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Xi Peng , Member, IEEE, Jiashi Feng , Joey Tianyi Zhou , Yingjie Lei , and Shuicheng Yan, Fellow, IEEE

Abstract— In this article, we propose a deep extension of
sparse subspace clustering, termed deep subspace clustering with
L1-norm (DSC-L1). Regularized by the unit sphere distribution
assumption for the learned deep features, DSC-L1 can infer a
new data affinity matrix by simultaneously satisfying the sparsity
principle of SSC and the nonlinearity given by neural networks.
One of the appealing advantages brought by DSC-L1 is that
when original real-world data do not meet the class-specific
linear subspace distribution assumption, DSC-L1 can employ
neural networks to make the assumption valid with its nonlinear
transformations. Moreover, we prove that our neural network
could sufficiently approximate the minimizer under mild condi-
tions. To the best of our knowledge, this could be one of the
first deep-learning-based subspace clustering methods. Extensive
experiments are conducted on four real-world data sets to show
that the proposed method is significantly superior to 17 existing
methods for subspace clustering on handcrafted features and raw
data.

Index Terms— Least square regression (LSR) clustering,
low-rank representation (LRR), sparse subspace clustering (SSC),
subspace clustering.

I. INTRODUCTION

SUBSPACE clustering aims at simultaneously implicitly
finding out an underlying subspace to fit each group

of data points and performing clustering based on the
learned subspaces, which has attracted a lot of interest from
the computer vision and image processing community [1].
Most existing subspace clustering methods can be roughly
divided into following categories: algebraic methods [2],
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iterative methods [3], statistical methods [4], and spectral
clustering-based methods [5], [6].

Recently, a large number of spectral clustering-based meth-
ods have been proposed [7]–[19], which first form an affinity
matrix using the linear reconstruction coefficients of the whole
data set and then obtain the clustering results by applying
spectral clustering on the affinity matrix. Those methods differ
from each other mainly in their adopted priors of the coeffi-
cients. For example, �1-norm-based sparse subspace cluster-
ing (SSC) [8] and its �0-norm-based variant [18], low-rank
representation (LRR) [13], and thresholding ridge regression
(TRR) [20]–[22] build the affinity matrix using the linear
representation coefficients under the constraint of �1-, nuclear-,
and �2-norm, respectively. Formally, SSC, LRR, TRR, and
many of their variants learn the representation coefficients to
build the affinity matrix by

min
C

L(X − XC) + R(C) (1)

where C ∈ Rn×n denotes the linear representation of the
input X ∈ Rd×n , d denotes the dimension of data, n is the
number of data points, R(C) denotes certain imposed structure
prior over C, and the choice of representation error function
L(·) is usually dependent on the distribution assumption of X,
e.g., a typical loss function is L(X − XC) = �X − XC�F .

Although these methods have achieved impressive perfor-
mance for subspace clustering, they generally suffer from the
following limitations. First of all, those methods assume that
each sample can be linearly reconstructed by the whole sample
collection. However, in real-world situations, the data may not
be linearly represented by each other in the input space. There-
fore, the performance of those methods usually drops in prac-
tice. To address this problem, several recent works [23]–[26]
have developed kernel-based approaches, which have shown
their effectiveness in subspace clustering. However, kernel-
based approaches are similar to template-based approaches,
whose performance heavily depends on the choice of ker-
nel functions. Moreover, the approaches cannot give explicit
nonlinear transformations, causing difficulties in handling
large-scale data sets.

Inspired by the remarkable success of deep learning in
various applications [27], [28], in this article, we propose
a new subspace clustering framework based on neural net-
works [namely deep subspace clustering (DSC)] and apply
the framework to extend the well-known SSC to develop a
new method termed deep subspace clustering with L1-norm
(DSC-L1). The basic idea of DSC-L1 (see Fig. 1) is simple but
effective. It uses a neural network to project data into another
space in which SSC is valid to the nonlinear subspace case.

2162-237X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SICHUAN UNIVERSITY. Downloaded on September 02,2020 at 12:13:22 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-5727-2790
https://orcid.org/0000-0001-6843-0064
https://orcid.org/0000-0002-4675-7055
https://orcid.org/0000-0001-6856-3342


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Flowchart of the proposed DSC-L1 method. For a given data set
X = [x1, x2, . . . , xn ], we project it into the feature space given H(M) =
[h(M)

1 , h(M)
2 , . . . , h(M)

n ] through a series of nonlinear transformations; and
learn the self-sparse representation of inputs at the top layer of the neural
network. Here, M is the index of the top layer of the neural network. We apply
spectral clustering on the affinity matrix built by the obtained representation
such as SSC. The proposed method simultaneously enjoys the sparsity induced
by the �1-norm regularization and the expressive nonlinearity of the neural
network.

Unlike most existing subspace clustering methods, our method
simultaneously learns a set of transformations parameterized
by a neural network and the reconstruction coefficients to
represent each mapped sample as a combination of others.
Compared with kernel-based approaches, DSC-L1 is a deep
instead of shallow model, which can explicitly map samples
from the input space into a latent space, with parameters in the
transformations learned in a data-driven way. To the best of our
knowledge, DSC-L1 could be the first deep extension of SSC,
which satisfies the sparsity principle of SSC and, meanwhile,
makes SSC valid to nonlinear subspace case.

The contribution of this article is twofold. From the view
of subspace clustering, we show how to make it benefit from
the success of deep neural networks so that the nonlinear
subspace clustering could be achieved. From the view of neural
networks, we show that it is feasible to integrate the advantages
of existing subspace clustering methods and deep learning to
develop new unsupervised learning algorithms.

Notations: Throughout this article, lower case bold letters
represent column vectors and upper case bold ones denote
matrices. A� denotes the transpose of the matrix A and I
denotes an identity matrix.

II. RELATED WORKS

A. Subspace Clustering

The past decade saw an upsurge of subspace cluster-
ing methods with various applications in computer vision,
e.g., motion segmentation [4], [8], [13], [14], face cluster-
ing [11], [15], image processing [9], [18], multiview cluster-
ing [29], and video analysis [25]. In particular, among these
works, spectral clustering-based methods have achieved state-
of-the-art results. The key to these methods is to learn an
affinity matrix A in which Ai j denotes the similarity between
the i th and the j th sample. Ideally, Ai j �= 0 only if the
corresponding data points xi and x j are drawn from the same
subspace. To this end, some recent works, e.g., SSC [8]),
L0-SSC [18], LRR [13], least square regression (LSR) [14],
and smooth representation (SMR) [11], assume that any given
sample can be linearly reconstructed by other samples in the

input space. Based on the self-representation, an affinity matrix
(or called similarity graph) can be constructed and fed to
spectral clustering algorithms to obtain the final clustering
results. In practice, however, high-dimensional data (such
as face images) usually reside on the nonlinear manifold.
Unfortunately, linear reconstruction assumption may not be
satisfied in the original space, and in this case, the methods
may fail to capture the intrinsic nonlinearity of manifold.
To address this limitation, the kernel approach is used to first
project samples into a high-dimensional feature space in which
the representation of the whole data set is computed [23]–[26].
After that, the clustering result is achieved by performing tra-
ditional subspace clustering methods in the kernel space. How-
ever, the kernel-based methods behave like template-based
approaches that usually require the prior knowledge on the
data distribution to choose a desirable kernel function. Clearly,
such a prior is hard to obtain in practice. Moreover, they cannot
learn an explicit nonlinear mapping function from data sets,
thus suffering from the scalability issue and the out-of-sample
problem [30], [31].

Unlike these classical subspace clustering approaches, our
method learns a set of explicit nonlinear mapping functions
from data set to map the input into another space and calculates
the affinity matrix using the representation of the samples in
the new space.

B. Deep Learning

Aimed at learning high-level features from inputs, deep
learning has shown promising results in numerous computer
vision tasks in the scenario of supervised learning [32]–[34].
In contrast, less attention [35]–[38] has been paid to the
applications with unsupervised learning scheme. Recently,
some works [12], [39], [40]–[49] have devoted to combining
deep learning and unsupervised learning and some of them
shown impressive results in a clustering analysis. Most of these
methods share the same basic idea, i.e., using deep learning
to learn a good representation and then achieving clustering
with the existing clustering methods, such as the vanilla
k-means [50]. The major differences among them reside on
the neural network structure and the objective function.

Different from these works, we propose a new model to
bridge subspace clustering and neural networks to achieve
nonlinear subspace clustering and focus on subspace clus-
tering rather than clustering. To be specific, our frame-
work, i.e., DSC, simultaneously learns high-level features
from inputs and self-representation in a joint way, whereas
these existing methods do not enjoy the effectiveness of the
self-expressive subspace clustering. We believe that such a
general framework is complementary with the existing shallow
subspace clustering methods since it can incorporate the
success of these methods into deep learning. To the best of our
knowledge, this could be the first of several DSC methods. Our
model is also significantly different from [41] and its low-rank
extension [44] in the following aspects.

1) The motivation is different. Peng et al. [41] required
the data that could be linearly reconstructed in the input
space, and thus, the obtained representation coefficients
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can be effectively embedded into a latent space useful
for clustering. In contrast, our model aims to solve the
problem of nonlinear subspace clustering, i.e., the data
cannot be linearly represented in the input space.

2) The objective function is different. Peng et al. [41]
explicitly minimized the reconstruction error between
inputs and outputs, which is an autoencoder. In contrast,
our method is a feedforward neural network, which only
implicitly uses the autoencoder to initialize our model.

3) Our method works in an end-to-end manner to optimize
the affinity matrix and the parametric neural network,
whereas [41] treats these two steps separately.

4) The proposed DSC-L1 can be regarded as a deep non-
linear extension of the well-known SSC, which makes
SSC handling nonlinear subspace clustering possible.
In contrast, [41] and [49] cannot be interpreted in this
way and do not have such a foundation.

Moreover, this article is also different from another recent
independent work, i.e., deep subspace clustering network
(DSCN) [12] in given aspects. First, the object function is
different. Second, the structure of neural networks is different.
To be exact, [12] adopts an autoencoder structure such as [21],
whereas our DSC is a forward neural network that does not
require to reconstruct the input itself. In consequence, our
method does not seek a good tradeoff between the recon-
struction and self-expression errors and then enjoy a smaller
parameter size.

III. DSC

In this section, we first briefly review SSC and then present
the details of our DSC method.

A. SSC

For a given data set X = [x1, x2, . . . , xn] ∈ Rd×n , SSC
seeks to linearly reconstruct the i th sample xi using a few
of other samples. In other words, the representation coeffi-
cients are expected to be sparse by employing the following
formulation:

min
ci

1

2
�xi − Xci�2

F + γ �ci�1 s.t. cii = 0 (2)

where �·�1 denotes the �1-norm (i.e., the sum of absolute
values of all elements in a vector) that acts as a relaxation
of �0-norm and cii denotes the i th element in ci . Specifically,
penalizing �ci�1 encourages ci to be sparse, and enforcing
the constraint cii = 0 avoids trivial solutions. To deal with the
optimization problem (2), the alternating direction method of
multipliers (ADMM) [51], [52] is often used.

Once the sparse representation of the whole data set is
obtained by solving (2), an affinity matrix in SSC is calculated
as A = |C| + |C|�, and then, spectral clustering is applied to
A to give the clustering results.

B. DSC

In most existing subspace clustering methods including
SSC, each sample is encoded as a linear combination of the
whole data set. However, when dealing with high-dimensional

data that usually lie on nonlinear manifolds, such methods
may fail to capture the nonlinear structure, thus leading to
inferior results. To address this issue, we propose a deep-
learning-based method that maps the given samples using in
a neural network and simultaneously learns the reconstruction
coefficients (i.e., the affinity) to represent each mapped sample
as a combination of others.

As shown in Fig. 1, the neural network in our proposed
framework consists of M +1 stacked layers with M nonlinear
transformations, which takes a given sample x as the input
to the first layer. For ease of presentation, we make several
definitions as follows. For the first layer of our neural network,
we define its input as h(0) = x ∈ Rd . Moreover, for the
subsequent layers, let

h(m) = g(W(m)h(m−1) + b(m)) ∈ Rd(m)
(3)

be the output of the mth layer (in which m = 1, 2, . . . , M
indexes the layer), where g(·) is a nonlinear activation func-
tion, d(m) is the dimension of the output of the mth layer, and
W(m) ∈ Rd(m)×d(m−1)

and b(m) ∈ Rd(m)
denote the weights and

bias associated with the mth layer, respectively. Let x be the
input of the first layer, and the output at the top layer of our
neural network is

h(M) = g(W(M)h(M−1) + b(M)). (4)

In fact, if denoting (4) as f (x), we can observe that f (·):
Rd → Rd(m)

is a nonlinear function determined by the weights
and biases of our neural network (i.e., {W(m), b(m)}M

m=1) as
well as the choice of activation function g(·). Furthermore,
for n samples, we define H(M) as the collection of the
corresponding outputs given by our neural network, that is

H(M) = [
h(M)

1 , h(M)
2 , . . . , h(M)

n

]
. (5)

With the earelier definitions, the proposed objective function
is in the following form:

min
{W(m),b(m)}M

m=1,C
J = J1 + λJ2 (6)

where λ is a positive tradeoff parameter and {Ji }2
i=1 are

defined in the following. Intuitively, the first term J1 is
designed to minimize the discrepancy between H(M) and
its self-expressed representation. Moreover, it meanwhile
regularizes C for some desired properties. To be specific, J1
can be expressed in the form of

J1 = L(H(M) − H(M)C) + R(C) + F(C) (7)

where F(C) takes the value of +∞ if C is not in some
feasible domains and 0 otherwise. Note that, the form of
L(·),R(·), and F(·) may be adopted from many existing
subspace clustering works. In this article, we take L(·) =
�·�2

F , R(C) = �C�p , and F(C) = +∞ if the condition,
such as diag(C) = 0, is violated. Otherwise, F(C) = 0.
Furthermore, �·�p denotes the �p-norm and three choices are
most popular for subspace clustering, namely, �1-norm [8],
nuclear-norm [13], and �2-norm [20].
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The second part J2 is designed to remove an arbitrary
scaling factor in the latent space. In this article, we set

J2 = 1

4

n∑
i=1

∥∥(
h(M)

i

)�h(M)
i − 1

∥∥2
2. (8)

Note that, without the above term, our neural network may
collapse in the trivial solutions such as H(M) = 0. However,
if some approaches are adopted to solve this issue, J2 could be
removed. For example, the autoencoder structure is explicitly
or implicitly incorporated into the objective function (6), such
as [12] and [41].

With {Ji }2
i=1 detailed earlier, the optimization problem of

the proposed DSC can be expressed as follows:
min
�,C

1

2
�H(M) − H(M)C�2

F + γ �C�p + F(C)

+λ

4

n∑
i=1

∥∥(
h(M)

i

)�h(M)
i − 1

∥∥2
2 (9)

where � denotes the parametric neural network, i.e., � =
{W(m), b(m)}M

m=1.
In this article, one major goal is to develop a deep extension

of SSC (denoted by DSC-L1), thus leading to the following
objective function:

min
�,C

1

2
�H(M) − H(M)C�2

F + γ �C�1

+ λ

4

n∑
i=1

∥∥(
h(M)

i

)�h(M)
i − 1

∥∥2
2

s.t. diag(C) = 0 (10)

where �·�1 denotes the �1-norm, which could guarantee the
sparsity of C. Note that other norms could also be comple-
mentary with our method. We adopt the L1-norm here for
two reasons. On one hand, L1-norm is provable to achieve
block-diagonal affinity [8], which is essential to subspace
clustering. On the other hand, we also investigate the L2-norm
for evaluations and the experiment shows that it is relatively
inferior to the L1-norm in our neural network.

C. Optimization

Our model could be optimized in two ways. First, such
as [12], C is treated as a layer stacked on the top of the
neural network, and then, � and C are optimized by the
existing deep learning libraries, such as TensorFlow. Second,
it is decomposed into two subproblems, which is helpful to
the following convergence proof. In this section, we elaborate
the second way.

For ease of presentation, we first rewrite (10) with the
�1-norm as follows:

min
�,ci

n∑
i=1

(1

2

∥∥h(M)
i − H(M)

i ci
∥∥2

F + γ �ci�1

+λ

4

∥∥(
h(M)

i

)�h(M)
i − 1

∥∥2
2

)
(11)

where H(M)
i is a variant of H(M), which is obtained by simply

replacing h(M)
i in H(M) with 0.

Given n data points, DSC-L1 simultaneously learns M
nonlinear mapping functions {W(m), b(m)}M

m=1 and n sparse
codes {ci }n

i=1 by solving (11). As (11) is a multiple-variable
optimization problem, we employ an alternating minimization
algorithm by alternatively updating one of the variables while
fixing the others.

Step 1: Fix ci and H(m)
i , update �, and (11) can be rewritten

as

min
�

1

2

∥∥h(M)
i − H(M)

i ci
∥∥2

2 + αi + λ

4

∥∥(
h(M)

i

)�h(M)
i −1

∥∥2
2 (12)

where αi = ∑
j �=i �h(M)

j − H(M)
j c j�2

2 + λ�(h(M)
i )�h(M)

i − 1�2
2

is a constant.
To solve (12), we adopt the stochastic subgradient

descent (SGD) algorithm to obtain the parameters {W(m),
b(m)}M

m=1. Moreover, we also enforce the �2-norm on the
parameters to avoid overfitting [53], [54].

Step 2: Fix {h(M)
i }n

i=1 and update ci by

min
ci

1

2

∥∥h(M)
i − H(M)

i ci
∥∥2

F + γ �ci�1 + βi (13)

where

βi =
∑
j �=i

(
1

2

∥∥h(M)
j − H(M)

j c j
∥∥2

2 + γ �c j �1

)

is a constant. Note that (13) is a standard �1-minimization
problem faced by SSC, which can be solved by using many
existing �1-solvers [55]. Steps 1 and 2 are repeated until
convergence.

After obtaining C with either the first or the second
optimization way, we construct an affinity matrix via A =
|C| + |C|� and obtain the clustering results based on A.
The aforementioned optimization procedure is summarized in
Algorithm 1.

D. Discussion

Our approach DSC-L1 can provide a satisfactory subspace
clustering performance befitting from the following factors.
First, different from SSC, DSC-L1 performs sparse coding in
a latent representation space learned by the neural network
from data instead of the original one. By transforming into
the latent space, the samples become more favorable for sparse
reconstruction. Note that such an extension is nontrivial since
the proposed objective function also includes learning the
neural network parameters and the induced data representation.
Clearly, it is different from SSC, which only learns the repre-
sentation coefficients. To the best of our knowledge, this could
be one of the first research works attempt to make subspace
clustering benefiting from the development of deep learning.
Furthermore, this article is also complementary with deep
learning since it demonstrates the potential of subspace cluster-
ing to facilitating the development and deployment of unsuper-
vised deep-learning methods and unsupervised deep learning
is a key challenge in deep-learning community [35]. Second,
DSC-L1 can also be deemed as a kernel-based method, which
automatically learns the kernel functions and transformations
in a data-driven way. Considering the demonstrated effec-
tiveness of kernel-based subspace clustering approaches, such
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Algorithm 1 DSC
Input: A given data set X and the tradeoff parameters λ.
// Initialization:
Initialize {W(m), b(m)}M

m=1, and H(0) = X.
for m = 1, 2 · · · , M do

Do forward propagation to get {H(m)}M
m=1 and C via

solving (3) and (13), respectively.
end
// Optimization
while not converge do

for i = 1, 2, · · · , n do
Randomly select a data point xi and let h0

i = xi ,
for m = 1, 2 · · · , M do

Compute h(m)
i via (3).

end
Compute ci using h(M)

i via (13).
for m = M, M − 1 · · · , 1 do

Calculate the gradient using the SGD algorithm.
end
for m = 1, 2, · · · , M do

Update W(m) and b(m) with the gradient.
end

end
end
Output: {W(m), b(m)}M

m=1 and C.

as [24] and [25], DSC-L1 is well expected to show even better
performance for subspace clustering due to the outstanding
representative capacity of deep neural networks.

In the proposed DSC, we do not explicitly minimize the
reconstruction error by adopting an autoencoder structure due
to the following reasons. First, one major goal of subspace
clustering is to obtain a good representation so that similar
inputs could be grouped into the same cluster and dissimilar
inputs are separated into different clusters. As proved in [8],
an �1-norm-based self-expression could enjoy such properties
because it is able to learn a block-diagonal affinity matrix,
i.e., embracing the intracluster compactness and intercluster
scatter. In contrast, autoencoder aims to achieve compressive
representations by exploring the latent structure of each single
data point. If the reconstruction loss is incorporated, one has
to find an optimal tradeoff between the compression and block
diagonality that are induced by the reconstruction and the
self-expression, respectively. Furthermore, we experimentally
found that explicitly optimizing the reconstruction error did
not give better performance. The comparison with DSCN [12]
would support this choice since the only one difference
between our method and DSCN is that DSCN adopts the
structure of autoencoder.

It should be pointed out that the proposed method could
adopt a similar structure with deep metric learning networks
(DMLNs) [56]–[58], i.e., a set of fully connected layers to per-
form nonlinear transformation and then perform specific task
on the output of neural network. The major differences among
them are as follows. First, the objective functions are different.
Our method aims to segment different samples into different

subspaces, whereas these metric learning networks aim to learn
the similarity function that measures how similar or related two
data points are. Second, our DSC-L1 is unsupervised, whereas
DMLNs are supervised approaches, which require the label
information to train neural networks. Furthermore, our method
could also be compatible with other neural networks, such as
convolutional neural networks (CNNs). Such a possibility has
been verified in the following experiments on the raw data.

IV. CONVERGENCE ANALYSIS

Our objective function could be decomposed into two
subproblems [i.e., (12) and (13)]. Clearly, (13) is a standard
�1-norm-based optimization whose convergence property has
been well studied in numerous works [59], [60]. Thus, we only
focus on the convergence property of subproblem (12). Specifi-
cally, we will show that the corresponding loss and the weights
of the neural network keep decreasing at each step under mild
conditions (Conditions 1 and 2).

Although deep learning has achieved remarkable success in
a variety of applications, only a few works [61]–[63] have
analyzed its convergence behavior and all of them focused
on two-layer networks due to two reasons. On the one hand,
a two-layer network could approximate any continuous func-
tion [64]. On the other hand, a multiple-layer network always
involves a nonconvex problem whose convergence behavior
still remains an opening question. Following the setting in
these works and motivated by them, we consider a two-layer
network with the weight �, where the basis b and weight W
are enveloped into � by rewriting � = [W b] without loss of
generality.

For simplicity of presentation, let L be the loss of (12),
L∗ denote the smallest loss, and L∗

t be the smallest loss
found at the t-step so far. Similarly, �∗ denotes the desirable
parametric model. We consider the standard SGD to optimize
our network, that is

�t+1 = �t − ηt∇L(�t ) (14)

where ∇L(�t ) denotes the gradient of L with respect to �t .
In the following, we will alternatively use ∇L(�t ) and ∇Lt

without causing confusion.
Condition 1 (Lipschitz Continuity): A function f (x) is a

Lipschitz continuous function on the set 	, if there exists a
constant 
 > 0 ∀x1, x2 ∈ 	 such that

� f (x1) − f (x2)� ≤ 
�x1 − x2� (15)

where 
 is termed the Lipschitz constant.
Clearly, (12) is the Lipschitz continuity if ∇Lt is upper

bounded by 
, that is

�∇Lt�F ≤ 
. (16)

Under condition (16), we could have the following result.
Theorem 1: Let α = ��1 − �∗�F and �∇Lt�F ≤ 
, and

one could find an optimal model L∗
T , which is sufficiently

close to the desired L∗. Mathematically

L∗
T − L∗ ≤ α + 
2 ∑T

t=1 η2
t

2
∑T

t=1 ηt
. (17)

From Theorem 1, it is easy to obtain Corollaries 1 and 2.
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Corollary 1: For the constant step size (i.e., ηt = η) and
T → ∞

L∗
T − L∗ → η
2

2
. (18)

Corollary 2: For the constant step length (i.e., ηt =
η/�∇Lt�F ) and T → ∞

L∗
T − L∗ → η


2
. (19)

Corollaries 1 and 2 show that the loss will converge to L∗
with a radius of (η
2/2) and (η
/2) within T steps.

Besides, with the Lipschitz continuity, one could
have another convergence property with the following
condition [62].

Condition 2: A function f (x) is called δ-one point strongly
convex in the domain D with respect to x∗, if ∀x ∈ D such
that

�x − x∗�2 ≤ α (20)

�−∇ f (x), x∗ − x > δ�x∗ − x�2
2. (21)

Theorem 2: Suppose that L(�t ) is δ-one point strongly
convex at each step ∀�t ∈ D and satisfies the Lipschitz
condition, and if

��t − �∗�2
F ≤ ηt


2

2δ
(22)

then � will monotonically close to the minimizer �∗ by a
factor of 1 − ηδ, that is

��t+1 − �∗�2
F ≤ (1 − ηtδ)��t − �∗�2

F . (23)

From Theorem 2, Corollaries 3 and 4 are derived.
Corollary 3: For the constant step size (ηt = η), after T

steps and ∀α > 0, �T and LT will sufficiently close to �∗
and L(�∗) by

��T − �∗�2
F ≤ αe− ηδT

2 (24)

and

�LT − L∗�2
2 ≤ 
αe− ηδT

2 . (25)

Corollary 4: For the constant step length (ηt =
η/�∇Lt�F ), after T steps and ∀α > 0, �T and LT

will sufficiently close to �∗ and L(�∗) by

��t − �∗�2
F ≤ αe− ηδT

2
 (26)

and

�Lt − L∗�2
2 ≤ 
αe− ηδT

2
 . (27)

V. EXPERIMENTS

In this section, we compare our method with 17 popu-
lar subspace clustering methods on five different real-world
data sets in terms of four clustering performance metrics.
The experiments consist of two parts, namely, clustering on
handcrafted features and clustering on raw data.

A. Data Sets and Experimental Settings

1) Data Sets: Five different data sets are used in our
experiments, i.e., COIL20 object images [65], COIL100 object
images [65], the MNIST handwritten digital database [66],
AR facial images [67], and the BF0502 video face data
set [68].

1) The COIL20 database contains 1440 samples distributed
over 20 objects, where each image is with the size of
32 × 32.

2) The COIL100 database contains 7200 samples distrib-
uted over 100 objects, where each image is with the size
of 32 × 32.

3) The MNIST data set includes 60 000 handwritten digit
images of which the first 2000 training images and the
first 2000 testing images are used in our experiments,
where the size of each image is 28 × 28.

4) The AR database is one of the most popular facial image
data sets for subspace clustering. In our experiments,
we use a widely used subset of the AR database [69],
which consists of 1400 undisguised faces evenly distrib-
uted over 50 males and 50 females, where the size of
each image is 165 × 120.

5) The BF0502 data set contains the facial images detected
from the TV series Buffy the Vampire Slayer. Follow-
ing [25], a subset of BF0502 is used, which includes
17 337 faces in 229 tracks from 6 main casts. Each
facial image is represented as a 1937-D vector extracted
from 13 facial landmark points (e.g., the left and right
corners of each eye). In our experiments, we use the
first 200 samples from each category, thus resulting
in 1200 images in total.

For a comprehensive investigation, we design two exper-
iments. The first experiment aims to examine the ability of
nonlinear subspace clustering, which is carried out on the
handcrafted features extracted from COIL20, MNIST, and
AR (detailed later). The second experiment aims to show the
effectiveness of the proposed method in learning from raw
data, which is conducted on the full COIL20 and COIL100 raw
data by following the setting in [12].

2) Implementation Details: Here, we introduce the imple-
mentation details of the used activation functions and the
initialization of {W(m), bm}. To be specific, the activation func-
tions can be chosen from various forms. In our experiments,
we use the tanh function for the fully connected network
(see Section V-B) and rectified linear unit (ReLu) for the
convolutional network (see Section V-C).

Regarding the initializations of {W(m), bm}, we initialize
W(m) as a rectangular matrix with ones at the main diagonal
and zeros as other elements. Moreover, b(m) is initialized as 0.

In our implementation, we adopt two popular convergence
criteria, namely, max training epoch (fixed to 100) and con-
vergence threshold (fixed to 103), where the second criterion
is based on the difference in the loss between two continuous
training epochs. Either of these two conditions is satisfied, and
the network is regarded as converged.

In the experiments, we train a DSC-L1 consisting of three
layers, with 300, 200, and 150 neurons respectively. Moreover,
we set λ = 10−3/n, ϕ = 10−3, and the convergence threshold
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as 10−3 for DSC-L1 and adopt early stopping technique
(with respect to the parameter τ ) to avoid overfitting by
following [54], where n is the data size.

3) Baseline Methods: We compare DSC-L1 with 17 clus-
tering methods, i.e., SSC [8], Kernel SSC (KSSC) [24],
LRR [13], low-rank subspace clustering (LRSC) [10], Kernel
LRR [25], LSR [14], SMR [11], low-rank constrained autoen-
coder (LRAE) [44], DSCN [12], DEC [12], and IDEC [45].
LSR has two variants that are denoted by LSR1 and LSR2.
KSSC and KLRR have also two variants that are based on the
RBF function (KSSC1/KLRR1) and the polynomial function
(KSSC2/KLRR2), respectively. LRAE has three variants and
we evaluate the best one in our experiments according to [44].
DSCN has two variants, i.e., DSCN-L1 and DSCN-L2 that
consider �1- and �2-norm-based coefficients, respectively.
Moreover, we have also used the deep autoencoder (DAE)
with SSC as a baseline to show the efficacy of our method.
More specifically, we adopt the pretraining and fine-tuning
strategy [70] to train a DAE that consists of five layers with
300, 200, 150, 200, and 300 neurons. In the experiments,
we investigate the performance of DAE with two popular non-
linear activation functions, i.e., the sigmoid function (DAEg)
and the saturating linear transfer function (DAEs). After the
DAE converging, we perform SSC on the output of the third
layer to obtain the clustering results. For fair comparisons,
we use the same �1-solver (i.e., the Homotopy method [55])
to solve the �1-minimization problem in DSC-L1, SSC, and
DAE. Note that we adopt the Keras implementation1 of
DEC since it experimentally performs better than the MxNet
implementation.

4) Experimental Settings: In the first experiment, we adopt
cross validation for selecting the optimal parameters for all
the tested methods [54].2 More specifically, we equally split
each data set into two partitions and tune parameters using one
partition. With the tuned parameters, we repeat each algorithm
ten times on the other partition and report the achieved mean
and standard deviation of the used clustering performance
metrics. Note that we directly use the tuned parameters γ
(sparsity) and δ (tolerance) of SSC for DSC-L1. If these
two parameters are tuned specifically, the performance of
DSC-L1 could be further improved. In the second experiment,
we directly adopt the setting used in [12].

5) Evaluation Criteria: Like [49], we adopt four popular
metrics to evaluate the clustering performance of our algo-
rithm, i.e., accuracy (ACC) or called purity, normalized mutual
information (NMI), adjusted rand index (ARI), and Fscore.
Higher value of these metrics indicates a better performance.

B. Comparison on Handcrafted Features

For the purpose of nonlinear subspace clustering, we use
the following four types of features extracted from the
COIL20, MNIST, and AR data sets in experiments, i.e., dense
scale-invariant feature transform (DSIFT) [71], the histogram

1https://github.com/XifengGuo/DEC-keras
2The following parameters are tuned with the cross-validation technique:

DSC-L1 (μ and τ ), SSC (γ and δ), KSSC (γ and δ), DAE (γ and δ), LRR
(λ), KLRR (λ), LRSC (λ), LSR (λ), SMR (α and k), LRAE (λ1 and λ2), and
IDEC (γ ).

of oriented gradients (HOG) [72], local binary pattern
(LBP) [73], and local phase quantization (LPQ) [74]. The
details of extracting these features are introduced as follows.

1) DSIFT: We divide each image into multiple nonoverlap-
ping patches and then densely sample SIFT descriptors
from each patch. The patch sizes of AR, COIL20,
and MNIST are set as 15 × 15, 8 × 8, and 4 × 4,
respectively. By concatenating these SIFT descriptors
extracted from each image, we obtain a feature vector
with the dimension of 11 264 (AR), 2048 (COIL20), and
6272 (MNIST).

2) HOG: We first divide each image into multiple blocks
with two scales, i.e., 8 × 8 and 4 × 4 for AR and 4 × 4
and 2 × 2 for MNIST and COIL20. Then, we extract a
9-D HOG feature from each block. By concatenating
these features for each image, the dimensions of the
feature vector are 13 770 (AR), 2205 (MNIST), and 2880
(COIL20).

3) LBP: Like DSIFT, we divide each image into multiple
nonoverlapping patches and then extract LBP features
using eight sampling points on a circle of radius 1.
Thus, we obtain a 59-D LBP feature vector from each
patch. By concatenating the descriptors of each image,
we obtain a feature vector with the dimensions of 7788
(COIL20) and 2891 (MNIST).

4) LPQ: The patch size is set as 8 × 8 for COIL20 and
MNIST. For all the tested data sets, we set the size of
the LPQ window as 3, 5, and 7. By concatenating the
features of all patches of each image, the dimension of
each feature is 12 288 for COIL20 and 6912 for MNIST.

For computational efficiency, we perform the principle com-
ponent analysis (PCA) to reduce the dimension of handcrafted
features of all data sets to 300 by following [8] and [56].

In this evaluation, DSC-L1 adopts a fully connected network
that consists of five layers with 300, 200, 150, 200, and
300 neurons, where the last two layers are discarded after
initialization. To achieve the nonlinear mapping, the tanh
function is used as the activation function. Note that the
first experiment will compare our method with all tested
approaches excepted DSCN [12] since it is based on the CNN
and cannot handle the handcrafted features.

1) On COIL20: We first investigate the performance of
DSC-L1 using the COIL20 data set. Tables I and II report
the results from which one can see that the following.

1) DSC-L1 consistently outperforms other tested methods
in terms of all of the used performance metrics. Regard-
ing the used four features, DSC-L1 achieves at least
1.86%, 2.09%, 0.96%, and 3.52% relative improvement
over the ACC of the best baseline.

2) SSC usually outperforms DAEs and DAEg, whereas our
DSC-L1 method consistently outperforms SSC in all the
settings. This shows that it is hard to achieve a desirable
performance by simply introducing deep learning into
subspace clustering since unsupervised deep learning is
an open challenging issue [35].

3) DEC slightly outperforms IDEC in some cases,
e.g., on the DSIFT and HOG features. We assume that
such a performance advantage should attribute to the
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TABLE I

CLUSTERING RESULTS ON THE COIL20 DATA SET. RESULTS IN BOLDFACE ARE SIGNIFICANTLY BETTER THAN
THE OTHERS, ACCORDING TO THE T-TEST WITH A SIGNIFICANCE LEVEL AT 0.05

TABLE II

CLUSTERING RESULTS ON THE COIL20 DATA SET. RESULTS IN BOLDFACE ARE SIGNIFICANTLY BETTER

THAN THE OTHERS, ACCORDING TO THE T-TEST WITH A SIGNIFICANCE LEVEL AT 0.05

Keras Implementation by the IDEC authors. However,
one will see that IDEC is still superior to DEC on such
as the LBP feature and the BF0502 data set.

2) On MNIST: We also investigate the performance of
DSC-L1 by using the MNIST data set.

Tables III and IV show the result, from which one could
obverse that the ACC of DSC-L1 with the DSIFT feature is
72.65%, which improves SSC by 10.20% and the best baseline
algorithm by 3.50%. With respect to the other three features,
the improvement of DSC-L1 compared with all the baseline
approaches is also significant, which is 1.82%, 1.02%, and
1.71% in terms of ARI. It should be pointed out that all the
tested methods perform very stable on this data set, whose
standard deviations on these four performance metrics are
close to 0.

C. Comparisons on Raw Data

In this section, we carry out experiments on raw data from
the full COIL20 and COIL100 data sets and compare DSC
with a very recently proposed deep-learning-based method,
i.e., DSCN [12]. As it has been shown that DSCN significantly

outperforms the popular methods, including LRR, LRSC,
SSC, DAE+SSC, and KSSC on these two data sets [12],
we only compare the performance of DSCN, DSC, and the
corresponding DAE.

For fair comparisons, we directly adopt the experimental
setting used in [12]. In detail, the deep learning library is
TensorFlow, the optimizer is Adam [75], the CNN with ReLU
is used as the backbone, and the same network structure
is used for DSC and DSCN. The network consists of two
convolutional layers and one fully connected layer. The kernel
size is set to 3 for COIL20 and 5 for COIL100, and the
hidden fully connected layer size is fix to 15 for COIL20 and
50 for COIL100, respectively. In the horizontal and verti-
cal directions, the stride is fixed to 2. Moreover, the well-
tuned parameters for DSCN are also used for our DSC.
In other words, we do not specifically tune hyperparameters
of our model on the evaluated two data sets. As DSCN
has two variants that are based on the �1- and �2-norm,
we also develop two variants of DSC by considering these two
norms as discussed in Section III-B, denoted by DSC-L1 and
DSC-L2.
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TABLE III

CLUSTERING RESULTS ON THE MNIST DATA SET. RESULTS IN BOLDFACE ARE SIGNIFICANTLY BETTER THAN
THE OTHERS, ACCORDING TO THE T-TEST WITH A SIGNIFICANCE LEVEL AT 0.05

TABLE IV

CLUSTERING RESULTS ON THE MNIST DATA SET. RESULTS IN BOLDFACE ARE SIGNIFICANTLY BETTER THAN THE OTHERS,
ACCORDING TO THE T-TEST WITH A SIGNIFICANCE LEVEL AT 0.05

TABLE V

COMPARISONS ON RAW DATA. RESULTS IN BOLDFACE ARE SIGNIFICANTLY BETTER THAN THE OTHERS, ACCORDING TO THE T-TEST

WITH A SIGNIFICANCE LEVEL AT 0.05. THE RESULT ON THE LAST TWO ROWS ARE DIRECTLY REFERRED FROM [12]

Besides our implementation results, Table V also reports
the performance of DSCN demonstrated in [12]. One could
see that our methods achieve the best result on these two
data sets. In terms of ACC, for example, DSC is +1.84%
at least higher than DSCN on COIL20 and the corresponding
gap on COIL100 is about +1.95%.

D. Deep Model Versus Shallow Models

In this section, we investigate the influence of the depth of
DSC-L1 using the AR data set with DSIFT and HOG features.

More specifically, we report the performance of DSC-L1 with
three hidden layers (M = 3), two hidden layers (M = 2),
and one hidden layer (M = 1). In the case M = 3, the
number of new hidden neurons is set as 200. In the case
M = 1, the number of hidden neurons is set as 150. Note that
KSSC1 and KSSC2 can be regarded as two shallow models
of SSC with one nonlinear hidden layer.

Table VI shows the clustering results of the tested methods,
as well as the tuned parameters. We observe that our DSC-L1
(M = 2) consistently outperform the shallow models in
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TABLE VI

DEEP VERSUS SHALLOW MODELS ON THE AR DATA SET. RESULTS IN BOLDFACE ARE SIGNIFICANTLY BETTER THAN
THE OTHERS, ACCORDING TO THE T-TEST WITH A SIGNIFICANCE LEVEL AT 0.05

terms of all of these evaluation metrics. The results also
verify our claim and motivation, i.e., our deep model DSC-L1
significantly benefit from deep learning.

E. Influence of Different Activation Functions

In this section, we investigate the influence of different
nonlinear activation functions in DSC-L1. The investigated
functions are sigmoid, nonsaturating sigmoid (nssigmoid),
the ReLu [76], and the leaky relu [77]. We carry out th
experiment on the BF0502 data set that contains the facial
images detected from the TV series Buffy the Vampire Slayer.

From Table VII, one can observe that DSC-L1 with differ-
ent activation functions outperforms SSC by a considerable
performance margin. With the sigmoid function, DSC-L1 is
about 3.17%, 4.18%, 9.32%, and 2.96% higher than SSC in
terms of ACC, NMI, ARI, and Fscore, respectively. It is worth
noting that although tanh is not the best activation function,
it is more stable than the other activation functions in our
experiments. Thus, we use the tanh function as the activation
function for comparisons, as shown in Section V-B.

F. Convergence Analysis and Time Cost

In this section, we examine the convergence speed and time
cost of our DSC-L1 on the BF0502 data set. From Fig. 2,
we can see that the loss of DSC-L1 generally keeps unchanged
after 90–100 epochs, i.e., achieving the convergence. For each
epoch, DSC-L1 takes about 2.2 s to obtain the results on
a MacBook with a 2.6-GHz Intel Core i5 CPU and 8-GB
memory. Like other deep-learning-based methods, the compu-
tational cost of DSC-L1 can be remarkably reduced by GPU.

VI. CONCLUSION

In this article, we proposed a new deep-learning-based
framework (i.e., DSC) for simultaneous data representation
learning and subspace clustering. Experimental results show
the efficacy of our method on the facial, object, and hand-
written digit image data set in terms of four performance
evaluation metrics.

TABLE VII

INFLUENCE OF DIFFERENT ACTIVATION FUNCTIONS OF
DSC-L1 ON THE BF0502 DATABASE

Fig. 2. Convergence curve and time cost of DSC-L1. The left y-axis indicates
the loss at each epoch and the right one is the total time cost taken by our
method.

In the future, we plan to investigate the performance of our
proposed framework when adopting other loss/regularization
functions and extend our proposed framework for other
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applications, such as weakly supervised learning. Furthermore,
although we have proved the convergence property of DSC,
the proof is based on the popular two-layer network setting.
For more complex cases such as multilayer network, the con-
vergence property still remains opening and challenging.
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