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Video Anomaly Detection With Sparse Coding
Inspired Deep Neural Networks

Weixin Luo?, Wen Liu?, Dongze Lian, Jinhui Tang, Lixin Duan, Xi Peng, and Shenghua Gao

Abstract—This paper presents an anomaly detection method that is based on a sparse coding inspired Deep Neural Networks (DNN).
Specifically, in light of the success of sparse coding based anomaly detection, we propose a Temporally-coherent Sparse Coding
(TSC), where a temporally-coherent term is used to preserve the similarity between two similar frames. The optimization of sparse
coefficients in TSC with the Sequential Iterative Soft-Thresholding Algorithm (SIATA) is equivalent to a special stacked Recurrent
Neural Networks (sRNN) architecture. Further, to reduce the computational cost in alternatively updating the dictionary and sparse
coefficients in TSC optimization and to alleviate hyperparameters selection in TSC, we stack one more layer on top of the TSC-inspired
sRNN to reconstruct the inputs, and arrive at an sRNN-AE. We further improve sRNN-AE in the following aspects: i) rather than using a
predefined similarity measurement between two frames, we propose to learn a data-dependent similarity measurement between
neighboring frames in sRNN-AE to make it more suitable for anomaly detection; ii) to reduce computational costs in the inference
stage, we reduce the depth of the sRNN in sRNN-AE and, consequently, our framework achieves real-time anomaly detection; iii) to
improve computational efficiency, we conduct temporal pooling over the appearance features of several consecutive frames for
summarizing information temporally, then we feed appearance features and temporally summarized features into a separate sRNN-AE
for more robust anomaly detection. To facilitate anomaly detection evaluation, we also build a large-scale anomaly detection dataset
which is even larger than the summation of all existing datasets for anomaly detection in terms of both the volume of data and the
diversity of scenes. Extensive experiments on both a toy dataset under controlled settings and real datasets demonstrate that our
method significantly outperforms existing methods, which validates the effectiveness of our sRNN-AE method for anomaly detection.
Codes and data have been released at https://github.com/StevenLiuWen/sRNN TSC Anomaly Detection.

Index Terms—Sparse Coding, Anomaly Detection, Stacked Recurrent Neural Networks.
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1 INTRODUCTION

A NOMALY detection is an important task in computer vision,
and it has many potential applications in video surveil-

lance, activity recognition and scene understanding, etc. However,
anomaly detection is also an extremely challenging task.1 Because
of the unbounded and rare nature of anomalies, it is extremely
expensive and sometimes infeasible to collect different types of
abnormal events. For example, spontaneous car combustion is
rare, and it is difficult to collect or simulate this kind of anomaly.
Consequently, it seems infeasible to formulate anomaly detection
with a binary classification framework because if some types of
abnormal events are not included in the training set, the test phase
may misclassify these kinds of anomalies. Further, considering
the rare and unbounded nature of anomaly detection as well as to
simplify the data collection procedure, only normal data is given
in the training set in the common setup, with anomaly detection
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1. This paper focuses on frame-level anomaly detection, and such frame-
level prediction can meet the requirement of video surveillance.

here aiming at discovering abnormal events in the test set.
To tackle anomaly detection when only normal data is given,

an intuitive approach is to model the distribution of regular
patterns, where data that does not agree with the distribution
of regular patterns are classified as irregular. Recently, with the
success of Convolutional Neural Networks, people leverage deep
Convolutional Auto-Encoder [1] or Convolutional LSTM Auto-
Encoder [2] to model the normal distribution in the training set,
and irregular patterns will be distinguished by large reconstruction
errors. These deep learning solutions are very efficient in the
testing phase, but they rely on some delicately designed deep
neural network architectures, and the principles for network design
are still not well formulated. In addition, dictionary learning based
approaches [3] [4], especially sparse coding based approaches,
have been proposed and have shown their expertise in tackling
such a task. Specifically, sparse coding based approaches encode
regular patterns with a dictionary. Regular patterns can be linearly
reconstructed by the entries in the dictionary with small recon-
struction errors. In contrast, irregular patterns would lead to large
reconstruction errors. However, the dictionary learning procedure
during training is very time consuming for sparse coding based
anomaly detection, and the optimization of sparse coefficients
in the test phase is also very time-consuming, which restricts
the deployment of these methods in real applications. Further,
frame-wise sparse coding does not consider the coherence among
neighboring frames for normal events.

Recently, Wisdom et al. [5] have shown that actually the
optimization of sparse coding with Iterative Soft-Thresholding
Algorithm (ISTA) is essentially a special type of deep neural
network. Motivated by the success of sparse coding based anomaly
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detection and the interpretation of ISTA with deep learning,
we propose a sparse coding inspired Deep Neural Networks
(DNN) framework for anomaly detection. Specifically, we add
a temporally-coherent term into the sparse coding objective that
utilizes the similarity between neighboring frames to weight the
distance between their corresponding sparse coefficients. Then
we arrive at a Temporally-coherent Sparse Coding (TSC). The
optimization of sparse coefficients in TSC with Sequence Iterative
Soft-Thresholding Algorithm (SISTA) [5] in essence is a special
type of stacked Recurrent Neural Networks (sRNN). To reduce
the expensive computational costs in alternatively optimizing
the dictionary and sparse coefficients, as well as to avoid the
hyperparameters selection in TSC, we propose stacking one more
layer on top of the TSC counterpart sRNN, arriving at an sRNN
Auto-Encoder (sRNN-AE). With this sRNN-AE, the dictionary,
the reconstruction coefficients and all of the hyperparameters can
be automatically learned. In addition, the testing phase for each
video frame is equivalent to a forward pass in this sRNN-AE.
Further, to reduce computational costs in the test phase, we reduce
the depth of the sRNN in sRNN-AE. Such a shallow architecture
not only alleviates the gradient vanishing/exploding effect in the
optimization of the DNN, thus improving the performance of
sRNN-AE, but also improves efficiency in the test phase. Another
advantage of sRNN-AE is that rather than using a predefined
similarity measurement between neighboring frames, motivated
by the kernel trick [6], we propose mapping the features of
two frames to a new feature space with multi-layer perception
and using the inner product of the new features as a similarity
measurement. Experiments validate the effectiveness of such a
similarity learning module in sRNN-AE.

Our sRNN-AE works as a classifier and its architecture is
inspired by the ISTA based optimization of sparse coding. Be-
sides a good classifier, a discriminative video representation is
also desired for the good performance of anomaly detection. In
real scenes, anomalies can be caused by unseen objects, namely
appearance, unusual moving patterns, namely motion. Therefore,
we propose extracting both appearance and motion features as
the input of sRNN-AE. Inspired by the success of two-stream
CNNs for video representation in activity recognition [7], in this
paper, we propose learning a separate sRNN-AE with different
features for anomaly detection. In two-stream CNNs, the stream
corresponding to motion takes optical flow as input, where the
calculation of optical flow is time-consuming. Considering that the
difference among neighboring frames also characterizes the mo-
tion of objects [8], we propose conducting temporal pooling over
appearance features of several consecutive frames for summariz-
ing information temporally. Such a strategy would reduce the costs
in calculating optical flow and motion features extraction with
optical flow based CNN. Experiments validate the effectiveness
and efficiency of this type of feature-aggregation based temporal
representation.

It is desirable to learn an anomaly detection model which
works well under multiple scenes. However, almost all existing
datasets only contain videos captured by one camera with a fixed
view, so these datasets lack scene diversity. Further, a large-scale
dataset is in high demand for the evaluation of deep learning
based anomaly detection approaches. In this paper, we build a new
large-scale anomaly detection dataset. We set up multiple cameras
with different view angles to capture real events in the teaching,
research and living areas of our campus, and we name our new
dataset the ShanghaiTech Campus anomaly detection dataset. To

the best of our knowledge, our dataset is the largest one in terms
of volume of frames, scene diversity, as well as viewing angles.

Contribution: We summarize our contributions of this work
as follows: i) We design a sparse coding inspired sRNN-AE
framework for anomaly detection, which alleviates the hyper-
parameters selection and dictionary training in TSC. Further,
similarity can also be automatically learned in sRNN-AE; ii)we
propose an appearance features based temporal characterization
strategy. Then we propose learning a separate sRNN-AE for both
spatial and temporal features for anomaly detection; iii) we collect
a large-scale anomaly detection dataset, which greatly facilitates
the evaluation of anomaly detection algorithms.

This paper is an extension of our previous work [9]. We extend
the framework in the following aspects: i) motivated by the kernel
trick, we introduce a similarity learning module in sRNN-AE,
which demonstrates its effectiveness over a predefined similarity
for anomaly detection; ii) we propose an appearance features
based temporal characterization strategy, and propose learning
a separate sRNN-AE using both spatial and temporal features
for anomaly detection; iii) more details of our implementation
are given, and more experiments are conducted for performance
evaluation.

The rest of this paper is organized as follows: In Section 2,
we introduce work related to anomaly detection. In Section 3,
we first briefly revisit sparse coding based anomaly detection and
introduce the TSC formulation. Based on the optimization of TSC,
we arrive at an sRNN based framework for anomaly detection.
In Section 4, extensive experiments under both controlled and
uncontrolled settings are conducted to validate the effectiveness
of our work. We also evaluate the different components of our
sRNN-AE algorithm with an ablation study in this section. We
conclude our work in Section 5.

2 RELATED WORK

Most existing work on anomaly detection can be categorized into
two steps: i) Feature extraction; One can leverage hand-crafted or
deep learning based features. ii) Normal distribution learning; In
this phase, a distribution is learned over the normal data of the
training set, so that abnormal data of the test set will have a large
reconstruction error over this distribution.

Hand Craft Feature and Distribution Modeling. Early
work utilizes low-level trajectory features to represent regular
patterns [10]. However, these methods are not robust in complex
or crowded scenes. In order to solve this problem, spatial-temporal
features, such as histograms of oriented gradients (HOG) [11]
and histograms of oriented flows (HOF) [12] have been widely
leveraged. Based on these spatial-temporal features, Zhang et
al.. [13] model the normal patterns with a Markov random field
(MRF). Adam et al. [14] fit the regular histograms of optical flow
in local regions with an exponential distribution. To represent
local optical flow patterns, Kim and Grauman [15] utilize a
mixture of probabilistic PCA model. Leyva et al. [16] propose
an online framework by leveraging Gaussian Mixture Models,
Markov Chains, and Bag-of-Words for anomaly detection.

Sparse Coding Based Anomaly Prediction. Dictionary learn-
ing based approaches are widely used in anomaly detection [4]
[3] [17] [18]. A fundamental assumption of these methods is that
any feature can be linearly represented as a linear combination
of the bases of a dictionary that encodes regular patterns of the
training set. [4] [3] [17] use the reconstruction error to determine
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whether a frame is abnormal or not. Ren et al. [18] point out that
reconstruction errors, such as those in least squares, do not take
a sparsity term into consideration, while in fact, they do help to
improve anomaly detection accuracy. To avoid this, Ren et al. [18]
propose two solutions, i.e. maximum coordinate (MC) and non-
zero concentration (NC), to detect anomalies. However, sparse
reconstruction based methods are usually time-consuming during
the optimization of sparse coefficients. To solve this problem,
Jia et al. [3] propose to discard the sparse constraint and learn
multiple dictionaries to encode the patches at multiple scales,
which inevitably leads to additional costs in the training phase.

Deep Learning Based Anomaly Detection. Deep learning
approaches have demonstrated their success for image classifi-
cation [19] [20], object detection [21] [22], as well as anomaly
detection [1] [23]. In [1], Hasan et al.propose a 2D convolutional
Auto-Encoder (Conv-AE) by stacking frames in channels to model
regular frames. Such a 2D convolution, however, cannot character-
ize spatial and temporal information very well, as shown in activity
recognition [24]. In light of the capabilities of convolutional neural
networks (ConvNets) to represent spatial features and the strong
capabilities of recurrent neural networks (RNN) and long short
term memory (LSTM) to model temporal patterns, [25] [26] [2]
make attempts to leverage a convolutional LSTM Auto-Encoder
(ConvLSTM-AE) to characterize both appearance and motion
information. Ryota et al. [27] combine both detection and the
recounting of abnormal events. Sabokrou et al. [28] leverage a pre-
trained Fully Convolutional Neural Networks (FCNs) to training
an unsupervised FCN for anomaly detection. Sultani et al. [29]
apply multiple instance learning (MIL) for anomaly detection,
but in their setting both normal and abnormal videos are equally
provided in the training set, and in many scenarios the acquisition
of different types of abnormal data is very expensive and even
infeasible.

Even though Auto-Encoder based methods have shown some
good performance for anomaly detection, they may be prone to
learn an identity mapping, and fail to detect the abnormal events.
In order to prevent learning a trivial solution, a generative model
can be utilized to model a normal distribution. In [30], Thomas
et al.apply a GAN [31] model to detect anomalies in medical
images. More specifically, they first train a generator from the
latent space to the image space, by fooling a discriminator. Once
the generator and discriminator are trained using the training set
only with normal data, all of their parameters are fixed. Further,
for a query sample, they leverage gradient descent to search for the
optimal latent variable to reconstruct the sample. Normal samples
would cause a low reconstruction residual error while abnormal
ones would cause a higher value. In addition, pixel errors between
the query and reconstruction indicate lesions.

Although RNNs or LSTMs are powerful and effective for
processing sequential data, they are actually ”black boxes” whose
internal structures are hard to interpret. Recently, Scott et al. [5]
show that a special type of RNN actually enforces a sparse
constraint on features. Inspired by the work of sparse coding based
anomaly detection and interpretable RNNs, we propose a TSC and
its sRNN-AE counterpart for anomaly detection.

Methods without a Training Phase. Except for those meth-
ods mentioned above, there are also others methods without a
training phase for anomaly detection. In [32], Giomo et al.propose
the direct estimation of the discriminability of frames with refer-
ences to the context in the test video, without any training set.
In addition to that, a similar setting is adopted in [33], which

trains a binary classifier to distinguish between two consecutive
video sequences while removing the most discriminant features at
each step. The higher training accuracy rates of the intermediately
obtained classifiers represent abnormal events.

3 OUR APPROACH

In this section, we first revisit sparse coding based anomaly
detection. To model the coherence between neighboring frames
for normal events, Temporally-coherent Sparse Coding (TSC) is
introduced, then we show that the optimization of TSC with
the Sequential Iterative Soft-Thresholding Algorithm (SISTA) is
equivalent to a special type of stacked Recurrent Neural Networks
(sRNN). Further, to reduce the time cost in training and inference
stage as well as alleviate the hyperparameter selection in TSC,
we reduce the number of layers in sRNN and stack one more
layer on top of sRNN to reconstruct the input, which arrives at
an sRNN-AE. We also propose to learn similarity with a multi-
layer perceptron within the sRNN-AE framework, which further
improves anomaly detection accuracy. Finally, we will show how
to combine spatial and temporal features for real time anomaly
detection.

3.1 A Revisit of Sparse Coding Based Anomaly Detec-
tion

Sparse coding based anomaly detection aims to learn a dictionary
to encode all normal events with small reconstruction errors [4]
[3]. Mathematically, we denote a feature corresponding to a
normal input as xi, then it is desirable that xi can be linearly re-
constructed by a dictionary A with a small reconstruction error εi,
i.e., xi = Aαi + εi. Under the assumption that εi ∼ N (0, σ2I),
and αi ∼ Laplace(0, 2σ2/λ), we arrive at the following objective
function:

min
A,αi

1

2
‖xi −Aαi‖22 + λ‖αi‖1 (1)

In this formulation, the first term corresponds to a reconstruction
error, where it measures how well the feature can be reconstructed
by the dictionary. The second term corresponds to a sparsity term
while λ balances the sparsity and the reconstruction error. A larger
λ corresponds to an even more sparse solution. To avoid trivial
solutions to the problem, usually an L2 norm constraint is imposed
on each column of A: ‖A(:, j)‖ ≤ 1. By alternatively optimizing
the dictionary and the sparse coefficients on the training set [4],
a dictionary can be learned that encodes all normal patterns. In
the test phase, when a feature comes in, we first compute its
sparse coefficients based on the dictionary A. Then, based on its
reconstruction error, we can classify whether it belongs to normal
or abnormal events.

3.2 Temporally-coherent Sparse Coding (TSC) for
Anomaly Detection

One advantage of sparse coding based anomaly detection is that it
learns a dictionary to encode all normal events with small recon-
struction errors, thus an abnormal event is associated with a large
reconstruction error. It does not consider, however, the temporal
coherence between neighboring frames within normal/abnormal
events. Further, as shown in previous works [3] [34], with sparse
coding, similar features may be encoded as dissimilar sparse
codes, i.e., locality information is lost. To preserve the similarity
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Fig. 2. sRNN-AE with trainable similarity measurement

between neighboring frames, and as motivated by the work of [4],
we propose a Temporally-coherent Sparse Coding (TSC) model.
Specifically, if two neighboring frames are similar, it is desirable
that their sparse coefficients are similar as well. To achieve
this goal, we use the similarity between neighboring frames to
weight the distance between their sparse coefficients. We denote
the similarity between the t-th frame and (t − 1)-th frame as
St−1,t, which can be either predefined or learned with a data-
driven approach. Then we use St−1,t to weight ‖αt − αt−1‖22
and substitutes the temporally coherent constraint into the sparse
coding objective function, which gives the objective function of
TSC:

min
A,αt

T∑
t=1

‖xt −Aαt‖22+λ1‖αt‖1 + λ2St,t−1‖αt − αt−1‖22

s.t. ‖A(:, i)‖ ≤ 1
(2)

This objective 2 is not convex. Following the classical optimiza-
tion strategy in sparse coding [35] [36], we can alternatively
update A and αt (t = {1, . . . , T}).

Optimization of A. When all αt (t = {1, . . . , T}) are
fixed, the objective function corresponding to A can be written

as follows:

min
A

T∑
t=1

‖xt −Aαt‖22

s.t. ‖A(:, i)‖ ≤ 1

(3)

Then, we use a projected gradient descent algorithm to optimize
A.

Optimization of αt. When A is fixed, we arrive at the
following objective function w.r.t. reconstruction coefficients of
all features:

min
αt

T∑
t=1

‖xt −Aαt‖22 + λ1‖αt‖1 + λ2St,t−1‖αt − αt−1‖22

(4)

After that, we update αt (t = {1, . . . , T}) with a Sequential
Iterative Soft-Thresholding Algorithm(SISTA) [5] whose main
steps are algorithm 1. In this algorithm, softb(x) = max(x −
b, 0) = ReLU(x − b), K corresponds to the steps of the ISTA
algorithm. γ is a hyperparameter.

Algorithm 1 Sequential iterative soft-thresholding algorithm.
Input: extracted feature x1:T , hyper-parameter λ1, λ2, γ, initial

α̂0, the steps of ISTA K
1: for t = 1 to T do
2: α̂0

t = αt−1

3: for k = 1 to K do
4: z = [I − 1

γ (A
TA+ St−1,tλ2I)]α̂

k−1
t + 1

γA
Txt

5: α̂
(k)
t = softλ1/γ(z +

St−1,tλ2

γ αt−1)
6: end for
7: αt = α̂Kt
8: end for
9: return α1:T ;

3.3 Interpreting TSC with a Stacked RNN (sRNN)

A traditional RNN is based on the assumption that ht =
f(xt, ht−1), which introduces a recurrent structure. Many pre-
vious work [37] [38] shows that by stacking multiple RNNs on
top of each other, the performance of classification or regression
can be further boosted. We denote xt as an input at time t and
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denote hkt as an output of hidden nodes in the k-th layer at time t.
σb is the nonlinear activation function parameterized by b. In this
paper, we choose σb(x) = softb(x). Mathematically, the stacked
RNN (sRNN) can be written as follows:

h
(k)
t =

{
σb(W

(1)h
(1)
t−1 + V xt), k = 1,

σb(W
(k)h

(k)
t−1 + U (k)h

(k−1)
t ), k > 1.

(5)

The first layer accepts the last moment output at the same layer
h1t−1 and the current moment input xt as its inputs. Similarly, the
rest of the stacked layers accept the last moment output hkt−1 at
the same layer and the previous layer output hk−1

t at the same
moment as their inputs.

It should be noticed that the sRNN mapped from TSC is
slightly different from that of the formulation in (5). For the
stacked layers, slightly different from Equation (6), they also
accept the current moment input xt as its inputs.

h
(k)
t = σb(W

(k)hKt−1 + U (k)h
(k−1)
t + V xt), k > 1. (6)

By comparing the optimization procedure in Algorithm 1 with
the stacked RNN, we can see that Equation (2) can be interpreted
with an sRNN: The K steps in the Sequential Iterative Soft-
Thresholding Algorithm correspond to the number of layers in
the sRNN. Comparing the proposed sRNN to classical RNN [37],
the difference between them is that xt is fed into all sRNN layers
in our sRNN, while the vanilla RNN only takes xt as its input
in the first layer. Further, St,t−1 takes xt and xt−1 as inputs,
which means that hkt also depends on the input of the last moment
xt−1. Additionally, St,t−1 is the input of each hidden state hkt .
We illustrate the stacked RNN in our problem in Figure 1.

More specifically, the mapping from the variables in TSC to
the variables in sRNN in Equation (5) is:

W (1) = I − λ2
γ
ATA (7)

W (k) =
St−1,tλ2

γ
I, k > 1

U (k) = I − 1

γ
(ATA+ St−1,tλ2I), k > 1

V =
1

γ
AT

b = λ1/γ

h
(k)
t = αkt

To demonstrate the mapping, we copy line 4 and 5 in Algo-
rithm 1 here and denote each replacement under each component
in Equation (8).

z = [I − 1

γ
(ATA+ St−1,tλ2I)]︸ ︷︷ ︸

U(k)

α̂k−1
t︸ ︷︷ ︸

h
(k−1)
t

+
1

γ
AT︸ ︷︷ ︸
V

xt (8)

α̂
(k)
t = soft︸︷︷︸

σ

λ1/γ︸ ︷︷ ︸
b

(z +
St−1,tλ2

γ︸ ︷︷ ︸
W (k)

αt−1︸ ︷︷ ︸
hK
t−1

)

3.4 sRNN Auto-Encoder
First, as shown in Figure 7, TSC is sensitive to the weight of the
sparsity term and is a temporally-coherent term. In addition to that,
different datasets prefer different parameters. Therefore, it is de-
sirable to derive a data-dependent way to automatically learn these
parameters. Second, the training of TSC is done by the alternative
optimization of the dictionary and the sparse coefficients, which
is also time-consuming, while it is observable that dictionary
learning is equivalent to learning the sRNN. Thirdly, if the number
of layers in sRNN (K) is very high, our network is identical with
TSC, which guarantees that all αt’s are sparse. A very deep sRNN,
however, is very time-consuming in the inference stage. To tackle
these problems, we first reduce the number of layers in sRNN.
Then, we propose the training of the sRNN with an Auto-Encoder
(sRNN-AE), i.e., we use the last layer output (hKt ) of the sRNN to
reconstruct the input xt with the mapping function parameterized
by Z , i.e., x̂t = ZhKt . We denote the parameters in the sRNN
as θ = {A, λ1, λ2, Z, α0, γ}. Finally, we can simultaneously
optimize all parameters including the dictionary, hyperparameters
and reconstruction coefficients in the following way:

min
θ

T∑
t=1

‖xt − ZhKt ‖2F + β‖θ‖2F (9)

To solve Equation (9), we use a min-batch based Stochastic
Gradient Descent (SGD) algorithm. Specifically, we use the RM-
SPROP [39] based SGD method, and set the weight for the weight
decay term as β = 0.005. Further, a larger K will inevitably
introduce a higher computational cost. Therefore, rather than using
a very large K, we use a small one (K=3). As shown in the
experiments section, such a shallow architecture achieves much
better performance than all other existing methods. Our sRNN
has two advantages: i) we can learn all of the parameters in the
sRNN rather than choosing the hyperparameters in TSC; ii) the
architecture of our sRNN is not deep. In the test phase, we can get
αt = hKt in one forward pass, which greatly accelerates anomaly
detection.

3.5 Similarity Measurement
The similarity measurement is a key factor for the performance
of TSC and sRNN-AE. One simple way to obtain it is to directly
define the similarity between neighboring frames with some com-
monly used functions, such as the Gaussian function, which is
defined as follows: 2

St−1,t = exp(−‖xt − xt−1‖22
δ2

) (10)

It is desirable, however, to learn a data-driven similarity measure-
ment for different data.

Inspired by the kernel trick of SVM [6], we can define the
similarity as follows:

St−1,t = κ(xt, xt−1) = φ(xt)
Tφ(xt−1) (11)

Here κ(·, ·) is a kernel function, and φ(·) is some mapping
function, usually unknown. In this paper, we leverage a data-
driven approach to learn the mapping function φ(·) within sRNN-
AE. Specifically, we leverage a multi-layer perceptron with the
ReLU activation function as the φ(·) function. We denote the

2. δ2 = 100 in our experiments. It is worth mentioning that since St−1,t is
multiplied by λ2, thus we can set δ to any value and tune λ2 accordingly.
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Fig. 3. The whole pipeline of our proposed anomaly detection. It consists of a feature extraction module and an anomaly detection module.

parameters of φ(·) as wφ and put it into the trainable parameter
set of sRNN-AE. In this way, the mapping function φ(·) can be
automatically learned with other parameters in sRNN-AE in an
end-to-end learning manner. We also normalize the output of the
multi-layer perceptron with an l2 normalization to make the length
of the output be 1. In this way, the similarity St−1,t ∈ [0, 1]. In the
following sections, without specification, the similarity in sRNN-
AE is trained in this way, as shown in Figure 2.

3.6 The Combination of Spatial and Temporal Features
for Anomaly Detection
Both TSc and sRNN-AE are actually used to model the distribu-
tion over normal patterns and discover abnormal ones. Hence,
they function as classifiers. In addition, their performance is
feature dependent. Since anomalies can be caused by unseen or
unexpected objects or unusual motion patterns, it is desirable to
combine both spatial and temporal features for anomaly detection.
In action recognition, the prevalent method is to use two-stream
CNNs [7] [40] [41] for explicitly characterizing appearance and
motion information, respectively. These works have shown the
effectiveness of the two-streams solution over 2D convolution by
stacking frames in channels for feature extraction. Therefore, we
also propose to extract the spatial and temporal features separately.
For appearance features, we use a spatial ConvNet (ResNet)
pretrained with the UCF101 dataset [42] to extract appearance
features. For motion features, one way is to feed the optical flow
features to a temporal ConvNet. However, the extraction of optical
flow is time-consuming, which is not desirable. Following the
work of [8], we propose to conduct pooling over the appearance
features of several consecutive frames and use this as temporal
features. But a bit different from [8] where max pooling, sum
pooling, histogram of time series gradients pooling are all used. In
our experiments, we find that max pooling already corresponds to
good performance. Thus we only use max pooling. Further, we use
multiple patches at multiple scales for appearance representation,
and do the max pooling for features corresponding to patches

at different scales. Thus, these pooled features over patches at
different scales encode the spatial change of some objects (spatial
features) over time, which also gathers information temporally.
As shown in Table 7, our solution greatly accelerates anomaly
detection, and also improves accuracy.

Sampling multiple patches at multiple scales has been shown
to be a very effective way for improving anomaly detection [3].
We also use the same strategy on videos-based anomaly detection.
Specifically, for both spatial and temporal features, we gradually
partition the feature map over spatial dimensions into increasingly
finer regions: 1 × 1, 2 × 2, and 4 × 4. We use max pooling over
each sub-region. Thus the feature dimension of all sub-regions are
the same. Rather than learning multiple dictionaries for features at
different scales [3], which brings additional computational costs,
features at all scales share the same dictionary in our method. For
features at multiple scales, we only enforce a temporal coherent
constraint for features at the same scale and spatial location.

After extracting spatial and temporal features, there are two
possible ways to combine them. One way is to directly stack the
spatial and temporal features at the same moment and feed them to
one sRNN-AE, which is referred to as early fusion. Another way
is to feed them to separate sRNN-AE algorithms and combine the
outputs of each sRNN-AE for anomaly detection, which is referred
to as late fusion. Previous work [43] has shown that late fusion
achieves a better performance for video classification, and our
experiments also demonstrate a similar phenomenon for anomaly
detection, as shown in Table 9.

The whole pipeline of our proposed anomaly detection system
is demonstrated in Figure 3. For an input video, we sample 4
continuous frames with an interval of 1. Then, a pretrained ResNet
is used to extract spatial and temporal features. We adopt features
extracted from different regions and conduct spatial pyramid
pooling [44] over them, achieving 21 feature vectors for each
frame. Further, we use temporal pooling over these 4 frames
for temporal information summarization, where temporal pool-
ing is an element-wise maximum operation. Further, spatial and
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temporal features go through two separate sRNN-AE algorithms
to achieve 21 reconstruction errors for each modality. For each
modality, we take the maximum reconstruction error of the 21
patches. Finally, two reconstruction errors are normalized to scores
and linearly combined with a weight, as shown in Section 3.7.

3.7 Anomaly Detection on Testing Data
In the training phase, we can learn the dictionaryA which encodes
normal events well. In the test phase, we feed the feature of each
patch corresponding to the t-th frame into our special sRNN. With
one forward pass, we can get αt. We denote the feature of the
i-th patch in the t-th frame as xt,i, where super-script s and
t correspond to spatial and temporal, respectively, then we can
calculate the reconstruction error corresponding to the i-th patch
in the t-th frame as follows:

ls(t, i) = ‖xst,i −Asαst,i‖22
lt(t, i) = ‖xtt,i −Atαtt,i‖22

(12)

As for sRNN-AE model, the reconstruction error can be measured
as follows

ls(t, i) = ‖xst,i − x̂st,i‖22
lt(t, i) = ‖xtt,i − x̂tt,i‖22

(13)

Next, we pick the maximum reconstruction error among all
patches within this frame as the frame level reconstruction error,
i.e., l(t) = max

i
l(t, i). The reason for using the maximum

reconstruction error as a measurement of anomaly is that it is
robust to the small changes in spatial and temporal directions.
In other words, if the patch corresponding to the maximum
reconstruction error is normal, then the frame should be a normal
event. Otherwise, if the patch with the maximum reconstruction
error is abnormal, then the frame is highly likely to be abnormal.
Further, following the work of [1] [25], and after calculating all
frame level reconstruction errors for a testing video, we normalize
the errors to the range [0, 1] and calculate a regularity score for
each frame based on the following equations:

ss(t) = 1−
ls(t)− min

k:1...T
ls(k)

max
k:1...T

ls(k)− min
k:1...T

ls(k)

st(t) = 1−
lt(t)− min

k:1...T
lt(k)

max
k:1...T

lt(k)− min
k:1...T

lt(k)

(14)

where T means the length of a video. A smaller s(t) means
that the t-th frame more likely corresponds to an abnormal event.
Finally, we combine spatial and temporal scores with a weight β
that refers to the final score of a frame t is s(t) = sa(t)+βsm(t),
where β ∈ [0, 1]. This is because anomalies can usually be easily
discovered by appearance changes. Further, it is hard to properly
characterize motion features compared to appearance features.
Thus spatial anomaly detection is more robust than temporal
anomaly detection, as shown in Table 8.

4 EXPERIMENTS

In Section 4.1, we first introduce measurements used in all
experiments. We empirically evaluate our proposed method under
a controlled setting on a synthesized dataset in Section 4.2. Then,
we compare our methods with other state-of-the-art methods on
real anomaly detection datasets as well as our new ShanghaiTech

Fig. 4. A sample with an anomaly caused by appearance on the Moving-
MNIST dataset.

TABLE 1
AUC on Moving-MNIST dataset.

Conv-AE TSC sRNN-AE
Spatial Anomaly 74.30% 88.19% 90.11%

Temporal
Anomaly 60.02% 65.47% 68.51%

anomaly dataset in Section 4.3. Different parameters in TSC
and sRNN-AE are also empirically evaluated in Section 4.4. In
addition, in order to describe the effectiveness of our proposed
sRNN-AE, compared with other variant RNN-AE formulations,
we conduct some experiments in Section 4.5. Two options for the
similarity definition between neighboring codes will be discussed
in Section 4.6. Different combinations of spatial and temporal
streams will be discussed in Section 4.7. Finally, the running time
will be reported as well in Section 4.8.

4.1 Experimental Setup

Measurements. We can predict whether an abnormal event occurs
based on s(t). One can set a threshold and if the score of a frame
is smaller than the threshold, the frame can be categorized as an
abnormal case. Obviously a higher threshold may cause a higher
false negative ratio, while a lower one may lead to more false
alarms. By changing the threshold gradually, we can arrive at an
ROC curve. The Area Under the Curve (AUC) is a commonly
used measurement for detecting irregularity [34]. In this paper,
we use frame-level AUC to evaluate the performance of different
methods.

Implementation Details. In our implementation, the learning
rate for sRNN-AE is 0.00001. Many stacked RNNs including
LSTMs illustrated in Equation (5) contain different trainable
parameters such as W,U, V . However, our proposed method in-
terpreting TSC with a stacked RNN finally result in only one train-
able parameter A, which means all gradients will be accumulated
into A. As shown in Fig. 1, if the number of blocks contributing
to the calculation of the gradient of a trainable parameter in a
vanilla stacked RNN is T , the number of blocks contributing to
the calculation of the gradient of A in TSC counterpart sRNN is
T × K × 2, where T is time steps, K is the number of stacked
layers and 2 means that each cell accept the current moment input
xt as input. In our experiments, K can be larger than 10. Thus,
we use a small learning rate for all ablation studies. The training
sequence length is 10. The batch size in the training phase is
4. The dimension of the fully-connected layer in the trainable



0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2944377, IEEE
Transactions on Pattern Analysis and Machine Intelligence

8

ShanghaiTech

UCSD Ped1 CUHK Avenue Subway EnterUCSD Ped2 Subway Exit

Fig. 5. Some samples from our new proposed dataset and other datasets. The first tow rows represent some samples from the UCSD Ped1, UCSD
Ped2, CUHK Avenue and Subway Entrance and Subway Exit datasets, respectively. The last two rows represent normal and abnormal scenes from
our proposed dataset (ShanghaiTech Campus).

TABLE 2
Comparision of our dataset with other released datasets.

Dataset #Frames #Abnormal Events #ScenesTotal Training Testing Regularity Irregularity
Our Dataset 317,398 274,515 42,883 300,308 17,090 130 13

CUHK Avenue 30,652 15,328 15,324 26,832 3,820 47 1
UCSD Ped2 4,560 2,550 2,010 2,924 1,636 12 1
UCSD Ped1 14,000 6,800 7,200 9,995 4,005 40 1

Subway Entrance 136,524 20,000 116,524 134,124 2,400 66 1
Subway Exit 72,401 7,500 64,901 71,681 720 19 1

LV 309,940 127,500 182,440 240,951 68,989 34 30

similarity measurement is 512. We fix the number of iterations
of sRNN-AE to 20,000 for all datasets. In the training phase, we
leverage a ResNet pretrained on UCF101 for feature extraction
[42]. Then we fix the pretrained ResNet in the feature extraction
module and use a RMSPROP based SGD method to train the
anomaly detection module for sRNN-AE. Specifically, for the
spatial ResNet for appearance feature extraction, its architecture
is the same with that in [40], then a pooling over the appearance
features is conducted to summarizing information temporally.
For the anomaly detection, we train the TSC with the (2) and
normalize each column of A to be 1 to avoid the trivial solution
in each iteration. We train the sRNN-AE with the Equation 9. It is
worth noting that we optimizeA, α, λ1 and λ2 in sRNN-AE rather
than U , V and W because different from vanilla sRNN, in our
sRNN-AE, U , V , andW depend onA, α, λ1, and λ2, as shown in
Equation 7. In other words, the vanilla sRNN cannot characterize
the dependencies between different layers. After training Spatial
and Temporal sRNN-AEs, we add the normal scores of these two

streams together. The weights corresponding to the spatial and
temporal scores are fixed to be 1 and 0.5, respectively on all
datasets. The whole pipeline is implemented with the Tensorflow
framework [45].

4.2 Evaluate with A Synthesized Dataset

Anomaly in Appearance. To evaluate the performance of our
method for the anomalies caused by a sudden change in appear-
ance, we deploy experiments on a synthesized Moving-MNIST
dataset. Specifically, we randomly choose two digits from the
MNIST dataset, and put them in the center of a black image whose
size is 225×225 pixels. Then in the next 19 frames, the digits
randomly move horizontally or vertically. In this way, we can get
a sequence with 20 frames. In our experiments, we synthesize
10,000 sequences for training data and train the network. For each
testing sequence, 5 consecutive frames are randomly occluded by
randomly inserting a 3×3 white box. We generate 3,000 sequences
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in total as test data. Then we use the intensity of the images as
features and normalized them with an l2 normalization.

Anomaly in Motion. We also evaluate the performance of our
methods for the anomalies caused by a sudden change in motion.
Specifically, we randomly choose two digits from the MNIST
dataset, and put them in the center of a black image whose size
is 225×225 pixels. In the first 10 frames, these two digits move
together in a straight direction. After that, in each one of the next
10 frames, they move separately in two random directions. We
can then also get a sequence with 20 frames. We generate the
same amount as for anomalies in appearance.

The performance of the different methods are shown in Ta-
ble 1. We can see that both TSC and sRNN-AE outperform Conv-
AE when the anomalies are caused by either motion or appearance.
Further, sRNN-AE outperforms TSC by around 2% and 3% for the
anomalies caused by appearance and motion, respectively. We also
show a sample with an anomaly caused by appearance in Figure 4.

4.3 Evaluation with Real Anomaly Datasets
We also evaluate our TSC and sRNN-AE with real anomaly
detection datasets. It is desirable that the trained anomaly detection
model can be directly applied in multiple scenes with multiple
viewing angles. Most of existing datasets, however, only contain
videos captured with one fixed angle camera, and they lack
diversity of scenes and viewing angles. To increase scene diversity,
we build a new anomaly detection dataset, which is named the
ShanghaiTech Campus dataset. To the best of our knowledge, it
is the biggest dataset for anomaly detection, which is even bigger
than the sum of all existing datasets except for the LV in terms
of the volume of data and the diversity of scenes. Further we
introduce more anomalies caused by sudden motion in this dataset,
such as chasing and brawling, which are not included in existing
datasets. These characteristics make our dataset more suitable for
real scenarios. We show some samples of our dataset in Figure 5
and list some statistics of different datasets in Table 2.

Specifically, we conduct experiments on our new proposed
dataset as well as the two recently most used datasets, including
ShanghaiTech Campus, CUHK Avenue [3], UCSD Ped2 [34],
Subway [14] and LV [50].It is worth noting that for the UCSD
pedestrian datasets, Ped1 is more frequently used for pixel-
wise anomaly detection [23], while our work focuses on frame-
level prediction, so we only conduct experiments on Ped2. For
the Entrance dataset, ConvLSTM-AE [2] removes timestamps
embedded in videos because the timestamps in videos usually
leads to large reconstruction errors and hurts reconstruction based
methods. But timestamps may appear at different places of videos,
and it is trivial to remove it. Therefore, we rerun the ConvLSTM-
AE without removing timestamps for fair comparison with our
method. To better understand the differences between our dataset
and existing anomaly detection datasets, we briefly summarize all
anomaly detection datasets as follows:

• The CUHK Avenue [3] dataset contains 16 training videos
and 21 testing videos with a total of 47 abnormal events,
including throwing objects, loitering and running. The
apparent size of people may change because of the camera
position and angle.

• The UCSD Pedestrian 2 (Ped2) [34] dataset contains 16
training videos and 12 testing videos with 12 abnormal
events. All of these abnormal cases are about vehicles such
as bicycles and cars.

• The Subway [14] dataset is 2 hours long in total. There
are two categories, i.e.Entrance and Exit. Unusual events
contain walking in wrong directions and loitering. More
importantly, this dataset was recorded in an indoor envi-
ronment while the above ones were recorded in an outdoor
environment.

• The LV dataset [50] is a challenging dataset, where all
videos are collected online and abnormal events are real-
istic. Following the setting of [50], an abnormal frame is
labelled as a true positive when at least 20% of abnormal
regions of a frame is correctly detected, otherwise it is a
false positive.

• Our ShanghaiTech Campus dataset has 13 scenes with
complex lighting conditions and camera angles. It contains
130 abnormal events and over 270, 000 training frames.
Moreover, the pixel level ground truth of abnormal events
is also annotated in our dataset.

Baselines. Besides comparing our method with other state-of-
the-art anomaly detection methods, including Conv-AE [1], Del et
al. [32], Unmasking [33] and Hinami et al. [27], we further design
another two baselines to evaluate how well does the proposed
feature extraction module do directly on the anomaly detection
module without the sRNN-AE counterpart. Specifically, on all
datasets, we firstly extract appearance feature with dimensionality
of 2048 for each frame, then give a testing frame, we calculate
its similarity/distance to the training/normal frames for anomaly
detection. Since there are too many training frames, and it is very
time consuming to do the frame-wise comparison between each
testing and training pair, and it is also very time consuming to do
the sorting. To reduce the computational complexity, we propose
two solutions:
i) Nearest Subspace: we use K-means to cluster training data

into a dictionary A with size of 1000×2048, where 1000 is the
dictionary size and 2048 is the dimensionality of feature. In the
testing phase, we calculate the distance between testing frame and
training with Nearest Subspace distance: minα‖y − Aα‖2 for
each testing frame feature y, where α is a coefficient of linear
combination, and the optimal α∗ = (ATA)−1AT y. After that,
the reconstruction errors are normalized as normal scores.
ii) OC-SVM: we train a one-class SVM with all training data for

anomaly detection.

We list the performance of different methods on these datasets
in Table 3 and Table 4. It clearly shows that both our methods
outperform all existing methods, including Conv-AE [1], Del et
al. [32], Unmasking [33] and Hinami et al. [27], which are state-
of-the-art methods for anomaly detection. Further, we can see that
the extracted features are discriminative for anomaly detection,
but both Nearest Subspace and one-class SVM based classifier
is not as as good as our sRNN-AE and TSC on all datasets.
Specifically, since our dataset contains multiple scenes which
makes our dataset more realistic and challenging, the performance
on our dataset is not as good as that on Avenue, Ped2, Entrance
and Exit. Further, on all datasets, our sRNN-AE outperforms
TSC, which validates the effectiveness of sRNN-AE. The reasons
contributing to the improvement of sRNN-AE are two-fold: i)
sRNN-AE can automatically learn the weights of the sparsity
term and the temporally-coherent term. ii) the trainable similarity
module leans a data dependent similarity, which is better than
predefined similarities. The results in Table 4 also show that our
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TABLE 3
AUC of different methods on the Avenue, Ped2, Entrance, Exit and our dataset (ShanghaiTech Campus).

Avenue Ped2 Entrance Exit Our dataset
MPPCA [34] N/A 69.30% N/A N/A N/A

MPPC+SFA [34] N/A 61.30% N/A N/A N/A
HOFME [46] N/A 87.50% N/A N/A N/A
Conv-AE [1] 74.50% 81.10% 91.00% 80.20% 60.85%

Del et al.. [32] 78.30% N/A 69.10% 82.40% N/A
ConvLSTM-AE [2] 77.00% 88.10% 84.30% 87.7% 55.00%

Unmasking [33] 80.60% 82.20% 71.30% 86.30% N/A
Hinami et al. [27] N/A 92.20% N/A N/A N/A
Nearest Subspace 76.67% 83.87% 77.04% 83.34% 65.33%

OC-SVM 78.23% 78.58% 78.34% 81.56% 53.11%
TSC 80.56% 91.03% 84.24% 87.54% 67.94%

sRNN-AE 83.48% 92.21% 85.38% 89.73% 69.63%

TABLE 4
AUC on the LV dataset

Luet al. [3] Biswas et al. [47] Reddyet al. [48] Javan et al. [49] Conv-AE [1] ConvLSTM-AE [2] TSC SRNN-AE
11.20% 15.10% 32.50% 42.70% 33.64% 39.41% 55.34% 58.27%

sRNN-AE achieves AUC of 58.27% which is much better than
the state-of-the-art one of 42.7%, which further demonstrates the
effectiveness of our proposed method.

Finally, we show the change of the score (s(t)), the similarities
between neighboring frames (St,t−1) and the distances between
sparse codes of neighboring frames (‖αt − αt−1‖) for some
normal and abnormal events on the Ped2 and ShanghaiTech
datasets in Figure 6. We can see that some smooth similarities and
distances can be found for the frames within normal or abnormal
events, which agrees with the motivation of our TSC.

4.4 The Effect of Different Hyper-Parameters in TSC
and sRNN-AE
In this subsection, we conduct some experiments on the effect of
different hyperparameters in TSC and sRNN-AE. Since dictionary
training and coefficient optimization is very time-consuming,
experiments conducted in this subsection are only based on ap-
pearance features.

Weight of the Sparsity Term(λ1) in TSC. λ1 in Equation (2)
controls the sparsity of αt. As shown in Algorithm 1, αkt is
optimized based on a soft-thresholding operator. The bigger λ1
is, the more sparse αt will be. We fix λ2 and the dictionary
size to 2.0 and 2048 × 2048, respectively, and change λ1 to
observe how this parameter affects the AUC on Ped2, Avenue
and ShanghaiTech. As shown in Figure 7(a), a bigger λ1 improves
the AUC on Avenue but reduces the performance for the Ped2 and
ShanghaiTech datasets.

Weight of the Temporally-coherent Term (λ2) in TSC. λ2
in Equation (2) controls the smoothness of the sparse codes be-
tween neighboring frames. Figure 7(b) demonstrates that different
datasets may be affected differently by λ2. For example, Ped2 and
Avenue prefers a larger λ2 but ShanghaiTech prefers a smaller λ2.

Dictionary Size. We show the change of TSC performance
with respect to the change of dictionary size on the Avenue
dataset in Figure 7(c). We can see that a larger dictionary does not
always improve AUC and that the optimal dictionary size varies
for different datasets. In addition, we report the performance of
different dictionary sizes in sRNN-AE. We can see that sRNN-AE
always outperforms TSC when dictionary size varies. For saving

both training and testing time, we set dictionary size to 2048 for
all datasets.

Number of Layers in sRNN-AE. The optimization of the
SISTA algorithm requires a very large K to achieve a sparse
solution with a small reconstruction error. Fewer iterative steps
may harm the optimization of TSC. A larger K means a deeper
sRNN, as the counterpart of TSC.

However, a very deep sRNN-AE may lead to gradient vanish-
ing or explosion, which is harder to optimize. To validate how K
affects the performance of our sRNN-AE, we set it to different
values (1, 2, 3, 5, 10, 20, 30), respectively. The sparsity and
AUC of sRNN-AE with different numbers of layers on Avenue
are shown in Figure 8. The sparsity (percentage of zero entries) of
3-layers-based sRNN-AE and that of 30-layers-based sRNN-AE
is 80.0% and 90.0%, respectively, while the AUC for 3-layers-
based sRNN-AE and 30-layers-based sRNN-AE is 83.48% and
79.19%, respectively. This experiment shows that sparsity does
not necessarily lead to better performance in sRNN-AE. In our
experiments, we set K = 3 for all datasets. Such a shallow
architecture also accelerates the inference of αt(ht) in the test
phase. We also show the change of the objective with respect to
iteration in Figure 9. We can see that our sRNN-AE converges at
around 10,000 iterations.

4.5 Comparison between sRNN-AE and Other Types of
RNN

Our sRNN-AE is a special type of Recurrent Neural Networks
(RNN) based Auto-Encoder. To verify the effectiveness of such a
sparse coding inspired sRNN, we also compare our sRNN-AE
with the LSTM based Auto-Encoder, where the same features
are used, and the ConvLSTM based Auto-Encoder which extracts
features from raw pixels. The AUC of these methods on Avenue,
Ped2 and ShanghaiTech is listed in Table 5. We can see that our
sRNN-AE also outperforms these two baselines. In addition, our
sRNN-AE can be well interpreted compared to other types of RNN
based Auto-Encoders.
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Fig. 6. Scores, similarities and distances between neighboring codes of two video samples on the Ped2 and ShanghaiTech. We can see that the
similarities between neighboring frames can be kept for normal events. We highlight the abnormal events with red boxes. (Best viewed in color)

TABLE 5
AUC of different RNN variants on Avenue, Ped2 and ShanghaiTech

datasets.

Avenue Ped2 ShanghaiTech
LSTM-AE 75.33% 83.62% 53.30%

ConvLSTM-AE 77.00% 88.10% 55.00%
sRNN-AE 83.48% 92.21% 69.63%

4.6 Similarity Measurement

To verify the effectiveness of the similarity learning module
in sRNN-AE, we also use a Gaussian kernel based similarity
measurement and fix λ2 in sRNN-AE and learn other parameters,
including λ1. The results of the Gaussian kernel based and
trainable similarity measurement are shown in Table 6. We can
see that the trainable similarity measurement achieves a better
performance than the predefined similarity method, which verifies
the importance of trainable data dependent similarity. We also
show a pair of normal and abnormal images in Figure 10. We can
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Fig. 9. The change of training loss with different number of iterations on
Avenue dataset.

see that our trainable similarity better characterizes similarities for
both normal and abnormal image pairs.

4.7 The Combination of Spatial and Temporal Features

Optical Flow Based Motion Features vs. Our Temporal Ag-
gregated Features. In our implementation, we use a ResNet
[51] for appearance feature extraction and use temporal pooling
over the appearance features of 4 consecutive frames as temporal
features. We also compare our temporal features with optical flow
based ones, as done in two-streams CNNs for action recognition.
For optical flow based motion features, we also use a ConvNet
pretrained with the UCF101 dataset for motion feature extraction.
The performance based on these two types of motion features is
shown in Table 7. We can see that our temporal features is more
effective than optical flow based ones. The possible reason for

TABLE 6
AUC of different similarity measurement on Avenue, Ped2 and

ShanghaiTech datasets.

Avenue Ped2 ShanghaiTech
Gaussian kernel 81.71% 91.03% 68.00%

Trainable similarity 82.58% 91.20% 69.63%
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Fig. 10. The learned similarity with two different strategies.

this is that some types of anomalies are caused by a very fast
movement, while optical flow estimation for very fast movement
is not easy and usually inaccurate. As a result, the performance
of optical flow based motion estimation is reduced. Further, our
temporal feature extraction strategy is much faster than optical
flow based motion feature extraction, which guarantees real-time
anomaly detection.

Early Fusion vs. Late Fusion We also list the performance of
anomaly detection based early fusion and late fusion in Table 9.
We can see that late fusion always outperforms early fusion, which
agrees with the findings for action recognition [43]. There are
two possible reasons for this. First, when the number of nodes
are the same in hidden layers for both modalities, two separate
sRNN-AE algorithms reduces the number of parameters by a
half compared with early fusion. Thus, late fusion facilitates the
training of a more robust sRNN-AE. Second, late fusion is more
plausible for anomaly detection because humans infer anomalies
either by appearance or motion, thus it may be more suitable to
combine the spatial and temporal anomaly scores at the final stage
during anomaly detection. On the one hand, for early fusion, the
nodes in hidden layers may receive signals from both spatial and
temporal directions. On the other hand, late fusion enforces that
the hidden nodes only receive signals from one type of feature,
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TABLE 7
AUC and average inference time of different temporal features on three datasets.

Optical flow
based only

Appearance aggregation
based only

Appearance+Optical flow
based

Appearance+Appearance
aggregation based

Avenue 81.84% 82.42% 82.20% 83.48%
Ped2 86.43% 88.82% 88.84% 92.21%

ShanghaiTech 66.25% 68.16% 67.12% 69.63%
average inference time 5 FPS 10 FPS 3 FPS 10 FPS

TABLE 8
AUC of only spatial and only temporal features on three datasets.

Spatial features Temporal features
Avenue 82.58% 82.42%

Ped2 91.20% 88.82%
ShanghaiTech 69.63% 68.16%

TABLE 9
AUC of different feature fusions on three datasets.

Early fusion Late Fusion
Avenue 82.90% 83.48%

Ped2 89.80% 92.21%
ShanghaiTech 68.60% 69.63%

making judgments merely based on one type of feature.
The Combination of Spatial Normal Scores and Temporal

Normal Scores. Appearance is a strong cue for anomaly detec-
tion (for example, if unexpected objects appear, then we have
confidence to say such a phenomenon is abnormal.). In addition,
CNN has shown its expertise for appearance feature extraction,
thus many existing work only leverages appearance for anomaly
detection [1] [2]. Temporal features representation is not as good
as spatial features. Therefore, spatial normal scores are more
reliable than those temporal normal scores, as shown in Table 8.
Thus it is more reasonable to combine normal scores inferred by
spatial features and temporal features with a weight. Here we show
the change of the AUC with respect to β on Avenue and Ped2 in
Figure 11 where we can see that β = 0.5 corresponds to a higher
AUC. Thus we simply fix β = 0.5 on all datasets.

4.8 Running Time

We report training and inference time of Avenue in Table 10. It
is obvious that sRNN-AE with 3 layers is much faster than TSC
with 30 layers. This means our proposed sRNN-AE effective and
efficient for anomaly detection. Further, if the time for feature
extraction is included, our sRNN-AE can run at a speed of 10
FPS.

TABLE 10
Running time of Conv-AE with feature extraction, TSC and sRNN-AE

without feature extraction on Avenue dataset.

K Training Inference
Conv-AE N/A 6 hours 30 FPS

TSC 30 30 hours 7 FPS
sRNN-AE 3 1.2 hours 152 FPS
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Fig. 11. The AUC with different β on Avenue and Ped2 dataset.

5 CONCLUSION

In this paper, we propose a TSC framework for anomaly detection
which preserves the similarities between frames within normal and
abnormal events. Our TSC can be interpreted with a special sRNN.
By optimizing all parameters in sRNN-AE simultaneously, we
avoid nontrivial parameter selection and reduce the computational
cost for inferring the reconstruction coefficients in the test phase.
Further, we propose a multi-layer perceptron based similarity mea-
surement in sRNN-AE which learns a data dependent similarity,
which demonstrates better performance than predefined similarity
measurement. In addition, we propose combining the spatial and
temporal features in a late fusion manner which further improves
performance. Considering the fact that most anomaly detection
datasets only contain one scene with the same view angle, we
build a new dataset which is the most challenging one in terms of
data volume and scene diversity. Extensive experiments on both
synthesized datasets and real datasets validate the effectiveness of
sRNN-AE for anomaly detection.

ACKNOWLEDGMENT

This work was supported in part by the National Key Research and
Development Program of China under Grant 2016YFB1001001
and NSFC (No. 61502304).

REFERENCES

[1] M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury, and L. S. Davis,
“Learning temporal regularity in video sequences,” in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, 2016.

[2] W. Luo, W. Liu, and S. Gao, “Remembering history with convolutional
lstm for anomaly detection,” in Multimedia and Expo (ICME), 2017 IEEE
International Conference on. IEEE, 2017, pp. 439–444.



0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2944377, IEEE
Transactions on Pattern Analysis and Machine Intelligence

14

[3] C. Lu, J. Shi, and J. Jia, “Abnormal event detection at 150 fps in matlab,”
in Proceedings of the IEEE International Conference on Computer
Vision, 2013, pp. 2720–2727.

[4] B. Zhao, F. Li, and E. P. Xing, “Online detection of unusual events
in videos via dynamic sparse coding,” in Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition. IEEE, 2011,
pp. 3313–3320.

[5] S. Wisdom, T. Powers, J. Pitton, and L. Atlas, “Interpretable recurrent
neural networks using sequential sparse recovery,” NIPS 2016 Workshop
on Interpretable Machine Learning in Complex Systems, 2016.

[6] B. Scholkopf and A. J. Smola, Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2001.

[7] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in Advances in neural information
processing systems, 2014, pp. 568–576.

[8] R. Villegas, J. Yang, S. Hong, X. Lin, and H. Lee, “Decomposing
motion and content for natural video sequence prediction,” arXiv preprint
arXiv:1706.08033, 2017.

[9] W. Luo, W. Liu, and S. Gao, “A revisit of sparse coding based anomaly
detection in stacked rnn framework,” in Proceedings of the IEEE Inter-
national Conference on Computer Vision, Oct 2017.

[10] F. Tung, J. S. Zelek, and D. A. Clausi, “Goal-based trajectory analysis
for unusual behaviour detection in intelligent surveillance,” Image and
Vision Computing, vol. 29, no. 4, pp. 230–240, 2011.

[11] N. Navneet and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1. IEEE, 2005, pp.
886–893.

[12] N. Dalal, B. Triggs, and C. Schmid, “Human detection using oriented
histograms of flow and appearance,” in European conference on computer
vision. Springer, 2006, pp. 428–441.

[13] D. Zhang, D. Gatica-Perez, S. Bengio, and I. McCowan, “Semi-
supervised adapted hmms for unusual event detection,” in Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition,
vol. 1. IEEE, 2005, pp. 611–618.

[14] A. Adam, E. Rivlin, I. Shimshoni, and D. Reinitz, “Robust real-time
unusual event detection using multiple fixed-location monitors,” IEEE
transactions on pattern analysis and machine intelligence, vol. 30, no. 3,
pp. 555–560, 2008.

[15] J. Kim and K. Grauman, “Observe locally, infer globally: a space-
time mrf for detecting abnormal activities with incremental updates,”
in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on. IEEE, 2009, pp. 2921–2928.

[16] R. Leyva, V. Sanchez, and C.-T. Li, “Video anomaly detection with
compact feature sets for online performance,” IEEE Transactions on
Image Processing, vol. 26, no. 7, pp. 3463–3478, 2017.

[17] Y. Cong, J. Yuan, and J. Liu, “Sparse reconstruction cost for abnormal
event detection,” in Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on. IEEE, 2011, pp. 3449–3456.

[18] H. Ren, H. Pan, S. I. Olsen, and T. B. Moeslund, “A comprehen-
sive study of sparse codes on abnormality detection,” arXiv preprint
arXiv:1603.04026, 2016.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[20] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[21] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 1440–1448.

[22] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[23] D. Xu, E. Ricci, Y. Yan, J. Song, and N. Sebe, “Learning deep represen-
tations of appearance and motion for anomalous event detection,” arXiv
preprint arXiv:1510.01553, 2015.

[24] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for
human action recognition,” IEEE transactions on pattern analysis and
machine intelligence.

[25] Y. S. Chong and Y. H. Tay, “Abnormal event detection in videos using
spatiotemporal autoencoder,” in International Symposium on Neural
Networks. Springer, 2017, pp. 189–196.

[26] J. R. Medel and A. Savakis, “Anomaly detection in video using pre-
dictive convolutional long short-term memory networks,” arXiv preprint
arXiv:1612.00390, 2016.

[27] R. Hinami, T. Mei, and S. Satoh, “Joint detection and recounting of
abnormal events by learning deep generic knowledge,” in Proceedings of
the IEEE International Conference on Computer Vision, Oct 2017.

[28] M. Sabokrou, M. Fayyaz, M. Fathy, and R. Klette, “Fully convolutional
neural network for fast anomaly detection in crowded scenes. arxiv
preprint,” arXiv preprint arXiv:1609.00866, 2016.

[29] W. Sultani, C. Chen, and M. Shah, “Real-world anomaly detection in
surveillance videos,” Center for Research in Computer Vision (CRCV),
University of Central Florida (UCF), 2018.
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