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Zero-Shot Image Dehazing
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Abstract— In this article, we study two less-touched challenging
problems in single image dehazing neural networks, namely, how
to remove haze from a given image in an unsupervised and zero-
shot manner. To the ends, we propose a novel method based
on the idea of layer disentanglement by viewing a hazy image
as the entanglement of several ‘“‘simpler’ layers, i.e., a hazy-free
image layer, transmission map layer, and atmospheric light layer.
The major advantages of the proposed ZID are two-fold. First,
it is an unsupervised method that does not use any clean images
including hazy-clean pairs as the ground-truth. Second, ZID is
a “zero-shot” method, which just uses the observed single hazy
image to perform learning and inference. In other words, it does
not follow the conventional paradigm of training deep model on
a large scale dataset. These two advantages enable our method
to avoid the labor-intensive data collection and the domain shift
issue of using the synthetic hazy images to address the real-world
images. Extensive comparisons show the promising performance
of our method compared with 15 approaches in the qualitative
and quantitive evaluations. The source code could be found at
wWwWw.pengxi.me.

Index Terms— Single image dehazing, unsupervised, zero-shot.

I. INTRODUCTION

AZE is a typical atmospheric phenomenon in which the
dust, smoke, and other dry particles obscure the sky.
These floating particles greatly absorb and scatter the light,
leading to poor contrast and loss of details. Besides the poor
visual quality, many vision tasks such as object detection
would suffer from performance degradation due to the bad
visibility of hazy images. Therefore, as an important visual
enhancement technology, image dehazing has been extensively
studied and achieved remarkable performance [1]—[8].
In recent, the focus of the community has shifted to detect-
ing and removing haze from a single image [1], [2], [5]. Such a
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so-called single image dehazing aims to eliminate the scattered
light to increase scene visibility and recover haze-free scene,
and most of them employ a widely recognized atmospheric
scattering model [9]. To estimate the global atmospheric light
and the pixel-wise transmission coefficient of the atmospheric
scattering model, a variety of methods have been proposed,
which could be roughly divided into prior- and learning-based
methods.

Prior-based methods are mainly based on some handcrafted
priors derived from the image [2], [5], [10]-[13]. For instance,
Tan [14] proposes dehazing by maximizing the local con-
trast of the image, based on the assumption that the clean
images are usually more contrast than the hazy images.
Berman et al. [11] propose a non-local image dehazing method
(NLD) based on the assumption that the colors of a haze-free
image could be well approximated by a few hundred distinct
colors, thus forming tight clusters in RGB space for dehazing.
Zhu et al. [5] propose color attenuation prior (CAP) that
haze will decrease the image saturation and simultaneously
increase the brightness. Although remarkable performance has
been achieved by these methods, haze removal quality heavily
depends on the consistency between the adopted prior and real
data distribution

To alleviate the dependence on the predetermined prior,
a lot of efforts have been devoted to designing data-driven
methods based on deep neural networks [1], [3], [4], [6], [7],
[15]. Different from the prior-based method, the data-driven
method does not employ handcrafted prior that is assumed
to exist in images. Instead, it detects and removes the haze
from a single image by directly learning the atmospheric
scattering parameters from training data and building the
mapping between a hazy image and the corresponding clean
one. For example, Cai et al. [1] propose a trainable convolution
neural network which is trained on a large-scale hazy-clean
image pair database. More specifically, it takes a hazy image
as the input and outputs the corresponding transmission map
which is further used to recover the hazy-free image.

Although data-driven methods have achieved state-of-the-
art performance in single image dehazing, they have suffered
from the following limitations. To be specific, almost all of
them require a large scale hazy-clean image pairs to train
their models, and such a requirement is usually satisfied
by artificially synthesizing hazy images through the phys-
ical model with the handcrafted parameters and the clean
image. As pointed out in [16], the synthesized database is
less informative and inconsistent with the real hazy images,
thus leading to the so-called domain shift issue. Therefore,
it is highly expected to develop unsupervised and “zero-shot”
models, where “unsupervised” avoids the collection of the
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image pairs and “zero-shot” avoids using the information
beyond the observed single hazy image itself covered. To the
best of our knowledge, such an idea however is less touched
so far.

To this end, we propose a Zero-shot Image Dehazing
method (ZID). Our idea comes from the elegant assumption
of layer disentanglement which views an image as an entan-
glement of several “simpler” layers/factors. Considering the
dehazing task, we specifically view the clean image, transmis-
sion map and atmospheric light as three layers that entangle
together to form the hazy image. With this idea, the proposed
ZID employs three joint subnetworks to disentangle the input
hazy image into these three layers, thus recovering the clean
image and estimating the haze.

Our method embraces the powerful representative capacity
of neural networks, which however is significant different
from most of existing deep learning based methods [1], [3],
[4], [6], [15], [17]-[19] in the following aspects: 1) the
proposed ZID works in an unsupervised rather than supervised
manner. In other words, our method does not need the hazy-
clean pair images, which avoids the intensive labor for image
collection. Though a hint is used to train one subnetwork
of our model, it is estimated from the hazy image and no
ground-truth is needed; 2) ZID is a ‘“zero-shot” method.
In other words, our method does not require training on a
dataset like these existing models. Instead, it only exploits the
information contained in the observed single hazy image. It is
worth noting that the definition of “zero-shot” in our paper is
different from the conventional zero-shot learning used in the
classification scenario. In brief, the vanilla zero-shot learning
often refers to training a model on a dataset and then using
the model to predict the unseen categories, whereas our zero-
shot setting only refers to using the observed single image
and no additional data set are needed. These two differences
make our method avoid the labor-intensive data collection and
the domain-shift issue of using the synthetic hazy images to
address the real-world images.

To summarize, the contributions of this work are given as
follows:

o To the best of our knowledge, this work could be one
of the first unsupervised and zero-shot deep models for
image dehazing. In brief, the proposed method removes
haze in an end-to-end manner and does not need extra
information beyond the observed hazy image. Note that,
the most similar method with our idea may be [20] which
is however with significant difference from this work (see
Section II for details).

o A jointly learned neural network (i.e., ZID) is proposed,
which consists of three joint disentanglement subnet-
works. In brief, two convolutional auto-encoders are used
to obtain the clean image and the transmission map, and a
variational auto-encoder is used to obtain the atmospheric
light.

II. RELATED WORK

Most single image dehazing approaches are based on the
atmospheric scattering model and their difference mainly lies
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in the estimation approach of the pixel-wise transmission
coefficients and the atmospheric light. Accordingly, most of
them could be classified into two categories, i.e., prior- and
learning-based methods or called data-driven methods. In this
section, we will briefly discuss some typical works of these
categories.

A. Prior-Based Methods

To estimate the under-constrained haze generation model,
a large number of works adopted various hand-crafted image
priors to cast the dehazing as an energy minimization problem.
These prior-based methods [2], [5], [11], [14] usually require a
non-trivial optimization scheme and the dehazing performance
largely depends on the consistency between the adopted prior
and the data distribution. In practice, however, these priors
would be easily violated, especially, when the background is
complex or the illumination is irregular. For example, dark
channel prior (DCP) [2] assumes that most local patches in
outdoor haze-free images have at least one dark channel whose
intensity is close to zero. For the sky region or bright objects
which are similar to the atmospheric light, DCP cannot achieve
the encouraging result.

Different from existing prior-based approaches, the pro-
posed ZID does not depend on the handcrafted priors, thus
avoiding the performance degradation due to the inconsis-
tency between the prior and data distribution. Note that, ZID
employs some latent structures to supervise the subnetworks,
which however adopts a data-driven rather than handcrafted
way. Moreover, almost all these prior-based approaches are
based on shallow models, whereas our ZID is a deep neural
network.

B. Learning-Based Methods

Motivated by the success of deep learning, some recent
works [1], [3], [4], [6], [15], [17], [21]-[29] employ a deep
neural network to recover the clean image from a given hazy
image in a data-driven way. For example, DehazeNet [1]
recovers the haze-free images under the help of the haze-
clean image pairs. Multi-scale Convolutional Neural Network
(MSCNN) [3] consists of a coarse-scale net which learns a
holistic transmission map based on the entire image, and a
fine-scale net which locally refines the dehazed results.

Although our method is also a deep learning based method,
it is remarkably different from existing approaches in the
following aspects. First, most existing learning-based methods
work in a supervised manner, whereas the proposed ZID
is an unsupervised approach. To be specific, almost all of
these methods [1], [3], [4], [6], [15], [17] try to learn a
haze removal model by taking the hazy image as the input
and the clean image as the label to train the neural network.
In contrast, our ZID only takes the hazy image as the input and
does not require the ground truth clean image. Second, these
learning-based methods usually train a neural network using
an image collection, whereas our method only requires a single
image. Note that, some existing methods such as [4] have also
explicitly utilized the layer disentanglement idea, however,
almost all of them are supervised approaches and trained on a
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large scale dataset, which are significantly different from this
work.

C. Advances in Unsupervised and Zero-Shot Methods

Recent years, some unsupervised deep methods [20], [30]—
[34] have attracted some attentions in image enhancement and
restoration. For instance, Noise2Noise (N2N) [30] leverages
the basic statistical reasoning to signal reconstruction by only
using the degraded images. Deep image Prior (DIP) [32]
finds out that most image statistics are captured by the
structure of the convolutional image generator instead of the
learning process. Based on this observation, DIP proposes
a new approach to recover a clean image using the early-
stopping strategy with a CNN-like structure. Though both N2N
and DIP have made great progress in image enhancement,
there are still some limitations in practice. For example,
their performance largely depends on either specially designed
datasets or an uncertain early-stopping strategy. Moreover,
they are not specifically designed for image dehazing, thus
might result in undesirable experimental results.

It is worth noting that ZID remarkably differs from Double-
DIP [20] on mainly two aspects. Firstly, the loss function
is remarkably different. In brief, our method leverages the
property of dark channel by minimizing it into the loss of the J-
Net, whereas Double-DIP does not. Secondly, the observation
and the working mechanism are totally different. Based on
the properties of DIP, Double-DIP adopts three U-Net-like
networks, which are similar to DIP. Double-DIP feeds three
random noises as inputs into the networks to fit the clean
image, transmission map and the global airlight. While ZID
is based on the layer disentanglement idea and assumes that
haze is a special type of content-independent noise. Based on
these assumptions, our method adopts a variational module and
directly feeds the hazy image into three subnetworks to disen-
tangle different layers. Moreover, ZID is also different from
YOLY [34] in the following two aspects. On the one hand,
the loss function is totally different. Specifically, ZID proposes
a DCP-like loss to train J-Net, whereas YOLY leverages the
property of color attenuation prior (CAP). Moreover, ZID
enforces the smooth regularization on the output of both T-Net
and A-Net, whereas YOLY only enforces the regularization on
A-Net. On the other hand, the network structure is different.
ZID adopts a U-Net-like structure [32], whereas YOLY is
based on a non-degenerate architecture [35].

IIT. PROPOSED METHODS

In this section, we introduce the proposed ZID model which
consists of a clean image estimation network (J-Net), a trans-
mission map estimation network (T-Net), and an atmospheric
light estimation network (A-Net). For clarity, we will first
introduce the proposed loss function and then elaborate the
implementation details of each subnetwork.

A. The Loss Function

Our idea comes from the observation on the widely-used
atmospheric scatter model which describes that the hazing
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(c) Our ZID

(d) Transmission Map

Fig. 1. A real world single image haze removal example of the proposed ZID.
ZID performs a better visual results compared with DehazeNet [1]. Zooming-
in is recommended for the comparisons in more details.

process could be regarded as the entanglement of different
factors. Formally,

I(x)=J(x)t(x)+ A —1(x)) €))

where /(x) and J(x) denote the hazy and the clean image,
t(x) is the medium transmission map and A is the global
atmospheric light on each pixel coordinates. Although some
works have pointed out that the core of recovering the clear
image from its hazy version is to estimate the parameters in
Eq.(1) and some methods [4] have been proposed based on
the layer disentanglement idea. To the best of our knowledge,
however, there is few efforts have been devoted to developing
unsupervised deep methods so far.

In this article, to estimate these parameters from a single
image without the help of the ground truth and additive
image collection, we proposed ZID which consists of three
joint learning subnetworks as shown in Fig. 2. These three
subnetworks, i.e., a clean image estimation network f;(-) (J-
Net), a transmission map estimation network fr(-) (T-Net),
and an atmospheric light estimation network f4(-) (A-Net),
are jointly trained via the following loss function

L= Lrec+ La~+ Ly + LReg. (2)

where Lg,. is the reconstruction loss between the input hazy
image x and the reconstructed hazy image I(x), L4 is the
loss on the estimated atmospheric light, £; is the statistics-
based loss on the estimated hazy free image, and Lg.g is
the regularization term on the outputs of the subnetworks.
We elaborate these three terms and the related subnetworks
as follows.

To be specific, L. aims to disentangle each hazy image
into different “simpler” layers by minimizing

Liec = 11 (x) = xlp, 3)

where || - ||, denotes p-norm of a given data matrix. In this
article, we simply adopt Frobenius norm. For a given hazy
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Fig. 2. The framework of our proposed ZID. ZID includes three parts: clean
(T-Net), and the atmospheric light estimation network (A-Net).

image estimation network (J-Net), the transmission map estimation network

TABLE I
RESULTS ON THE SYNTHETIC INDOOR DATABASE (SOTS). THE BOLD NUMBER INDICATES THE BEST METHOD OF EACH CATEGORY OF METHODS

Metrics Supervised Methods Unsupervised Methods
DehazeNet MSCNN  AOD-Net CAP DCP FVR BCCR  GRM NLD N2N DCPLoss

PSNR 21.14 17.57 19.06 19.05 16.62 15.72 16.88 18.86 17.29 14.49 19.25

SSIM 0.8472 0.8102 0.8504 0.8364 | 0.8179 0.7483  0.7913  0.8553  0.7489  0.7078 0.8320
Metrics Zero-Shot Methods

N2V DIP DD DDIP Ours
PSNR 10.67 12.28 11.92 16.97 19.83
SSIM 0.5397 0.5782 0.6404 0.7147  0.8353
TABLE II

RESULTS ON THE SYNTHETIC OUTDOOR DATABASE (HSTS). THE BOLD NUMBER INDICATES THE BEST METHOD OF EACH CATEGORY OF METHODS

Supervised Methods

Unsupervised Methods

Metrics 45 eNet ~ MSCNN  AOD-Net CAP | DCP FVR  BCCR GRM  NLD N2N  DCPLoss
PSNR 24.48 18.64 20.55 2153 | 1484 1448 1508 1854 18902 - 24.44
SSIM 0.9153 0.8168 0.8973  0.8726 | 0.7609 0.7624 0.7382 0.8184  0.7411 - 0.9330
Metrics Zero-Shot Methods

N2V DIP DD DDIP _ Ours
PSNR 11.79 1455 14.66 2091 22.65
SSIM 0.5450 0.5573 0.6409  0.8842  0.9011

image x, I(x) is computed using the outputs of the three
subnetworks via Eq.(1). Clearly, Lgo. could constrain the
entire network including the subnetworks to well reconstruct
the hazy image after layer disentanglement. In other words,
it guides the layer disentanglement through incorporating the
haze creation process. Furthermore, it provides a supervisor to
train our T-Net given J-Net and A-Net.

Different from Lgec, £4 only involves A-Net rather than
all the three subnetworks, which aims to disentangle the
atmospheric light from x only using variational inference [36].
In mathematical,

La=Ly+ Lk )

Authorized licensed use limited to: SICHUAN UNIVERSITY. Downloaded on

where Lp is the loss between the disentangled atmospheric
light f4(x) and the initial hint A(x). Note that, f4(x) and
A(x) are different from A in Eq.(1). In brief, A is the
“absolutely accurate” global atmospheric light, f4(x) denotes
the estimation given by our A-Net for the input x, and A(x)
is the initial hint which is automatically estimated from data.
With the above notations, we have

Ly =falx) = AX)F, (5)

and Lk is the Kullback-Leibler divergence which enforces
the latent variables z € [yz,azz] be consistent with a nor-
mal Gaussian distribution N(0, 7). To enjoy the end-to-end
optimization using the standard stochastic gradient methods,
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the reparameterization trick is performed on the variational
lower bound to yield a lower bound estimator that can be
straightforwardly optimized using standard stochastic gradient
methods, then we have

Lkr = KLN (uz, ) IIN(0, 1))
1
52 () +02)* =1 log(e:)?)  (©)

where z; denotes that the i-th dimension of z and z is learned
from the input x.

The loss L£4 is designed based on the following observa-
tions or assumptions. To be specific, Eq.(1) illustrates that
the haze generation process depends on the transmission map
t(x) and the atmospheric light A which are image content
dependent and independent, respectively. More specifically,
t(x) could be simplified as 7(x) = ¢ ?¢®), where p is the
medium extinction coefficient and d(x) is the scene depth.
In this article, we assume that A is latently sampled from
a Gaussian distribution. As a result, we progressively pass
the hazy image x into a neural network to obtain the latent
code z of the atmospheric light f4(x), and then enforce z is
recursively sampled from a Gaussian distribution N (u_, azz)
via minimizing Lk, as defined in Eq.(6).

J-Net aims to decompose the hazy image x into the clean
image I (x) with the following loss:

L;=]| min (J€ 7
7= ce{r,g,b}( ONMp @)

where J€(-) is the c-color channel of y and y is a local patch
of the J-Net output J(x). With such a so-called dark channel
loss [2], J-Net incorporates the statistical properties from the
recovered “clean images”, thus avoiding an explicit ground
truth on the recovered image. It should be pointed out that,
[16] has recently incorporated the dark channel loss into a
neural network, which is remarkably different from our work
in the following two aspects. On one hand, DCPLoss [16] uses
the corresponding transmission map of the prior as supervisor
to compute empirical loss, while our ZID formulates the statis-
tical properties of dark channel prior into our loss to estimate
clean images. As a result, our method could avoid performance
degradation as shown in our quantitative comparisons. On the
other hand, our ZID is a joint learning neural network which
enjoys the zero-shot merit as the aforementioned, whereas [16]
still requires training on a large scale dataset.

To increase the stability of our model, we enforce the
following regularization on the outputs of T-Net and A-Net,
i.e., fao(x) and fr(x). Mathematically,

Lreg = M Ls(fa(x)) + 22Ls(fr(x)), (8)

where {xli}l.zzl > 0 are the balanced factor. Lg(f4(x)) and
Ls(fr(x)) are with the same form, which are defined as the
norm of its Laplacian, i.e.,

1 m
Ls(x) = > i
i=1

where N (x;) is the second order neighborhood of x;, |N (x;)]
is the neighborhood size, and m denotes the pixel number

_
[N (x;)]

> ©)

VieN(x;)
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of x. Clearly, the regularizations play a role of mean filtering,
which enforce A(x) and 7 (x) to be smooth. Note that, the high-
frequency details of the recovered haze-free image will lose if
the above regularization is enforced on the output of J-Net.

B. Network Architecture and Implementation

In this section, we elaborate the network structure and the
implementation of our ZID. As shown in Fig.(2), given a hazy
image x as the input, we simultaneously feed it into J-Net, T-
Net, and A-Net to disentangle x into the layer of the clean
background, the transmission map, and the atmospheric light.
With the outputs of these three networks, we reconstruct the
hazy image /(x) at the top of ZID through the atmospheric
scattering physical model.

As the aforementioned discussion, the clean background
and the transmission map are dependent on the input x.
Hence, we adopt a similar network structure for J-Net and
T-Net. More specifically, J-Net and T-Net take a U-Net type
architecture with the skip-connections by following [32]. The
only difference between J-Net and T-Net lies in the top
layer. To be specific, J-Net and T-Net are with three and one
output channel, respectively. More details could refer to our
supplementary materials.

As the global atmospheric light is independent of the image
content, which is assumed latently sampling from a Gaussian
distribution. Therefore, to implement our A-Net, we adopt
a variational auto-encoder [36] structure which consists of a
CNN-based encoder, a symmetric decoder, and an intermedia
block. To be specific, both the encoder and the decoder consist
of four blocks. In the encoder, the blocks are composed of a
convolutional layer, a ReLU activation function [37], and a
max pooling layer in sequence. In the decoder, the blocks
sequentially perform upsampling, convolution, batch normal-
ization [38], and ReLU activation. To learn the latent Gaussian
model, the intermedia block will transform the output (i.e.,
z) of the encoder to the mean (x;) and variance (azz) of
a Gaussian distribution through minimizing Eq.(6), namely,
7z —> {uz, 012}. With the help of the reparameterization trick,
we obtain a reconstruction of the latent code through resam-
pling from the Gaussian distribution, namely, N (x, azz) — Z.
After that, Z is fed into the decoder to obtain the disentangled
atmospheric light f4(x) via minimizing Eq.(5). Note that,
we optimize ZID including A-Net, J-Net, and T-Net in an end-
to-end manner, and the above introduction (seems like separate
steps) is just for better clarity.

IV. EXPERIMENTS

We carry out experiments on two synthetic datasets and one
real-world dataset by comparing with 15 baseline methods in
terms of two performance metrics. In the following, we will
first demonstrate the experimental setting and then show the
qualitative and quantitative results on synthetic and real-world
datasets. Then, we will conduct an ablation study and make
an experiment to evaluate the influence of parameters.

A. Experimental Settings

In this section, we introduce the details of the used datasets,
baselines, evaluation metrics, and implementations.
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Fig. 3. Comparisons of the SOTA dehazing methods on SOTS. From the left to the right column (i.e., Figs. ((a)-3(1))), the input hazy image, DehazeNet [1],
MSCNN [3], AOD-Net [6], DCP [2], N2N [30], N2V [31], DIP [32], DCPLoss [16], DDIP [20], our ZID and the ground truth are presented. Some areas are
highlighted by red rectangles and zooming-in is recommended for a better visualization and comparison.

wm—-—'

@ ® ) o) D)

)

Fig. 4. Comparisons of the SOTA dehazing methods on HSTS. From the left to the right column (i.e., Figs.(4(a)—-4(k))), the input hazy image, DehazeNet [1],
MSCNN [3], AOD-Net [6], DCP [2], N2V [31], DIP [32], DCPLoss [16], DDIP [20], our ZID and the ground truth are presented. Zooming-in is recommended

for a better visualization.

Fig. 5.
image, DehazeNet [1], MSCNN [3], AOD-Net [6], DCP [2], N2V [31], DIP [2], DCPLoss [16], DDIP [20] and our method are presented. Some areas are
highlighted by red rectangles and zooming-in is recommended for a better visualization and comparison.

1) Datasets: We conduct experiments on a recent large
scale dataset, called REalistic Single Image DEhazing
(RESIDE) [39] which contains two testing subsets, i.e., SOTS
and HSTS. In brief, SOTS consists of 500 indoor hazy
images which are synthesized using the physical model with
handcrafted parameters. HSTS is an outdoor dataset consisting
of 10 synthetic hazy images and 10 real-world hazy images
captured from different scenes. What’s more, we also manually
collect 10 hazy real-world images from the Internet for a more
comprehensive investigation.

Comparisons of the SOTA dehazing methods on the Real-World Dataset. From the left to the right column (i.e., Figs.(5(a)-5(j))), the input hazy

2) Baselines: For comprehensive comparisons, we compare
the proposed ZID with 15 methods which are divided into
three groups, namely, four supervised methods and 11 unsuper-
vised methods. To be specific, the supervised methods contain
DehazeNet [1], MSCNN [3], AOD-Net [6] and CAP [5]. Note
that CAP needs using the depth information of the corre-
sponding clean image, which is thus classified into supervised
methods. Regarding the unsupervised family, seven classical
unsupervised methods and four recent proposed zero-shot
methods are investigated. In details, the classic unsupervised
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Fig. 6.

Comparisons of the SOTA dehazing methods on the Real-World scenes. From the left to the right column (i.e., Figs.(6(a)-6(j))), the input hazy

image, DehazeNet [1], MSCNN [3], AOD-Net [6], DCP [2], N2V [31], DIP [2], DCPLoss [16], DDIP [20] and our method are presented. Some areas are
highlighted by red rectangles and zooming-in is recommended for a better visualization and comparison.

approaches are DCP [2], FVR [13], BCCR [12], GRM [40],
NLD [11], Noise2Noise (N2N) [30] and DCPLoss [16], and
the zero-shot methods are Noise2Void (N2V) [31], DIP [32],
DeepDecoder (DD) [33], and Double-DIP (DDIP) [20].
Among these unsupervised methods, it should be pointed out
that only N2V, DD, DIP, DDIP, and our ZID do not require
training data, i.e., they are so-called zero-shot models which
only use the given single sample. Note that, the training data
partitions of RESIDE are used for the above “trained” methods
and the testing partitions are used for inference, whereas
the “zero-shot” methods including ours only use the testing
partitions.

3) Evaluation Metrics: Like [3], [6], [15], [20], two
popular metrics are used in quantitative comparisons, ie.,
PSNR and SSIM. Higher value of these metrics, better
performance.

4) Experimental Configurations: We conduct experi-
ments on two NVIDIA GeForce RTX 2080Ti GPU in
PyTorch. We employ the ADAM optimizer [41] with the
default learning rate and the maximal iteration of 500. We
set the initial learning rate to 0.001 and do not resize input
images. ZID does not use any image augmentation technolo-
gies as well. For reproducibility, we do not exhaustively tune
parameters for our method. Instead, we simply fix 4; = 0.1
and Ay = 0.005 of Eq.(8) for all the evaluations. To initial-
ize the hint, [2] is used. Regarding some of the baselines,
we directly refer to the best result reported in the original
works. For the baselines without the corresponding results,
we implement experiments by using the source codes provided

by the authors and adopting their parameter settings. Our code
will be released on Github.

B. Comparisons on Synthetic Datasets

Table I and Fig. 3 report the quantitative and qualitative per-
formance comparisons on the synthetic indoor SOTS dataset.
Note that, we do not illustrate the visualization results of FVR,
BCCR, GRM, NLD and DD considering the space limitation.
From the results, one could have the following observations.
First, Table I shows that ZID remarkably outperforms all
unsupervised methods. In brief, it is 0.58 and 2.86 higher
the best classic unsupervised method (DCPLoss) and the
best zero-shot method (DDIP) in PSNR, respectively. Second,
Despite the zero-shot and unsupervised characteristics of our
ZID, its performance could be superior to all supervised
methods excepted DehazeNet in the quantitative comparison.
Note that, although ZID achieves a slightly lower PSNR and
SSIM compared with DehazeNet, it demonstrates a better
visualization result as shown in Fig. 3. For example, relatively,
DehazeNet does not well remove the haze in the second image.
It indicates the inconsistency between the evaluation metrics
and the perceptual quality, as explained in [42]. In brief,
the models which excel at minimizing the reconstruction error
tend to produce visually unpleasing results, while models that
produce results with superior visual quality are rated poorly
by evaluation metrics like PSNR and SSIM. Although this
problem has been realized by the community of image quality
assessment, there are still lacking a better performance metric
so far.
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TABLE III
ABLATION STUDY ON THE HSTS DATABASE. A-NET (J-NET) DENOTES THAT A-NET ADOPTS THE SAME ARCHITECTURE WITH J-NET

Metrics w.o. Ly w.o. Lk Wo.La

A1 =0

A2 =0  A-Net (J-Net) Ours

PSNR
SSIM

19.93
0.8684

20.41
0.8724

20.12
0.8806

22.24
0.8741

22.41
0.8920

18.15
0.8564

22.65
0.9011

@B PsNR @ ssiM
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244 r0.96
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r0.32

£0.16
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Fig. 7. Influence of parameters on two metrics (PSNR, SSIM). In the
experiments, 11 parameter values are investigated to evaluate the influence
of A1 and 4> w.r.t. the metrics, respectively. From the above two figures, one
could find that our method is relatively insensitive to the value of parameters.

On the outdoor testing dataset HSTS,

o Table II shows that our method is also superior to most
unsupervised baselines in the outdoor scenes. It is worth
noting that N2N cannot get corresponding results on
HSTS, for N2N requires training on multiple samples
from the same scene whereas HSTS only includes a single
sample for each scene.

« Although ZID is quantitively worse than the best baseline,
it shows better haze-free image recovery performance in
the qualitative comparison (see Fig. 4(b) of DehazeNet,
Fig. 4(h) of DCPLoss and Fig. 4(j) of ZID). In fact,
the haze-free images recovered by our ZID seem more
favorite than the ground truth (Fig. 4(k)) because the later
might involve haze during data collection.

o The qualitative comparisons show the limitations of the
DCPLoss. In brief, DCPLoss tends to recover a darker
image. It is mainly because DCPLoss uses the corre-
sponding transmission map of the prior as supervisor to
compute empirical loss, while our ZID formulates the
statistical properties of dark channel prior into our loss
to estimate clean images. As a result, our method could
avoid performance degradation.

o On HSTS, ZID takes about 38.14s to handle each image
averagely and each iteration only costs 76.28ms. Note
that, this is the whole cost of ZID and no training is
required in advance.

C. Comparisons on Real World Dataset

To verify the effectiveness of our ZID on real-world hazy
images, we conduct qualitative experiments on the HSTS real-
world image set and present the results in Fig. 5. It could be
seen that our ZID successfully recovers the clean image even
though it works in an unsupervised and zero-shot manner. For
example, although Double-DIP successfully removes most of
the haze in the pictures, it is failed to remove the haze around
the people and suffers from the color distortions around the
building. In contrast, our method could be immune from these
issues.

We also make comparisons on 8 hazy images collected
from the Internet by us. As shown in Fig. 6, one could
observe that our ZID demonstrates a better visualization result
in almost all scenes in the figures. For example, DehazeNet,
MSCNN, AOD-Net, DCP, DCPLoss and Double-DIP success-
fully remove most of the haze in the pictures, but there still
contains some haze in the background. In contrast, our method
could be immune from these issues and gets the best result.

D. Ablation Study

To demonstrate the effectiveness of our loss function,
we conduct an ablation study on the HSTS dataset by
removing one of Ly, Lk, and Lge,, where 41 = 0 and
42 = 0 indicate the removal of Lge, from A-Net and T-Net.
To demonstrate the effectiveness of our network structure,
we also replace A-Net using an initial hint and adopts a
J-Net-like structure as A-Net. From Table III, one could see
that: 1) our method benefits from the VAE in haze removal
with the formulation of Ly and Lk ; 2) the performance of
ZID slightly improved with the regularization on the estima-
tion of atmospheric light and transmission map; 3) the learning
process of A-Net improves the quantitive performance than use
initial hint directly.
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E. Influence of Parameters

Our model requires to specify the value of A; and 1,
which are trade-off on the regularizations, i.e., Ls(fa(x)) and
Ls(fr(x)). In this section, we investigate the influence of
these parameters to the two metrics (PSNR and SSIM) on
the HSTS synthetic dataset. In experiments, we alternatively
change the value of A1 and A, as indicated in Fig. 7, while
accordingly fixing 42 = 0.005 and 1; = 0.1. As shown in the
results, one could find that our method is insensitive to the
value of A1 and A,.

V. CONCLUSION

In this article, we proposed a novel unsupervised and zero-
shot single image dehazing method which disentangles a given
hazy image into its hazy-free version, transmission map and
atmospheric light via three joint subnetworks. In consequence,
the model enjoys the interpretability in terms of structure
and result. Experimental results on both the synthesis dataset
and the real-world dataset demonstrate that the proposed
ZID quantitatively outperforms all unsupervised methods and
achieves comparable performance with the supervised meth-
ods. Besides, it shows a human-favorite result of haze removal
in qualitative evaluations. However, ZID has still suffered
from some limitations, such as the slow inference speed.
In future, we plan to be solve this problem by investigating
more efficient network architecture. Besides, it is promising
to further improve its performance so that the state of the
art could be achieved comparing with supervised deep image
dehazing methods.
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