ensemble clustering (MVEC) (Tao et al., 2017):
MVEC generates basic partitions for each view and inte-
grates them to reach an agreement. A low-rank and sparse
decomposition technique is deployed to explore the connec-
tion among views and detect the noises in each view.

• Multiview subspace clustering (MVSC) (Gao et al., 2015):
This method simultaneously learns multiple graphs and a
shared cluster structure, the latter ensures the consistence
among different views.

• Diversity-induced multiview subspace clustering (DiMSC)
(Cao et al., 2015): This method learns multiple graphs and
their average is taken as the input for spectral cluster-
ing. The Hilbert Schmidt Independence Criterion (HSIC) is
utilized as diversity regularizer term to explore the comple-
mentary information of multiple views.

In addition, we perform normalization on the data so that all
the values of each view are in the range [−1, 1] according to Cai
et al. (2013). We find the best combination of penalty parameters
by grid search and tune them to achieve the best performance for
all methods.

5.3. Evaluation metrics

To quantitatively assess our algorithm’s performance on the
clustering task, we use the popular measures, i.e., accuracy (Acc),
Purity, and normalized mutual information (NMI) (Kang, Wen,
Chen and Xu, 2019; Peng, Kang, Cai and Cheng, 2018).

Acc discovers the one-to-one relationship between clusters
and classes. Let li and l̂i be the clustering result and the ground
truth cluster label of xi, respectively. Then the Acc is defined by

Acc =

∑n
i=1 δ(l̂i,map(li))

n
,

where n is the total number of samples, delta function δ(x, y)
equals one if and only if x = y and zero otherwise, and map(·) is
the best permutation mapping function that maps each cluster in-
dex to a true class label based on Kuhn–Munkres algorithm (Chen,
Donoho, & Saunders, 2001).

The second evaluation metric that we adopt is the purity,
which evaluates the extent to which the most common category
in each cluster (Zhao & Karypis, 2001). It is computed as follows:

Purity =

c∑
i=1

ni

n
P(Ci), P(Si) =

1
ni
maxj(n

j
i),

where ni is the number of points in cluster Ci and nj
i represents

the total number of points that the ith input group is assigned to
the jth category. There are c categories in total. It is easy to see
that a larger Purity indicated better clustering performance.

The NMI measures the quality of clustering. Given two sets of
clusters L and L̂,

NMI(L, L̂) =

∑
l∈L,l̂∈L̂ p(l, l̂)log(

p(l,l̂)
p(l)p(l̂)

)

max(H(L),H(L̂))
,

where p(l) and p(l̂) represent the marginal probability distribution
functions of L and L̂, respectively, induced from the joint distri-
bution p(l, l̂) of L and L̂. H(·) is the entropy function. The greater
NMI means the better clustering performance.

Each method is repeated 10 times and the mean and stan-
dard deviation (std) values are reported. Tables 2–5 show the
clustering results on the four benchmark datasets, respectively.
In most cases, our proposed PMSC method achieves the best
clustering performance in comparison with other state-of-the-art
multiview clustering methods. In specific, we have the following
observations.

1. Our proposed PMSC method always performs better than
the current state-of-the-art multiview subspace clustering
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Fig. 2. The visualization of basic partitions Fs and the consensus partition Y . (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

methods MVSC and DiMSC in terms of ACC and NMI. This
is mainly due to that our approach integrates the multi-
view information in the partition level, which is completely
different from MVSC and DiMSC since they perform early
fusion. In some cases, PMSC reports a lower purity than
MVSC and DiMSC.

2. Compared to ensemble clustering method MVEC, our ap-
proach shows better accuracy. The improvement is consid-
erable in BBC, Reuters, and HW datasets, i.e., 7%, 9%, 17%,
respectively. In terms of NMI, our method also owns a big
advantage on the above three datasets. This demonstrates
the efficacy of our partition fusion strategy.

3. With respect to AMGL, another type of graph construction
based multiview spectral clustering method, our developed

PMSC also wins by a very large margin in most cases. For
example, on BBC data, the improvement is about 6%, 26%,
5% on ACC, NMI, Purity, respectively; on Reuters, they are
21%, 15%, 40%.

4. Multiview methods often perform better than KM, which
merely concatenates all features from different views. This
confirms that multiview techniques can effectively ex-
plore supplementary information from multiple views to
improve the clustering task. However, in some datasets,
e.g., BBC and Reuters, multiview extensions of K-means
(i.e., MVKKM and RMKMC) even produce worse results
than KM. This phenomenon has been observed by some
previous researchers (Yang et al., 2013; Zhang, Fu, Liu, Liu,
& Cao, 2015).
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Fig. 3. Sensitivity analysis of parameters for our method over Caltech20 dataset evaluated with clustering accuracy.

Table 2
Clustering performance on BBC (%).
Method ACC Purity NMI

KM 91.59(0.31) 90.24(0.24) 14.10(1.30)
Co-train 91.27(0.00) 87.57(1.20) 3.50(0.00)
Co-reg 90.90(0.76) 90.78(1.40) 6.80(0.30)
MVKKM 84.00(6.13) 89.01(2.35) 8.30(0.64)
RMKMC 91.31(0.62) 89.67(1.80) 8.00(0.74)
MSPL 80.41(13.24) 90.41(0.00) 10.11(9.48)
AMGL 89.66(0.00) 91.00(0.67) 11.2(0.00)
DiMSC 93.79(0.00) 94.62(0.00) 13.71(0.00)
MVEC 88.97(0.00) 94.48(0.00) 1.03(0.00)
MVSC 91.03(0.00) 95.62(0.00) 0.41(0.00)
PMSC 95.86(0.00) 95.86(0.00) 37.42(0.00)

Table 3
Clustering performance on reuters (%).
Method ACC Purity NMI

KM 24.57(4.52) 25.48(4.37) 11.78(5.01)
Co-train 17.00(0.10) 17.15(0.07) 9.40(0.11)
Co-reg 20.62(1.24) 20.95(1.32) 2.33(0.34)
MVKKM 20.48(3.82) 20.65(3.83) 5.77(3.66)
RMKMC 22.42(6.54) 22.55(6.57) 7.21(7.29)
MSPL 24.87(5.98) 28.12(4.97) 11.50(4.28)
AMGL 18.35(0.15) 20.08(0.54) 6.38(1.00)
DiMSC 39.60(1.32) 46.28(1.74) 18.17(0.64)
MVEC 31.08(0.00) 82.48(0.09) 11.92(0.01)
MVSC 25.08(0.39) 80.11(5.50) 6.60(0.68)
PMSC 40.18(2.32) 60.07(3.56) 21.83(1.75)

5. For Co-train and Co-reg, which are both based on spectral
clustering, our method outperforms them on all datasets in
terms of ACC and Purity. For NMI, there is one exception.
On Caltech20, our NMI score is 48.25, which is lower than
50.90 of Co-train.

In summary, the proposed method PMSC obtains highly compet-
itive performance with state-of-the-art techniques. This verifies
the effectiveness of partition level multiview information fusion.

5.4. Experimental results

To better illustrate how our method works, we display the
visualized partitions over BBC dataset in Fig. 2. Note that there
are only two classes for BBC dataset, so the dimension of F is
145 × 2. We can observe that Fs share a similar cluster pattern,
which is consistent with the underlying assumption that multiple
views admit the same cluster structure. Thus, we can achieve
consensus clustering easier than approaches implemented in fea-
ture space, where features or graphs from different views often
show differently. However, we notice that different partitions

Table 4
Clustering performance on HW (%).

Method ACC Purity NMI

KM 54.46(5.60) 58.64(2.92) 58.25(0.85)
Co-train 71.42(4.21) 74.86(2.62) 71.06(1.07)
Co-reg 83.38(7.35) 85.17(4.98) 77.97(2.92)
MVKKM 58.81(3.50) 62.40(3.40) 62.91(2.60)
RMKMC 63.04(3.36) 65.74(2.16) 66.57(1.18)
MSPL 68.00(1.12) 68.99(1.17) 70.42(1.95)
AMGL 73.61(10.29) 76.48(8.54) 81.86(4.53)
DiMSC 42.72(1.94) 45.65(0.97) 37.89(0.87)
MVEC 66.93(5.51) 79.95(1.73) 70.69(2.55)
MVSC 79.60(2.54) 87.19(1.48) 73.89(1.93)
PMSC 83.81(6.76) 87.34(3.07) 82.05(2.93)

Table 5
Clustering performance on Caltech20 (%).

Method ACC Purity NMI

KM 31.40(1.30) 60.06(0.38) 37.05(0.41)
Co-train 38.94(2.10) 69.77(1.42) 50.90(1.12)
Co-reg 34.38(0.79) 65.59(1.03) 46.42(0.96)
MVKKM 44.87(2.49) 72.84(0.72) 54.06(1.23)
RMKMC 33.35(1.47) 64.22(0.89) 42.44(0.67)
MSPL 33.49(0.00) 34.24(0.00) 35.80(0.00)
AMGL 52.28(2.91) 67.60(2.31) 56.61(1.93)
DiMSC 33.89(1.45) 37.78(1.35) 39.33(1.16)
MVEC 52.19(4.25) 60.36(3.21) 59.78(1.10)
MVSC 44.96(2.06) 50.87(2.35) 45.36(0.88)
PMSC 52.63(0.89) 72.93(2.57) 48.35(2.82)

have different orientations. Therefore, we cannot directly mea-
sure the differences among partitions based on the Frobenius
norm, e.g., ∥Y − F1∥2

F . Instead, Eq. (7) is proposed.
In addition, we can also see that some partitions can distin-

guish the classes pretty good. For F3 and F4, three blue points
are in the same line of red points. This is worse in F1 and F2.
Consequently, our method can find a good clustering as shown
in Fig. 2e. Therefore, the proposed partition fusion method is
validated.

Furthermore, we take BBC dataset as an example to show the
dynamics of weight in Fig. 4. At the beginning, our initialization
ws = 1/v in Algorithm 1 treats each view equally. After the
1st iteration, their values become 0.2514, 0.3334, 0.3345, 0.3390,
respectively. Though w1 has the smallest value, it eventually
ranks the 2nd. This demonstrates that our algorithm is robust to
initialization. In addition, we show the convergence curves of the
proposed algorithm on each dataset in Fig. 5. One can see that
they converge very fast.
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Fig. 4. The evolution of view weights on BBC data.

5.5. Parameter sensitivity analysis

There are three parameters α, β , and γ in our model (9). Grid
searching is adopted for all datasets. We show their effects on
accuracy using the Caltech20 dataset in Fig. 3. We can see that

the results are satisfying and relatively stable for a wide range of
parameters.

5.6. Robustness study

Orthogonal to existing methods, we integrate multiview infor-
mation in partition space, which can alleviate the impact of noise
to some extent. Unlike data representation which can be easily
corrupted by noise, partition space is more robust. Since all views
admit the same clustering pattern, we can easily find a good
partition from all partitions. To demonstrate this, we construct a
new dataset by choosing 24 images for each class from Caltech20.
We add different levels of Gaussian noise. Some clean images and
corruptions are shown in Fig. 6.

Then we evaluate our algorithm’s performance on noisy im-
ages. We compare PMSC with AMGL, which provides comparable
performance on Caltech20 data as demonstrated in Table 5. The
clustering results are presented in Tables 6 and 7. We can notice
that our proposed method consistently outperforms AMGL by a
large margin. This demonstrates that our method is robust to
noise due to the adoption of partition space.

6. Conclusion

In this paper, we propose a unified model for multiview sub-
space clustering. Different from existing methods, we seek to find

Fig. 5. The convergence curves of objective function (9) on each dataset.

Table 6
Clustering performance on Caltech20 (%).
Noise Mean = 0, Variance = 0.05 Mean = 0, Variance = 0.1

Method ACC Purity NMI ACC Purity NMI

AMGL 27.21(1.76) 30.35(1.91) 30.74(1.34) 21.71(1.46) 23.31(1.20) 22.60(1.21)
PMSC 33.14(1.20) 46.54(2.56) 31.49(1.18) 28.65(1.77) 39.81(2.35) 27.89(2.03)
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Fig. 6. Sample images of Caltech20. The last three columns display some noisy images.

Table 7
Clustering performance on Caltech20 (%).
Noise Mean = 0.1, Variance = 0.01 Mean = 0.3, Variance = 0.01

Method ACC Purity NMI ACC Purity NMI

AMGL 43.04(3.56) 47.27(2.83) 47.97(2.37) 41.85(1.84) 45.85(1.34) 47.16(1.68)
PMSC 46.52(2.23) 59.10(1.74) 48.90(2.08) 50.71(2.32) 59.69(2.09) 52.69(2.55)

a consensus clustering from multiple partitions. That is to say,
we obtain a partition for each view and then find a combined
clustering with better quality. Compared to directly combine
multiview information in the feature space, this partition level
fusion approach is in a better position to employ the hidden
cluster structure information. When one of the basic partition
realizes the ground truth, the consensus clustering can be easily
found. Eventually, the graph construction, the generation of basic
partitions, and fusion of consensus clustering are implemented
in an interactive way, i.e., they are iteratively updated in a mu-
tually promotional way. Real-world data experiments show the
effectiveness of our proposed method.

Acknowledgments

This paper was in part supported by Grants from the Nat-
ural Science Foundation of China (Nos. 61806045, 61572111,
61772115, 61806135, 61625204, and 61836006) and Fundamen-
tal Research Funds for the Central Universities of China (Nos.
ZYGX2017KYQD177, YJ201949, 2018SCUH0070, and A030170237
01012).

References

Abavisani, M., & Patel, V. M. (2018). Multimodal sparse and low-rank subspace
clustering. Information Fusion, 39, 168–177.

Cai, X., Nie, F., & Huang, H. (2013). Multi-view k-means clustering on big data.
In IJCAI (pp. 2598–2604).

Cao, X., Zhang, C., Fu, H., Liu, S., & Zhang, H. Diversity-induced multi-view
subspace clustering. In Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 586–594).

Chao, G., Sun, S., & Bi, J. (2017). A survey on multi-view clustering. arXiv preprint
arXiv:1712.06246.

Chen, S. S., Donoho, D. L., & Saunders, M. A. (2001). Atomic decomposition by
basis pursuit. SIAM Review, 43(1), 129–159.

Chen, X., Hong, W. H., Nie, F. N., He, D., Yang, M., & Huang, J. Z. (2018).
Directly minimizing normalized cut for large scale data. In Proceedings of
the ACM SIGKDD international conference on knowledge discovery and data
mining, KDD-18 (pp. 1206–1215).

Chen, X., Xu, X., Ye, Y., & Huang, J. Z. (2013). TW-k-means: Automated two-level
variable weighting clustering algorithm for multi-view data. IEEE Transactions
on Knowledge and Data Engineering, 25(4), 932–944.

Chen, X., Ye, Y., Xu, X., & Huang, J. Z. (2012). A feature group weighting method
for subspace clustering of high-dimensional data. Pattern Recognition, 45(1),
434–446.

Elhamifar, E., & Vidal, R. (2013). Sparse subspace clustering: Algorithm, the-
ory, and applications. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(11), 2765–2781.

http://refhub.elsevier.com/S0893-6080(19)30332-6/sb1
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb1
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb1
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb2
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb2
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb2
http://arxiv.org/abs/1712.06246
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb5
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb5
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb5
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb7
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb7
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb7
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb7
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb7
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb8
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb8
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb8
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb8
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb8
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb9
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb9
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb9
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb9
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb9


288 Z. Kang, X. Zhao, C. Peng et al. / Neural Networks 122 (2020) 279–288

Gao, H., Nie, F., Li, X., & Huang, H. (2015). Multi-view subspace cluster-
ing. In Proceedings of the IEEE international conference on computer vision
(pp. 4238–4246).

Huang, S., Kang, Z., & Xu, Z. (2018). Self-weighted multi-view clustering with
soft capped norm. Knowledge-Based Systems, 158, 1–8.

Huang, S., Kang, Z., & Xu, Z. (2019). Auto-weighted multi-view clustering via
deep matrix decomposition. Pattern Recognition, 107015.

Huang, S., Kang, Z., & Xu, Z. (2020). Auto-weighted multi-view clustering via
deep matrix decomposition. Pattern Recognition, 97, 107015.

Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition
Letters, 31(8), 651–666.

Kang, Z., Guo, Z., Huang, S., Wang, S., Chen, W., Su, Y., et al. (2019). Multiple
partitions aligned clustering. In IJCAI (pp. 2701–2707).

Kang, Z., Pan, H., Hoi, S. C. H., & Xu, Z. (2019). Robust graph learning from noisy
data. IEEE Transactions on Cybernetics, 1–11.

Kang, Z., Peng, C., & Cheng, Q. (2017). Kernel-driven similarity learning.
Neurocomputing, 267, 210–219.

Kang, Z., Shi, G., Shi, Huang, S., Chen, W., Pu, X., et al. (2019). Multi-graph fusion
for multi-view spectral clustering. Knowledge-Based Systems.

Kang, Z., Wen, L., Chen, W., & Xu, Z. (2019). Low-rank kernel learning for
graph-based clustering. Knowledge-Based Systems, 163, 510–517.

Kang, Z., Xu, H., Wang, B., Zhu, H., & Xu, Z. (2019). Clustering with similarity
preserving. Neurocomputing, 365, 211–218.

Kumar, A., & Daumé, H. A co-training approach for multi-view spectral clustering.
In Proceedings of the 28th international conference on machine learning
(ICML-11) (pp. 393–400).

Kumar, A., Rai, P., & Daume, H. (2011). Co-regularized multi-view spec-
tral clustering. In Advances in neural information processing systems
(pp. 1413–1421).

Li, Z., Liu, J., Tang, J., & Lu, H. (2015). Robust structured subspace learning for data
representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
37(10), 2085–2098.

Li, S., Shao, M., & Fu, Y. (2018). Multi-view low-rank analysis with applications to
outlier detection. ACM Transactions on Knowledge Discovery from Data (TKDD),
12(3), 32.

Liu, H., & Fu, Y. (2018). Consensus guided multi-view clustering. ACM Transactions
on Knowledge Discovery from Data (TKDD), 12(4), 42.

Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., & Ma, Y. (2013). Robust recovery of subspace
structures by low-rank representation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(1), 171–184.

Liu, J., Wang, C., Gao, J., & Han, J. (2013). Multi-view clustering via joint non-
negative matrix factorization. In Proceedings of the 2013 SIAM international
conference on data mining (pp. 252–260). SIAM.

Liu, X., Zhu, X., Li, M., Wang, L., Zhu, E., Liu, T., et al. (2019). Multiple kernel
k-means with incomplete kernels. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

Ng, A. Y., Jordan, M. I., Weiss, Y., et al. (2002). On spectral clustering: Analysis and
an algorithm. Advances in Neural Information Processing Systems, 2, 849–856.

Nie, F., Cai, G., & Li, X. (2017). Multi-view clustering and semi-supervised
classification with adaptive neighbours. In AAAI (pp. 2408–2414).

Nie, F., Li, J., Li, X., et al. (2016). Parameter-free auto-weighted multiple
graph learning: A framework for multiview clustering and semi-supervised
classification. In IJCAI (pp. 1881–1887).

Peng, X., Feng, J., Xiao, S., Yau, W.-Y., Zhou, J. T., & Yang, S. (2018). Structured
autoencoders for subspace clustering. IEEE Transactions on Image Processing,
27(10), 5076–5086.

Peng, C., Kang, Z., Cai, S., & Cheng, Q. (2018). Integrate and conquer: Double-
sided two-dimensional k-means via integrating of projection and manifold
construction. ACM Transactions on Intelligent Systems and Technology (TIST),
9(5), 57.

Peng, X., Lu, C., Yi, Z., & Tang, H. (2018). Connections between nuclear-norm and
frobenius-norm-based representations. IEEE Transactions on Neural Networks
and Learning Systems, 29(1), 218–224.

Sun, S., Liu, Y., & Mao, L. (2019). Multi-view learning for visual violence recog-
nition with maximum entropy discrimination and deep features. Information
Fusion, 50, 43–53.

Tang, C., Chen, J., Liu, X., Li, M., Wang, P., Wang, M., et al. (2018). Consensus
learning guided multi-view unsupervised feature selection. Knowledge-Based
Systems, 160, 49–60.

Tao, Z., Liu, H., Li, S., Ding, Z., & Fu, Y. (2017). From ensemble clustering to
multi-view clustering. In Proc. of the twenty-sixth int. joint conf. on artificial
intelligence (IJCAI) (pp. 2843–2849).

Tzortzis, G., & Likas, A. (2012). Kernel-based weighted multi-view clustering. In
Data mining (ICDM), 2012 IEEE 12th international conference on (pp. 675–684).
IEEE.

Vidal, R. (2011). Subspace clustering. IEEE Signal Processing Magazine, 28(2),
52–68.

Wang, Y., Zhang, W., Wu, L., Lin, X., Fang, M., & Pan, S. (2016). Iterative views
agreement: An iterative low-rank based structured optimization method to
multi-view spectral clustering. arXiv preprint arXiv:1608.05560.

Xu, C., Tao, D., & Xu, C. (2015). Multi-view self-paced learning for clustering. In
IJCAI (pp. 3974–3980).

Yang, Y., Shen, F., Huang, Z., Shen, H. T., & Li, X. (2017). Discrete nonnegative
spectral clustering. IEEE Transactions on Knowledge and Data Engineering,
29(9), 1834–1845.

Yang, Y., Song, J., Huang, Z., Ma, Z., Sebe, N., & Hauptmann, A. G. (2013).
Multi-feature fusion via hierarchical regression for multimedia analysis. IEEE
Transactions on Multimedia, 15(3), 572–581.

Zhan, K., Zhang, C., Guan, J., & Wang, J. (2017). Graph learning for multiview
clustering. IEEE Transactions on Cybernetics, (99), 1–9.

Zhang, C., Fu, H., Liu, S., Liu, G., & Cao, X. Low-rank tensor constrained multiview
subspace clustering. In Proceedings of the IEEE international conference on
computer vision (pp. 1582–1590).

Zhang, C., Hu, Q., Fu, H., Zhu, P., & Cao, X. (2017). Latent multi-view subspace
clustering. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 4279–4287).

Zhang, Z., Ren, J., Li, S., Hong, R., Zha, Z., & Wang, M. (2019). Robust subspace
discovery by block-diagonal adaptive locality-constrained representation. In
Proceedings of the 27th ACM international conference on multimedia.

Zhao, Y., & Karypis, G. (2001). Criterion functions for document clustering:
Experiments and analysis.

Zhou, S., Zhu, E., Liu, X., Zheng, T., Liu, Q., Xia, J., et al. (2019). Subspace
segmentation-based robust multiple kernel clustering. Information Fusion.

Zhuge, W., Hou, C., Jiao, Y., Yue, J., Tao, H., & Yi, D. (2017). Robust auto-weighted
multi-view subspace clustering with common subspace representation
matrix. PloS One, 12(5), e0176769.

http://refhub.elsevier.com/S0893-6080(19)30332-6/sb11
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb11
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb11
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb12
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb12
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb12
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb13
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb13
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb13
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb14
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb14
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb14
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb15
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb15
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb15
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb16
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb16
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb16
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb17
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb17
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb17
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb18
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb18
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb18
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb19
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb19
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb19
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb20
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb20
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb20
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb22
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb22
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb22
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb22
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb22
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb23
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb23
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb23
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb23
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb23
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb24
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb24
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb24
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb24
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb24
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb25
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb25
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb25
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb26
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb26
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb26
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb26
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb26
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb27
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb27
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb27
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb27
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb27
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb28
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb28
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb28
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb28
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb28
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb29
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb29
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb29
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb30
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb30
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb30
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb31
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb31
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb31
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb31
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb31
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb32
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb32
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb32
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb32
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb32
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb33
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb33
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb33
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb33
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb33
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb33
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb33
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb34
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb34
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb34
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb34
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb34
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb35
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb35
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb35
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb35
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb35
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb36
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb36
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb36
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb36
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb36
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb38
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb38
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb38
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb38
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb38
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb39
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb39
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb39
http://arxiv.org/abs/1608.05560
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb41
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb41
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb41
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb42
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb42
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb42
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb42
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb42
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb43
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb43
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb43
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb43
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb43
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb44
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb44
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb44
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb48
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb48
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb48
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb49
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb49
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb49
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb50
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb50
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb50
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb50
http://refhub.elsevier.com/S0893-6080(19)30332-6/sb50

	Partition level multiview subspace clustering
	Introduction
	Related work
	Notation summary
	Subspace Clustering (SC)
	Multiview subspace clustering
	Multiview Ensemble Clustering (MVEC)

	Proposed method
	Optimization
	Experiments
	Datasets
	Experiment setup
	Evaluation metrics
	Experimental results
	Parameter sensitivity analysis
	Robustness study

	Conclusion
	Acknowledgments
	References


