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Abstract— Most popular clustering methods map raw image
data into a projection space in which the clustering assignment
is obtained with the vanilla k-means approach. In this article,
we discovered a novel prior, namely, there exists a common
invariance when assigning an image sample to clusters using
different metrics. In short, different distance metrics will lead
to similar soft clustering assignments on the manifold. Based
on such a novel prior, we propose a novel clustering method by
minimizing the discrepancy between pairwise sample assignments
for each data point. To the best of our knowledge, this could be
the first work to reveal the sample-assignment invariance prior
based on the idea of treating labels as ideal representations.
Furthermore, the proposed method is one of the first end-to-end
clustering approaches, which jointly learns clustering assignment
and representation. Extensive experimental results show that the
proposed method is remarkably superior to 16 state-of-the-art
clustering methods on five image data sets in terms of four
evaluation metrics.

Index Terms— Label as representation, least square regression,
low-rank representation, subspace clustering.

I. INTRODUCTION

DATA clustering aims to group a collection of samples
into different clusters by simultaneously minimizing

intercluster similarity and maximizing intracluster similarity,
which is a popular unsupervised learning technique to analyze
unlabeled data [1]. Two challenging problems in clustering
analysis are the curse of high dimensionality and linear insep-
arability of inherent clusters—which have attracted numerous
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works during past decades [2]–[5]. These two problems are
caused by the same factor to a certain extent. To be specific,
many real-world data sets, such as documents and images,
are with high dimensionality in the input space, thus leading
to the curse of high dimensionality. As the high-dimensional
data always lie on a low-dimensional manifold, the Euclidean
distance cannot accurately measure the dissimilarity between
them and thus leads to the linearly inseparable issue. In sum-
mary, it is a daunting task to cluster these data using the
Euclidean distance-based clustering approaches, such as the
vanilla k-means clustering.

To cluster high-dimensional nonlinear data, various methods
have been proposed [6]–[8], among which subspace clustering
is one of the most effective approaches [9]–[11]. According
to the definition given in [12], subspace clustering aims at
first implicitly seeking a low-dimensional subspace to fit each
group of data points and then separating these data in the
projection space with the following steps: 1) learning low-
dimensional representations for a given data set and 2) clus-
tering data based on the representations. Through exploiting
the low-dimensional subspace structure, subspace clustering
could effectively alleviate both the problem of dimensionality
curse and linear inseparability.

During past years, most existing subspace clustering meth-
ods mainly investigate how to learn a good data representation
that is beneficial to discovering inherent clusters [13]–[24],
[24]–[31]. Like the standard spectral clustering (SC) [6], those
methods achieve data clustering with the following three steps.
First, an affinity graph is built to describe the relationship
between the data points. Second, low-dimensional data rep-
resentation is learned by using the graph as an invariance.
Third, k-means is conducted on the data representation to
obtain clustering assignments. One could find that the first
two steps are identical to conducting dimension reduction with
manifold learning [32], [33], which learns a low-dimensional
representation by first constructing a similarity graph in the
input space and then embedding the graph into another space.
The earlier observation on the relationship between manifold
learning and SC-based subspace clustering was presented
in [34]. It should be pointed out that such a unified view
is not the unique way to understand the SC-based methods.
Here, we adopt this view just for better understanding subspace
clustering in the deep learning era.

Although those subspace clustering methods have shown
encouraging performance, we observe that they may suffer
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Fig. 1. Illustration of our basic idea. (a) Empirical observation on the prior of sample-assignment invariance. In the figure, the left y-axis denotes the difference
between P1 and P2 and the right y-axis denotes the clustering performance in terms of Accuracy, where P1 and P2 are two clustering assignments in a 10-D
space based on the Euclidean and Cosine distances. Specifically, we project the mnist raw data into a latent space using an encoder and then calculate P1,
P2, and their discrepancy using the Euclidean distance, cosine distance, and the KL divergence loss, respectively. More details could refer to our experimental
setting (see Section V). With more training epochs, Fig. 1(a) shows that: 1) the performance remarkably increases from 58% to 76% and 2) the discrepancy
between P1 and P2 decreases monotonically. Better representation always gives a smaller distance between P1 and P2 and better clustering results. Note
that the clustering assignment is obtained by directly performing k-means on the representation. Fig. 1(b) shows our insight that the “best” representation for
clustering task is the label since the label is “the most ideal” representation. In other words, we propose that the label is the most desirable representation for
recognition tasks, including clustering, because all within-cluster data points are represented by the corresponding label. (c) simple example to show that the
key to achieve our idea is seeking a latent space in which different metrics will lead to the same cluster assignment. For example, in the figure, the sample
will be assigned to Cluster#1 in terms of Euclidean and Cosine distance, i.e., the cluster assignments derived upon these two metrics will be identical. Note
that, the red and black (inner and outer) circles denote two different clusters. (a) Empirical observation on the proposed invariance of sample assignment.
(b) The insight of treating the label as a representation. Ideally, the “best” representation for recognition task should be the label. (c) The key is learning a
latent space wherein the assignments with different metrics will converge to the same result.

from the following limitations. First, most of those methods
learn data representation via shallow models, which may be
unable to capture the complex latent structure of big data.
Second, the methods required to access the whole data set
and use it as the dictionary, thus causing difficulty in handling
large-scale data sets. To address these challenges, we hold that
deep neural networks could offer a promising solution due
to its outstanding representative capacity and fast inference
speed. In fact, [26] and [35]–[40] have very recently proposed
to learn representation for data clustering using deep neural
networks. However, most of these methods focus on learning
representation and less attention is paid on clustering.

Like other unsupervised tasks, the key of clustering is
seeking a suitable prior so that the data could be clustered
into different categories without the help of human-labeled
data. To achieve this key, we propose a novel trainable
deep clustering method that embraces the end-to-end learning
manner. The basic ideas of our method are in twofold, i.e.,
sample-assignment invariance prior and treating the label as
a representation. The prior roots into our observation [see
Fig. 1(a)]. More specifically, for a given data point x, we obtain
its representation using a parametric model, such as the neural
network. With the learned representation h, we compute two
soft clustering assignments P1(h|�) and P2(h|�) using two
different distance metrics, where � denotes the collection of
cluster centers (could be initialized by k-means). To compute
the discrepancy between P1(h|�) and P2(h|�), we propose
a KL divergence-based loss function. With the increasing
number of training epoch, we observe that the neural network
learns a better representation in terms of clustering accuracy
and a decreasing discrepancy between P1(h|�) and P2(h|�)
in terms of the loss. The observation induces the so-called
sample-assignment invariance prior. Namely, different distance
metrics will give similar even the same cluster assignment
on the manifold. In fact, such an observation/proposal is
consistent with common sense. Taking the most ideal situation

as an example, the “best” (invariant/distinct) representation for
clustering/classification tasks should be a vector that has only
one nonzero entry to indicate the index of the assigned cluster
[see Fig. 1(b)]. Clearly, such a representation will lead to the
same prediction assignment even though different metrics are
used since the representation itself could be regarded as the
predicted label. In other words, the key to our idea is learning
a metric-invariant space, as shown in Fig. 1(c).

Based on the earlier observation, we propose a provable
method to achieve the invariance of sample assignment. The
proposed method is a deep neural network with a novel
objective function, which enjoys an end-to-end pipeline. More
specifically, the proposed method consists of two steps. The
first step aims to learn representation, which is conducted to
map inputs into a latent space in the forward pathway of our
neural network. The second step implements data clustering in
the backward pathway of our neural network, which simulta-
neously forward propagates a supervision signal to update the
clustering membership and parametric transformations. With
such a strategy, even no manual annotation is provided, our
neural network can still be trained in an end-to-end manner and
such a manner will lead to better representation and clustering
results as shown in our experimental studies.

The major contribution of this article is summarized as
follows.

1) To the best of our knowledge, this could be the first work
to reveal the sample-assignment invariance prior and
explicitly treat the label as a representation. Therefore,
we assume that this article could provide a novel insight
toward the community.

2) The proposed method is among the first end-to-end clus-
tering models. Comparing with most existing subspace
clustering methods, the proposed method jointly learns
data representation and performs clustering, whereas
the popular way is to treat them as two separate
steps.
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TABLE I

NOTATIONS

3) We prove that the proposed KL divergence loss could
achieve the invariance of sample assignment, which is
used as a new prior to learn data representation and
perform clustering in an unsupervised way.

Organization and Notations: This article is organized as
follows. In Section II, we briefly introduce some related works
on subspace clustering and deep learning. In Section III,
we elaborate the proposed method by introducing the represen-
tation learning module, clustering module, and implementation
details. In Section IV, we prove that the proposed objective
function could achieve the invariance of sample assignment in
theory. In Sections V and VI, the experiments are conducted
and the conclusion is given, respectively. In the following,
we use lower case bold letters to represent column vectors and
upper case bold ones to denote matrices. Table I summarizes
some notations used throughout this article.

II. RELATED WORKS

A. Subspace Clustering

Recently, subspace clustering has shown significant devel-
opments in a variety of applications, such as segmentation,
clustering, and so on [12]. Most of the existing approaches
could be deemed as the variants of SC [6], which employ
manifold learning to learn a data representation and then
perform k-means on the representation to obtain the clustering
membership. One major difference among these methods is
their ways to construct the similarity graph to learn the
representation. Mathematically, they build the graph using the
reconstruction coefficient via

min
ci

1

2
‖xi − Xci‖2

F + λR(ci ) (1)

where xi indicates the i th data point of X, ci is the self-
expression coefficients of xi , R(ci ) is the adopted prior on
ci , and ‖ · ‖F denotes the Frobenius norm. Different methods
employ different R(·) and three of them are most popular,
namely, �1-norm-based sparsity [13], [14], [27], [41]–[44],
nuclear-norm-based low rankness [15], [16], [23], [45]–[49],
and Frobenius norm-based methods [17], [20], [22], [25], [50].

Different from those algorithms, the proposed method
learns the representations using a neural network rather than

graph-regularized approaches. Such a difference brings several
advantages to our method. First, the proposed method does
not access the whole data set as a dictionary and solve
a singular value decomposition (SVD) problem to obtain
data representation. Second, our model jointly optimizes rep-
resentation learning and data clustering. More specifically,
a neural network maps data point x into a latent space to
get representation h, and clustering assignment is obtained
by minimizing the discrepancy among different distributions
(i.e., soft sample assignment) of h and cluster centers � in
terms of different distance metrics. In contrast, most existing
subspace clustering methods treat these two steps separately.
As our method utilizes clustering membership as a supervisor,
a better representation could be learned. Third, the proposed
neural network is a deep neural network, which could enjoy
the more powerful capacity to capture the complex distribution
of real-world data sets.

B. Deep Learning

During past years, deep neural networks have demonstrated
promising performance in a variety of applications. However,
the huge success of deep neural networks is mainly achieved
in the setting of supervised learning [51], [52], and only a
few works have been conducted in the unsupervised scenario.
As one of the most important unsupervised learning tasks,
clustering analysis has only attracted limited interests [26],
[35], [37]–[39], [53], [54] to examine how to make it beneficial
from neural networks.

Unlike those deep clustering approaches, the proposed
method proposes treating the label as a representation, which
may be beneficial to provide a novel insight into the com-
munity. Besides, some existing works achieve results in an
off-the-shelf manner, which is different from the end-to-
end manner adopted by our method. Extensive studies have
proved that the task-specific end-to-end deep learning is more
promising and attractive [55], [56]. Furthermore, this article
is also different from [39] in the following aspects. First,
the proposed method is generalized to different distance met-
rics. The generalized heterogeneous models could give greater
diversity compared with the homogeneous model (HOMO),
thus boosting the clustering performance especially when the
data set is relatively large. Second, in this article, we prove
that our objective function achieves the global optimality
when the sample-centers probability distributions converge
to the same point. In other words, this article shows that
the proposed objective function is provable to achieve the
invariance of sample assignment. Third, we provide the com-
prehensive experimental evaluations on the proposed method
by comparing it with 16 competitive approaches and five data
set to demonstrate the superiority of our proposed method.

III. PROPOSED METHOD

In this section, we first introduce how the proposed method
achieves clustering in an end-to-end manner. To be specific,
we will elaborate on the representation learning and clustering
modules of the proposed method. After that, we will introduce
the implementation details of our model.
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Fig. 2. Structure of our neural network. For the data point x, our model works in an end-to-end manner to learn data representation and perform clustering
in two continuing modules. Specifically, the first module (the left-hand side) is an encoder, which maps x into a latent space to get h. The second module is
to perform data clustering by minimizing the distance between different clustering memberships (or called distribution) of h with respect to cluster centers
�. In the figure, P1(h|�),P2(h|�), . . . are two clustering memberships of h with respect to � regarding to two distance measurements, and the objective
f (P1,P2) (i.e., P1(h|�),P2(h|�) for simplicity) indicates the distance between two distributions.

∑
f (Pi ,P j ) is the sum of multiple pairwise discrepancy

of distributions regarding to two distance metrics.

A. Representation Learning Model

Let X ∈ Rm×n be a given data set, and we aim at exclusively
assigning the data point xi ∈ X into one of k clusters, where
m is the dimension of input data and n denotes the number
of data points. To ease of presentation, one could denote the
cluster by the centroid ω j ∈ �. To achieve the end, our
method performs a clustering analysis with two joint modules.
One is an encoding neural network that is used to learn data
representation, and the other is a clustering layer that clusters
data via minimizing the discrepancy between pairwise sample
assignments for each data point. Fig. 2 shows the network
architecture and basic idea of our method.

To learn the data representation H ∈ Rd×n , our method
employs a series of nonlinear transformations to progressively
project X into a low-dimensional space, where d denotes the
dimensionality of the latent space and the transformations are
modeled by a collection of stacked neural components, such as
the convolutional neural network (CNN) [57]. In this article,
we adopt fully connected layers to construct our network
because the experimental studies will show that such a sim-
ple network can remarkably outperform the well-established
baseline methods.

To ease of presentation, we introduce our model with the
simplest case, namely, one hidden-layer neural network as
follows:

hi = g(xi |�) = g(Wxi + b) (2)

where � = {W, b} indicates a parametric network with the
weight W ∈ Rd×m and the bias b ∈ Rd . g(·) denotes
the adopted nonlinear activation function. To initialize �,
we take the self-supervised learning method [58]. To be
precise, we first train an autoencoder via

min
�

‖X − X̂‖F (3)

where X̂ denotes the output of the autoencoder. After the
autoencoder converging, the learned weights of the encoder,
i.e., the first half of the hidden layers, are used as the
initialization to our network.

B. Clustering Models

To perform clustering, we map the output of the encoder
(i.e., H) to the corresponding clusters by using HOMO (see
Section III-B1) or heterogeneous model (see Section III-B2)
that are based on the following KL divergence-based objective
function:

min
�,�

∑

i, j

P j (H|�) log
P j (H|�)

Pi (H|�)
(4)

where Pi and P j are two conditional distributions (probability
maps or soft assignments) of H = [h1, h2, . . . , hn] with
respect to � = [ω1, ω2, . . . , ωk ] with respect to two distance
measurements, where � denotes the cluster centroids. Our loss
function is designed to obtain invariance of sample assignment
by minimizing the distance between Pi and P j , which will be
further analyzed in Theorem 1.

As the KL divergence loss is asymmetrical, one generally
treats Pi and P j as the predicted and the target distribution,
respectively. In consequence, we could obtain the predicted
label using the index of the maximal entry of Pi . In Section V,
we will provide some discussions and experimental analysis
on this choice.

Considering the simplest case of (4), i.e., only two assign-
ments are considered, and we have the following objective:

min
�,�

P2 log
P2

P1
(5)

where P1 and P2 correspond to Pi and P j in (4), respectively.
Let P(hi |ω j ) be an element of P(H|�), i.e., the probability

of hi belonging to ω j , and then, we have the following
definition:

P(hi |ω j ) = Qr (hi |ω j )/ f j∑

j

Qr (hi |ω j )/ f j

(6)

where r = {1, 2, . . .} is used to raise Q to the r th power,
Q(hi |ω j ) denotes the closeness between hi and ω j , and f j

denotes the frequency of each cluster, which is adopted to
normalize the loss contribution itself so that distorting the
hidden space by larger clusters is prevented. In this article,
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Fig. 3. Illustration of the effectiveness of squared closeness. The dashed
curve is the closeness, and the solid curve is the squared closeness.

the squared closeness (i.e., r = 2) is adopted because it
simultaneously suppresses the responses from dissimilar points
and enhances the responses from similar points, which makes
the result more discriminative and sparser, as shown in Fig. 3.

Different choices in distance metric will lead to different
variants of our method. In general, there are two cases,
i.e., homogeneous and heterogeneous models. In short,
HOMO defines P1(H|�) and P2(H|�) using the same dis-
tance metric. Alternatively, the heterogeneous model employs
different metrics to compute the conditional distribution
between H and �.

1) HOMO: The idea behind the HOMO is that the same dis-
tance metric will also lead to different conditional probability
distributions with different formulations. Such a model may
be successful in handling the data set that is of small variance
since the perturbation derived from homogeneous distributions
is large enough to achieve the invariance of sample assignment
on the manifold. To implement the HOMO, we define the
predicted distribution using the Euclidean distance as follows:

Q1(hi |ω j ) = max(0, μi − zi j ) (7)

where zi j denotes the Euclidean distance between the i th
data point and the j th cluster centroid, which is computed
by zi j = ‖hi − ω j ‖2. μi is the mean of zi . The above-
mentioned formulation has two advantages. On the one hand,
it transforms the Euclidean distance-based dissimilarity into
similarity. On the other hand, it could guarantee the sparsity
of the probability distribution. Regarding Q2, the definition is
given by

Q2(hi |ω j ) =
(
1 + z2

i j

)−1

∑
j ′

(
1 + z2

i j ′
)−1 (8)

where zi j is defined earlier. The equation plays two roles.
On the one hand, it transforms the dissimilarity to similarity.
On the other hand, it normalizes the obtained similarity into
the range of [0, 1]. Moreover, the addition of 1 is used to avoid
trivial solutions.

2) Heterogeneous Models: Compared with the HOMO,
the heterogeneous models might lead to greater diversity
due to a bigger difference between the used two distance
metrics. Such diversity may give a better performance when
the data set is complex. In our implementations, we adopt the

formulation (7) to define Q1(hi |ω j ) and employ three popular
distance metrics to calculate Q2(hi |ω j ).

The first formulation of Q2 is with the cosine distance.
Formally, the corresponding zi j is given by

zi j = hi · ω j

‖hi‖2‖ω j ‖2
(9)

where · denotes the dot product.
The other two formulations of Q2 are based on the corre-

lation distance and the cityblock distance, respectively. Math-
ematically

zi j = (hi − h̄i ) · (ω j − ω̄ j )

‖(hi − h̄i )‖2‖(ω j − ω̄ j )‖2
(10)

and

zi j = ‖hi − ω j ‖1 (11)

where h̄i and ω̄i denote the mean of hi and ωi , respectively.
Note that the correlation distance [see (10)] will degrade to the
cosine distance if the data are with zero mean and normalized
to have the unit two norm.

Algorithm 1 Clustering via Cross-Metrics Verification
Input: A given data set X.
// Initialization:
Initialize � = {W(m), b(m)}M

m=1 by training an autoencoder
and � with k-means, where � is the encoding parameters of
the autoencoder.
// Training
while not converged do

Randomly select a data point xi ,
// Forward propagation
Compute {P1,P2} as in Eqn.(6)–(11).
// Backward propagation
Update {�,�} by using SGD to minimize the objective
function in Eqn.(5)

end
// Inference:
Obtain the cluster assignment of xi via

Ii = arg max
j

(P1(hi |ω j )) (12)

Output: {W(m), b(m)}M
m=1 and clustering results.

Algorithm 1 summarizes the proposed method. In our
implementation, two convergence conditions are considered.
If one of these is satisfied, our model is considered in achieving
convergence. The first condition is the widely used maximum
training epoch and the second one is the ratio of inconsistence
sample assignments between two continuous training epochs.
More specifically, we assume that the algorithm converges
if the updating model cannot lead to a significant change in
prediction. In our experiment, we fix this number to 0.03%.

C. Implementation Details

The proposed neural network jointly optimizes � =
{W(i), b(i)}M

i=1 and the cluster centers � = [ω1, ω2, . . . , ωk]
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using the stochastic subgradient descent (SGD) with weights
decay and momentum.

To obtain a good initialization, we first train a denoising
autoencoder (DAE) [58], where the noise ratio, the momen-
tum, and the weight decay rate are fixed to 0.3, 0.9, and
10−6, respectively. The used autoencoder is a nine-layer neural
network of which the number of neurons is m-500-500-2 000-
d-2 000-500-500-m from the input layer to the output layer,
where m and d denote the dimensionality of input and feature
space, respectively. As in [59], we use the rectified linear units
(ReLu) as the activation function. After the above-mentioned
autoencoder converging, the weights of the first four hidden
layers are used to initialize � and k-means is performed to
initialize cluster centers �.

Note that the proposed method could also be based on
other neural networks, including but not limited to restricted
Boltzmann machine (RBM) and CNN. We adopt a fully
connected network instead of others due to the following
two reasons. First, compared with other neural networks,
we experimentally found that a fully connected network is
more easily tuned due to fewer user-specified parameters,
in particular, in the scenario of clustering. In fact, most
existing deep clustering methods [26], [35], [36], [38] are
based on fully connected networks. Second, fully connected
networks could handle different kinds of data, e.g., documents
and images. In contrast, the network, such as CNN, mainly
achieves success in handling visual data.

IV. THEORETICAL RESULTS AND COMPUTATIONAL

COMPLEXITY ANALYSIS

As the aforementioned, our basic idea is that the conditional
probability distribution (i.e., sample assignment) between data
points H and cluster centers � is invariant to different distance
measurements on the manifold, which could be learned by
a parametric model. In this section, we theoretically show
that the proposed objective [see (5)] is well-established to
implement our idea. Namely, our objective could achieve the
sample-assignment invariance.

Theorem 1: For any data point h ∈ H and ω ∈ �, the global
optimality of the objective (5) is achieved with the minimizer
of P1(h|ω) = P2(h|ω). At that point, the loss achieves the
value 0.

Proof: Equation (5) can be rewritten as
∑

x,ω

P2(x|ω) logP2(x|ω) − P2(x|ω) logP1(x|ω)

= H(P1,P2) − H(P2) (13)

where H(P1,P2) denotes the cross entropy of P1 and P2, and
H(P2) is the entropy of P2.

Clearly, H(P1,P2) = H(P2) gives the global optimality (5)
with 0. According to the definition of cross entropy, one could
conclude that the minimizer

P1(H|�) = P2(H|�) (14)

gives
H(P1,P2) = H(P2) (15)

as desired.

Theorem 1 demonstrates that (5) achieves the minimum
when the distribution P1 is the same as P2. In other words,
the proposed objective function could achieve the invariance of
sample assignment as claimed. Note that although the above-
mentioned result corresponds to the simplified version of our
model, the conclusion could be easily extended to the setting
of multiple distributions [see (4)] due to the property of the
summation operator.

Note that the above-mentioned theoretical analysis does not
prove the sample-assignment invariance. Instead, it shows that
our objective could achieve the invariance. In fact, it is a
daunting task to directly prove the sample-assignment invari-
ance prior in theory. Fortunately, we find that the theoretical
guarantee could be obtained by proving that there exists a
latent space in which all samples could be partitioned into
the corrected clusters regardless of the used distance metric.
In other words, we only need to prove that there exists a
model which could approximate any complex distribution so
that the cluster assignment of learned representations keeps
unchanged with respect to the used distance metric. With the
universal approximation theorem [60], [61], ones have known
that neural networks could be the desirable model as proved
in extensive theoretical and experimental studies. In other
words, the universal approximation theorem could provide a
theoretical guarantee toward the proposed sample-assignment
invariance. As the theorem is an open issue in the community,
we would like to remain it in future exploration.

A. Computational Complexity

Suppose that our method consists of M layers and ni

denotes the number of neurons at the i th layer, and then,
the time complexity for training is

∑M−1
i=1 tni ni+1, where t is

the iteration number. Note that the complexities for the feed-
and backpropagation are the same.

V. EXPERIMENTAL RESULTS

In this section, we carry out experiments by comparing our
method with 16 state-of-the-art clustering methods. For com-
prehensive investigations, we use four different performance
metrics to evaluate the clustering quality.

A. Experiment Settings

Regarding the proposed method, we implement it using a
modular neural networks library, i.e., Keras [62] based on
Theano [63]. For the tested algorithms, we obtain the source
codes from authors’ websites. The experiments are carried out
on a machine with a 24x Intel Xeon CPU, 64Gb memory, and
a Titan X GPU.

1) Baseline Algorithms: We compare our neural networks
with 16 clustering methods, including k-means, nonnegative
matrix factorization with locality preservation (NMF-LP) [64],
zeta function-based agglomerative clustering (ZAC) [8],
agglomerative clustering with average linkage (ACAL) [1],
agglomerative clustering with weighted linkage (ACWL) [1],
standard SC [6], LRR [16], low-rank subspace clustering
(LRSC) [45], SSC [14], least square regression with/without
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TABLE II

TUNED PARAMETERS OF OUR NETWORK. l IS THE LEARNING RATE
WHICH IS DIVIDED BY de FOR EVERY ep EPOCHS UNTIL THE NET-

WORK ACHIEVES CONVERGENCE OR THE OPERATION IS REPEATED

BY re − 1 TIMES. bs DENOTES THE BATCH SIZE

diagonal constraint (LSR1/LSR2) [17], smooth representation
clustering (SMR) [20], large-scale SC (LSC-R/LSC-K) [65],
and deep embedding clustering (DEC) [36]. Moreover, we also
investigate the performance of our model without backprop-
agation, i.e., the DAE with k-means (DAE+k-means). For
all tested method, we tune their parameters for different data
sets and then report their best performance.1 For our method,
we only tune the parameters of the optimizer to achieve
convergence. The used parameters of our model are shown
in Table II. Note that the used parameters are slightly different
from that used in our conference work. In this article, we use
the same rather than different values of ep for different data
sets to alleviate the effort for parameters’ selection. Moreover,
we optimize our method using the Adadelta algorithm [66]
instead of SGD on the cifar100 data set for investigating the
efficacy of alternative optimizers. Regarding to our method,
four variants are proposed according to Section III-B, which
are HOMO, Heterogeneous model with the cOsinE (HOE),
Heterogeneous model with the cOrrelaTion (HOT), and Het-
erogeneous model with the cITyBlock distance (HIT).

2) Data Sets: Our experiments are conducted on five data
sets, including full mnist [57] (denote by mnist-full), the test
partition of mnist (denote by mnist-test), the testing subset of
cifar10 [67], a subset of reuters [68], and the first subset of
cifar100 [67]. mnist-full and mnist-test consist of 70 000 and
10 000 images that are sampled from ten handwritten digits
and each image is with the size of 28×28. The cifar10 testing
partition consists of 10 000 images, which distributes over ten
objects and the resolution of images is 32 × 32. The used
reuters corpus consists of 10 000 documents, which samples
from four root categories. In the experiments, each document
is represented as a TF-IDF vector of 2000 most frequent
words. The used cifar100 data set consists of 3000 color
images from the first superclass (i.e., aquatic mammals). For
these testing data sets, no preprocessing steps are conducted
except decentralization.

3) Evaluation Criteria: Typical clustering approaches usu-
ally formulate the objective function by achieving high intra-
cluster similarity (samples from the same cluster are similar)
and low intercluster similarity (samples from different clusters
are dissimilar). Such an internal criterion is proposed to
improve the clustering quality. In practice, however, good
scores on the internal criterion do not necessarily give the

1ZAC (K , a, z), LRR (λ), LRSC (λ), LSR1 and LSR2 (λ), NMF-LP (α),
SC (α), SMR (α, ε), SSC (λ, ε), LSC (K ), and DEC (τ ).

desired result. Therefore, an alternative way is directly evalu-
ating the application of interest by utilizing the label informa-
tion. Based on this observation, some evaluation metrics have
been studied [69]. In our experiments, four of most popular
evaluation metrics are adopted, namely, Accuracy (ACC),
adjusted rand index (ARI), normalized mutual information
(NMI) [70], and Precision. Note that, Accuracy and Precision
have to use the ground truth to align the prediction and then
compute their consist number. Different from Accuracy and
Precision, NMI and ARI do not depend on the assigned predic-
tion. More specifically, NMI is designed based on information
theory, which trades off the quality of the clustering against the
number of clusters to avoid the bias caused by the unbalanced
label distribution. ARI views the clustering processing as a
series of decisions, which evaluates on a pairwise basis if
pathways are incorrectly grouped. These four metrics evaluate
the performance of our method from different perspectives.

B. Comparisons With State-of-the-Art Methods

In this section, we compare the proposed algorithm
with some recent clustering algorithms on five data sets
in Tables III–V, from which one could see that the following
holds.

1) The proposed method gives obvious improvements com-
pared with 16 clustering algorithms on the used five data
set. In terms of Accuracy, the performance gaps between
our method and the best baseline approach are +7.50%,
+9.53%, +1.20%, +3.39%, and +1.03% on the used five
data sets.

2) In accordance with the other three performance metrics,
the proposed method is also the best algorithm in most
cases. For example, it is +0.9% in NMI, +4.17% in ARI,
and +3.82% in Precision higher than the other algorithms
on mnist-full.

3) The comparisons between DAE+k-means and our
method show the effectiveness of the proposed sample-
assignment invariance prior since our method will
degrade to DAE+k-means without enforcing the prior.
On the mnist-full data set, for example, the performance
gap of our method over DAE+k-means is +7.50%,
+4.29%, +7.36%, and +6.56% regarding those four
metrics.

4) Comparing with the HOMO, the heterogeneous models
(HOE, HOT, and HIT) usually perform slightly better,
especially, on small-scale data sets. By using mnist-full
and mnist-test as showcases, HOE outperforms HOMO
by +0.84% with respect to Accuracy on the former data
set, whereas the performance gap is just about +0.04%
on the second data set. The potential reason is that the
large-scale data set is more diverse than the small-scale
one, thus better embracing the diversity derived from
different metrics.

Besides the performance with fully connected autoencoder
as aforementioned, we also investigate the performance of
our method by collaborating with a convolutional autoencoder
in Table III [denoted by HOE (CNN)]. More specifically,
the used convolutional encoder is a six-layer network that
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TABLE III

PERFORMANCE COMPARISONS WITH 16 CLUSTERING APPROACHES. PARS REPORTS THE TUNED PARAMETERS FOR THE EVALUATED ALGORITHMS.
RESULTS IN BOLDFACE ARE SIGNIFICANTLY BETTER THAN THE OTHERS, ACCORDING TO THE T-TEST WITH A SIGNIFICANCE LEVEL AT 0.05

TABLE IV

PERFORMANCE COMPARISONS WITH 16 CLUSTERING APPROACHES. PARS REPORTS THE TUNED PARAMETERS FOR THE EVALUATED ALGORITHMS.
RESULTS IN BOLDFACE ARE SIGNIFICANTLY BETTER THAN THE OTHERS, ACCORDING TO THE T-TEST WITH A SIGNIFICANCE LEVEL AT 0.05

is with conv(64, 5)-pool(2)-conv(32, 5)-pool(2)-FCL(1024)-
FCL(10), where “conv (64, 5)” denotes a convolutional layer
with the filter size of 64 and the kernel size of 5, “pool(5)”
denotes max-pooling operation with the kernel size of 2, and
“FCL(1024)” is a fully connected layer with 1024 neurons.
The decoder is symmetric to the encoder. Similar to fully
connected autoencoder, ReLu is used as the activation function
for all layers except the last one of encoder and decoder that

adopts the sigmoid function. The experiments are conducted
on mnist. From the result, one could observe that the perfor-
mance of our method could be further improved with a more
powerful network.

C. Influence of Parameters

One major challenge of deep neural networks is to find
optimal parameter combination for a good performance. In this
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Fig. 4. Influence of noise ratio. (a) Accuracy. (b) NMI. (c) ARI. (d) Precision.

Fig. 5. Clustering performance versus varying learning rate decay of SGD. The learning rate will reduce by the decay ratio for every 300 epochs.
(a) Accuracy. (b) NMI. (c) ARI. (d) Precision.

TABLE V

PERFORMANCE COMPARISONS ON THE CIFAR100 DATA SET

section, we investigate the influence of three parameters (i.e.,
noise ratio, learning rate decay, and feature dimension), which
experimentally demonstrate the heaviest impact on the perfor-
mance of our method. For the simplification, we carry out
experiments using the HOE. For each evaluation, we also
report the performance of k-means with the DAE. We carry
out experiments on the mnist-full data set. In this test, all
parameters except the evaluated one are fixed.

To speed up convergence, we train a DAE by adding some
corruptions into the original input [58]. Fig. 4 shows the
performance of our neural network with increasing noise ratio.
One can see that the proposed method is relatively robust to
the change of noise ratio. More specifically, the Accuracy of

our method changes in the range of 82%-87% when the ratio
increases from 0.2 to 1.0.

The convergence largely depends on the choice of learning
rate whose value is based on the initial value and learning
rate decay. In the experiment, we investigate the influence of
the learning rate decay. The result is shown in Fig. 5, from
which one could see that this parameter is quite important to
the convergence performance of our deep model. In particu-
lar, the Accuracy seems more sensitive to the value of this
parameter than the other three metrics.

Besides the above-mentioned two parameters, we also
examine the influence of the hyperparameter d , i.e., the dimen-
sion of latent space. Fig. 6 shows that both the proposed
model and DAE+k-means usually give better clustering results
with when d = 10. The reason may be that larger d could
preserve more information, but a too large d will reduce the
discrimination of the learned representation. Moreover, larger
d will give a more significant improvement to our method
compared with DAE+k-means.

D. Influence of Different Inference Approaches

In the most ideal situation, P1 and P2 could converge to
the same point, as shown in Theorem 1. However, such a
result is hard to achieve since the noise contained in the data
set or nonsmooth data distribution will destroy the structure
of manifold, as pointed out in [71]. As a consequence, there
are two choices to obtain the clustering assignment, i.e., using
the index of the maximal entry in P1 or P2. In the above-
mentioned experimental studies, we perform inference only
based on P1. Such a choice is derived from the definition of
our KL divergence-based loss, i.e., P1 and P2 are treated as
the predicted distribution and the ground truth, respectively.
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Fig. 6. Performance of our method with different feature dimensions. The baseline is DAE+kmeans. (a) Accuracy. (b) NMI. (c) ARI. (d) Precision.

Fig. 7. Convergence curve of our neural network, where the x-axis is the
training epoch, the left y-axis indicates the loss, and the right one is the
corresponding clustering Accuracy.

TABLE VI

PERFORMANCE OF OUR METHOD WITH THE PREDICTION OF P1 AND P2 .
“PR” IS SHORT FOR PRECISION

For comprehensive studies, in this section, we consider
another choice, i.e., computing clustering assignments using
P2 instead of P1. The results are reported in Table VI, which
show that P1-based prediction is superior to P2-based results.
In general, it outperforms the counterpart by 3% in terms of
Accuracy.

E. Convergence Analysis

In this section, we illustrate the convergence curve of our
neural network on the full mnist data set. The result is
demonstrated in Fig. 7, which shows that our model achieves
convergence after 1500 training epochs. After that, its Accu-
racy ranges between 83% and 88%. Moreover, the time cost
investigation shows that our method is quite computation-
ally efficient. To be specific, it takes about 1.1 s to handle
70 000 samples for each training epoch. Note that as some of
the tested methods such as SSC are carried out on CPU instead
of GPU, we do not report the time cost of these baselines for
fair comparisons.

VI. CONCLUSION

In this article, we proposed a novel prior and developed a
new deep clustering method by minimizing the discrepancy

between sample assignments with respect to multiple distance
metrics. The proposed method employs a fully connected
neural network to jointly learn a collection of hierarchical rep-
resentation and cluster assignments in an end-to-end manner.

This article may have the following advantages. From the
view of clustering, it provides a novel way to implement clus-
tering by exploiting the prior of invariant sample assignment.
We believe that the work may provide novel insights to the
community. On the one hand, task-specified representation
learning could be further unified by treating the label as a
representation. On the other hand, the focus of unsupervised
subspace clustering could benefit from such a unified frame-
work.

There are some directions to improve this article. First,
theoretical guidance in the selection of distance metrics could
be explored in the future. In this article, we employ four
popular distance metrics to design our method. Although
experimental results demonstrate their effectiveness, the the-
oretical studies on the choice of metrics are still missing
since model selection is an open challenging issue. Second,
the KL divergence-based loss is not the only one choice to
implement the invariance of sample assignment, new objective
functions could be established based on other measurements
of the probability distribution.
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