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Abstract

In this paper, we study one challenging issue in multi-view data clustering. To be
specific, for two data matrices X(1) and X(2) corresponding to two views, we do
not assume that X(1) and X(2) are fully aligned in row-wise. Instead, we assume
that only a small portion of the matrices has established the correspondence in
advance. Such a partially view-aligned problem (PVP) could lead to the intensive
labor of capturing or establishing the aligned multi-view data, which has less
been touched so far to the best of our knowledge. To solve this practical and
challenging problem, we propose a novel multi-view clustering method termed
partially view-aligned clustering (PVC). To be specific, PVC proposes to use a
differentiable surrogate of the non-differentiable Hungarian algorithm and recasts
it as a pluggable module. As a result, the category-level correspondence of the
unaligned data could be established in a latent space learned by a neural network,
while learning a common space across different views using the “aligned” data.
Extensive experimental results show promising results of our method in clustering
partially view-aligned data.

1 Introduction

As one of the most important unsupervised technologies, data clustering has attracted much attention
in recent years [22, 16, 6, 34]. Since most of the real-world data are presented in multiple views or
modals, it is highly expected to explore and exploit the correlation and invariance across different
views for data analysis [33, 30, 14, 27, 41].

In general, most existing multi-view clustering (MVC) approaches jointly learn a common repre-
sentation to bridge the gap among different views and then achieve clustering using the common
representation. The success of such a learning paradigm highly relies on a “well-established” dataset
which has to satisfy two assumptions: 1) completeness of data: It requires that all examples appear
in all views. Taking two view matrices V(1) and V(2) as a showcase, it assumes that V(1) and
V(2) are with the same number of rows, where each row denotes a data point; 2) correspondence of
views: It requires that V(1) and V(2) have the corrected correspondence in row-wise. In other words,
V(1) and V(2) are fully aligned in advance. With the above two assumptions, the correlation and
correspondence of multi-view data are available, thus making learning the common representation
and clustering possible.
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Based on the above two assumptions, a variety of MVC methods [30, 14, 19, 23, 39, 37, 25] have
achieved promising performance. In practice, however, it is a daunting task to collect the complete
and fully-aligned multi-view data due to the complexity and discordancy in time and space. In other
words, these existing works probably fail whether the data is with partially data-missing problem
(PDP) or partially view-aligned problem (PVP). More specifically, PDP assumes that all views would
miss some data and therefore results in many partial examples, i.e., examples with some views
missing. Recently, some works have attempted to solve this challenging problem [9, 31, 28].

In this paper, we focus on the solution of PVP rather than PDP. To the best of our knowledge, there
are few efforts towards solving PVP in MVC so far. In PVP, only a portion of data is aligned across
different views. Formally, for a given dataset {X(v)}mv=1 = {A(v),U(v)}mv=1, only {A(v)}mv=1 are
aligned with correct correspondence while the correspondence of {U(v)}mv=1 is unknown. Here,
v denotes which view and m denotes the total view number. A typical example of PVP is street
surveillance as shown in Fig. 1. In the example, several cameras correspond to multiple views. Due
to the inconsistency and complexity in time and space, an interest of object may appear in another
monitor at different time t1 with different position p1, thus leading to the partially-aligned multi-view
data. It should be pointed out that it is a daunting task to solve this problem due to the following
three reasons. First, it is impossible to utilize the label to perform view alignment in the unsupervised
setting such as clustering. Second, although the vanilla graph match methods such as Hungarian
algorithm [10] could be used to seek the correspondence of views. However, it is impossible to plug
it into a neural network due to the non-differentiable property of the Hungarian algorithm. Third, it is
expected to jointly learn common representation and perform alignment into a unified framework
so that the partially aligned information could be utilized to facilitate the multi-view clustering
performance.

To this end, we propose possibly the first study on partially view-aligned clustering (PVC). To
be exact, PVC establishes the correspondence of unaligned data with the help of the ground-truth
aligned data, while learning a common representation by preserving the view-specific structure and
cross-view consistency. The contributions of this work could be summarized as follows:

• We propose a new paradigm for multi-view clustering, termed partially view-aligned prob-
lem. The PVP is pervasive but ignored in a variety of real-world applications and our solution
to this problem could alleviate even avoid the daunting assumption of correspondence of
views in data collection.

• To tackle the partially view-aligned problem in MVC, we propose a novel neural network
which simultaneously aligns a given partially aligned dataset in a latent space and learns the
common representation across different views. The alignment module is a differentiable
surrogate of the Hungarian algorithm, which could be plugged into any neural network to
embrace the joint optimization with back-propagation. To the best of our knowledge, this
could be the first effective deep solution which makes clustering partially view-aligned data
possible.

2 Related work

Multi-view clustering methods aim to exploit the diverse and complementary information contained
in different views [32], which could be roughly classified into three categories based on different
formulations of view-specific similarity and cross-view consistency. Namely, multi-view canonical
correlation clustering which utilizes the correlation among different views [29, 1, 30]; multi-view
matrix decomposition clustering which exploits the mutual information based on the matrix factoriza-
tion technology and then perform the clustering on the learned matrix with low-rank constraint [40];
and multi-view subspace clustering which jointly perform the subspace learning with view-specific
similarity and learn the common space with cross-modal consistency[23, 36, 15]. Although the
above approaches have achieved promising results in multi-view clustering, they highly rely on the
aforementioned two assumptions, i.e., “completeness of data” and “correspondence of views”. Thus
they are limited to handling the partially data-missing problem (PDP) and partially view-aligned
problem (PVP) well.

Recently, there are some deep methods have been proposed to solve PDP [13, 28, 4, 9, 18, 17]. The
basic idea of these works is to utilize the remained information in the available views to predict the
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Figure 1: An illustrative example of the partially view-aligned problem. In the example, four
individuals (clusters) walk through an underground passageway which is monitored by three cameras
corresponding to three views. Clearly, it is a daunting task to collect the fully-aligned data based
on either of the time and space positions. The blue-colored frames are a showcase of the “ideal”
aligned data despite the space difference. On the right panel, we give a more direct illustration of the
difference between the partially view-aligned data and well-established data. Different colors indicate
different objects. In the example, only the first two rows are with the corrected correspondence.

missing samples. For example, [28] proposes using the paired views to train the networks so that the
missing views are completed.

Compared to the PDP, PVP is more challenging and only a few works have tried to alleviate the
effect caused by this problem. For example, [11] performs maximum covariance analysis (MCA) on
the aligned data then progressively obtain the correspondence on the optimal cost matrix by using
the existing Hungarian algorithm. [38] performs clustering for each view based on NMF and then
utilizes the clustering result and the partially aligned information to establishes the correspondence of
unaligned data. The major limitation of these methods is given below. On one hand, the methods are
shallow models, and there is no efforts have been devoted to developing effective deep solution so far
as we knew. On the other hand, these works establish the correspondence of views in a separate step.
To utilize the representative capacity of the neural network, it is highly expected to jointly perform
view alignment and the downstream task. As the view alignment is an NP-hard graph matching
problem in essence, it is difficult to seek such a solution.

3 Partially View-aligned Clustering for Multi-view Data

In this section, we propose a deep multi-view clustering method, termed partially view-aligned
clustering (PVC) which could solve the partially view-aligned problem as mentioned above. We first
formally introduce the formulation of the partially view-aligned problem. Then we present how to
tackle this problem with a detailed description of our proposed method based on a differentiable view
alignment algorithm.

3.1 Problem Formulation

Given a dataset {X(v)}mv=1, MVC aims to separate all data points into one of c clusters, where
X(v) = {x(v)

1 ,x
(v)
2 , · · · ,x(v)

n }>. Furthermore, in our partially view-aligned setting, there only a part
of {X(v)}mv=1 is with the correspondence in advance. To be specific, X(v) = {A(v),U(v)}, where
A(v) and U(v) denote the aligned data and unaligned data in row-wise for the v-th view.

To achieve clustering on the partially view-aligned data, one feasible way is to first establish the
correspondence of the pair of views using the graph matching methods such as the Hungarian
algorithm. After that, one performs multi-view clustering on the aligned data like the conventional
pipeline. Although such a two-step paradigm is easy to follow, it has suffered from the following
limitations. First, the vanilla Hungarian algorithm directly seeks the maximum-weight matchings in
bipartite graphs, which cannot utilize the partially-aligned data. It is reasonable to believe that the
performance would be facilitated if the partially-aligned data are exploited during alignment. Second,
the Hungarian algorithm is non-differentiable, which cannot be plugged into a neural network. As a
variety of studies [30, 40, 37] have shown the effectiveness of neural networks in MVC, it is highly
expected to develop a differentiable alignment algorithm so that the common representation learning
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Figure 2: Overview of the proposed method which consists of two modules, the representation
learning module and the differentiable alignment module. The arrows show how we train the
network with the aligned data A(1) and shuffled Â(2). We first obtain the latent representations
Z(1) = f (1)(A(2)) and Z(2) = f (2)(Â(2)), then compute the distance matrix D on the hidden
representations. Then, the permutation matrix P is computed by progressively feeding D into the
alignment module. After that, we compute the loss to optimize the network.

and data alignment could be jointly optimized. The reasonability of such a joint learning paradigm
relies on the following observations/assumptions. To be specific, the clustering performance will be
improved by considering the correspondence/correlation at the set (i.e., cluster) level during learning
common representation. However, most of MVC methods only utilize the correspondence at the
point level. Clearly, a pluggable alignment algorithm will alleviate such an issue and lead to a more
desirable result.

Based on the above discussions, we aim to develop a neural network that could establish the
correspondence of a given dataset using a differentiable surrogate of the Hungarian algorithm and
simultaneously learn the common representation for different views by implicitly using the alignment
information. Formally, one key step of our model is to seek the correspondence or so-called
permutation matrix P ∈ Rn×n so that:

X(1) ∼ PX(2), (1)

where ∼ is a relational operator, which denotes that X(1) and X(2) are aligned with correct corre-
spondence via P. P is a square binary matrix that has exactly one entry of 1 in each row and column,
and 0 elsewhere. In words, P will reorder the rows or columns while remaining the value of X(2)

unchanged.

As shown in Fig. 2, our PVC model consists of two modules, i.e., one is to learn the cross-view
representation by utilizing the predicted correspondence, and the other is to perform data alignment
in the latent space learned by the neural network.

3.2 Cross-view Representation Learning Module

To tackle the partially view-aligned problem in MVC, we propose using the aligned data {A(v)}mv=1
to train a neural network which is with the following objective function:

L = L1 + λ
∑
v 6=u

L(uv)
2 , (2)

where L1 is the loss for learning common representation across views, L2 is the loss between the
model prediction and ground-truth correspondence. To be exact,

L1 =

m∑
v=1

‖A(v) − g(v)(f (v)(A(v)))‖22︸ ︷︷ ︸
within-view reconstruction

+
∑
v 6=u

‖f (v)(A(v))−Puvf
(u)(Â(u))‖22︸ ︷︷ ︸

cross-view consistency

, (3)
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Algorithm 1 Optimization of P
Input: D, P0, σ, {τi}2i=1
Initialize: P = P0

for i < τ1 do
P = P− σD, T0 = P, d1 = d2 = d3 = 0
for j < τ2 do
T1 = Ψ1(T0 + d1), d1 = T0 + d1 −T1

T2 = Ψ2(T1 + d2), d2 = T1 + d2 −T2

T3 = Ψ3(T2 + d3), d3 = T2 + d3 −T3

end for
P = T3

end for
Output: P

where the v-th autoencoder {f (v), g(v)} aims to learn a view-specific latent space for the v-th view by
minimizing the reconstruction error. Â(u) denotes the shuffled aligned data from A(u) which is used
to simulate the unaligned data. In brief, L1 consists of within-view reconstruction and cross-view
consistency term which aims to learn the common representation by preserving the view-specific
structure and cross-view consistency.

To exploit the alignment information in A(v) to facilitate MVC, L(uv)
2 is defined to minimize the loss

between the predicted and ground-truth alignment on the simulated unaligned data Â(u) via

L(uv)
2 = ‖P(uv) −P

(uv)
gt ‖22, (4)

where P(uv)
gt is the permutation ground truth from A(u) w.r.t. A(v). P(uv) is the learned permutation

matrix which establishes the correspondence between A(v) and Â(u). We experimentally adopt the
`2-norm loss term here, but other metrics such as Hamming distance could also be used. For ease of
presentation, we take the binary-view data as a showcase by letting m = 2 without loss of generality.
Note that, our model could easily extend to multiple views by selecting one view as the anchor, and
align the other views to establish the correspondence with the corresponding permutation matrix.

It should be pointed out that directly learning P through minimizing L will face two problems. On
one hand, the properties (e.g., binary value) of P are hard to guarantee. On the other hand, our main
goal is not to obtain P on the aligned data A. Instead, it is highly expected to have a parametric
model to handle the unaligned data U. In the next part, we will elaborate on the optimization of P in
the neural network.

3.3 Differentiable Alignment Module

To achieve data alignment, the optimization of P could be defined as an integer linear programming
(ILP) problem which aims at achieving the best matching of bi-graph. Formally,

arg min
P

Tr(DP>)

s.t. Pij ∈ {0, 1},∀(i, j)
P1 = 1

P>1 = 1,

(5)

where Tr() denotes the matrix trace and D ∈ Rn×n is the distance matrix in which Dij denotes the
distance of assigning i to j. In the paper, we define D as the pairwise distance between A

(1)
i and

Â
(2)
j in the latent space, i.e.,

Dij = ‖f (1)(A(1)
i )− f (2)(Â(2)

j )‖22. (6)

As Eq.(5) is NP-complete [12] and non-differentiable, it is impossible to plug it into a neural network
as expected. Therefore, we relax the constraint of the binary matrix into real-valued permutation
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matrix and Eq.(5) could be rewritten as:

arg min Tr(DP>)

s.t. Pij ≥ 0,∀(i, j)
P1 = 1

P>1 = 1,

(7)

where the relaxation is also consistent with the goal of MVC, i.e., the exact point level alignment
in multi-view data is unnecessary to the clustering task. Instead, the set level alignment is more
desirable.

As the above loss could be solved by a differentiable gradient descent algorithm through updating the
permutation matrix P with the negative gradients. The remained challenge is how to keep the above
three constraints when updating the permutation matrix. One could observe that the optimized set is
the intersection of the three closed convex sets from the constraints above.

To obtain the optimized permutation matrix, we adopt the Dykstra’s projection algorithm [3] that
computes the intersection of convex sets by iteratively projecting the updated permutation matrix
P onto each of the convex sets, which has been proved effective in many applications [24, 20, 35].
Similar to [35] which adopts Dykstra’s projection algorithm to solve the ILP problem, we project the
permutation matrix into three constraint sets individually as follows:

Ψ1(P) = ReLU(P). (8)

Ψ2(P) = P− 1

n
(P1− 1)1>. (9)

Ψ3(P) = P− 1

n
1(1>P− 1>). (10)

Obviously, Ψ1, Ψ2, and Ψ3 project the permutation matrix P into the three constraint sets, respectively.
It should be pointed out that the Dykstra’s projection algorithm is not the unique solution. Other
algorithms such as Sinkhorn normalization [26] could be alternative as long as P satisfies the
aforementioned constraints. The optimization process is summarized in Algorithm 1.

It is attractive that the alignment operation is fully differentiable and only involves matrix multiplica-
tion and addition/division. Therefore, we further recast Algorithm 1 as a differentiable alignment
module which is pluggable to the neural network as shown in Fig. 2. Note that, the module does not
involve the parameter optimization, and the computation of P will be very fast. It aligns the data with
the computation complexity O(τ1τ2n

2) (n is the batch size for training), and allows the network to
utilize the available correspondence information from partially aligned data in an end-to-end manner,
as shown in Eq.4. In general, the alignment module is pluggable for any neural network such as
DCCA/DCCAE by computing the pairwise distance on the learned representations and achieving the
alignment by the differentiable alignment module. In addition, the structure and output of the module
enjoy interpretability derived from the ILP problem and the Dykstra’s optimization.

3.4 Implementation Details

As shown in Fig. 2, the proposed PVC method consists of two modules, i.e., representation learning
module and alignment module. For the representation learning, we adopt two standard autoencoders
for two views and have presented the details of the network structure and implementation in the
supplementary materials.

We perform the representation learning and aligning in a cyclic order as below:

• Step 1 (Representation learning): Pass “unaligned” data through the network, i.e.,
{f (1), f (2), g(1), g(2)}, yielding the hidden representations Z(1) = f (1)(A(1)) and Z(2) =

f (2)(Â(2)). Then we calculate the distance matrix D in the latent space via Eq. 6.
• Step 2 (View Aligning): Perform alignment by feeding D to obtain the permutation matrix
P. Moreover, we experimentally set τ1 = 30 and τ2 = 10 to speed up the computation.

• Step 3: Compute the loss as defined in Eq. 2 and then update the network parameters and
weights via back-propagation.
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• Step 4: Repeat Steps 1–3 until convergence.

Once the network converged, we feed the whole dataset into the network which will perform alignment
and infer the corresponding latent representations with the aligned data. After that, the view-specific
representations are simply concatenated as the common representation which is further used for
clustering by k-means like the traditional fashion [30, 25, 37].

4 Experiments

In this section, we evaluate the proposed PVC method on four widely-used multi-view datasets with
the comparisons of nine multi-view clustering approaches. We implement PVC in PyTorch and carry
all evaluations on a standard Ubuntu-18.04 OS with an NVIDIA 2080Ti GPU. Due to the space
limitation, some analysis experiments and the technical details about our method and experiments are
presented in the supplementary materials.

4.1 Experiment Setting

We carry our experiments on four popular multi-view datasets including: Caltech101-20 [15, 25]
which consists of 2,386 images of 20 subjects with two handcrafted features as two views. Reuters [8]
which is a subset of the Reuters database. It consists of 3,000 samples from 6 classes, using German
and Spanish as two views. Scene-15[5] which consists of 4,485 images distributed over 15 scene
categories with two views. Pascal Sentences [7] which is selected from 2008 PASCAL development
kit. It contains 1,000 images of 20 classes with corresponding text descriptions. More details could
refer to the supplementary material.

Table 1: Clustering performance comparison on four challenging datasets.

Reuters Caltech101-20 Scene-15 Pascal
Aligned Methods ACC F-mea NMI ACC F-mea NMI ACC F-mea NMI ACC F-mea NMI

Partially

CCA 39.70 30.90 14.25 42.20 36.15 60.84 32.46 26.00 35.81 62.56 60.24 65.19
KCCA 40.67 33.18 16.79 26.61 23.82 31.56 30.86 26.72 31.12 38.78 36.57 41.79
DCCA 40.40 33.72 15.47 23.60 21.44 30.64 33.24 28.94 34.27 42.33 39.88 47.67
DCCAE 36.77 29.65 14.07 31.68 26.22 38.61 30.28 27.11 33.31 43.89 41.87 50.76
LMSC 37.43 32.72 12.31 26.03 20.27 35.65 22.16 20.00 16.46 50.89 48.78 53.70
MvC-DMF 34.63 23.56 11.21 19.74 17.43 21.58 21.54 19.78 19.31 30.00 28.81 32.33
SwMC 32.93 19.15 15.30 38.94 21.09 30.14 18.73 15.85 21.30 49.00 46.38 54.65
BMVC 34.90 24.01 9.24 31.73 23.74 50.78 36.74 32.91 37.47 50.89 49.21 52.71
AE2-Nets 37.67 30.73 13.03 29.97 26.16 47.64 29.52 26.45 28.43 66.56 66.02 64.89

Fully

CCA 39.37 29.84 13.98 39.52 33.90 57.53 34.38 29.07 37.37 38.89 36.32 44.85
KCCA 47.07 42.15 23.32 42.20 37.95 56.4 37.24 30.86 36.85 44.33 41.45 49.66
DCCA 47.10 41.93 23.53 41.95 35.89 60.72 35.88 30.08 39.90 63.44 59.94 68.08
DCCAE 48.10 42.33 24.57 44.17 42.11 60.83 36.68 30.11 40.56 64.89 62.27 67.89
LMSC 48.40 45.03 27.47 31.56 22.18 32.17 33.60 31.09 32.98 60.44 56.99 64.50
MvC-DMF 38.80 28.55 17.81 59.72 38.16 62.76 29.70 26.45 29.72 56.33 53.17 61.18
SwMC 33.33 22.21 24.01 52.68 34.96 56.87 27.47 24.55 35.71 65.44 62.28 72.48
BMVC 40.87 37.31 17.28 39.65 30.79 63.24 40.16 35.69 40.30 64.89 60.01 71.54
AE2-Nets 40.67 33.06 15.50 30.09 19.11 32.31 36.16 34.14 39.98 69.67 69.53 70.08

Partially PVC 50.67 48.44 27.99 48.07 55.03 65.39 37.32 33.05 39.33 62.67 62.84 72.33

We compare our PVC with nine multi-view clustering approaches including: canonically correlated
analysis (CCA)[29], kernel canonically correlated analysis (KCCA)[2], deep canonically corre-
lated analysis (DCCA) [1], deep canonically correlated autoencoders (DCCAE) [30], Multi-View
Clustering via Deep Matrix Factorization(MvC-DMF) [40], latent multi-view subspace cluster-
ing (LMSC) [36], self-weighted multi-view clustering (SwMC) [23], binary multi-view clustering
(BMVC) [39], and Autoencoder in Autoencoder Networks (AE2-Nets) [37]. For all methods, we
adopt the recommended network structure and parameters. In brief, for the CCA-based methods, we
fix the hidden representation dimension to 10. For BMVC, we fix the length of binary code to 128.
For LMSC, we fix the latent representation dimension to 100 and seek the optimal λ from (0.01, 0.1,
1, 10). For MvC-DMF, we seek the optimal β and γ from (0.1, 1, 10, 100) as suggested.

For a comprehensive analysis, we adopt accuracy (ACC), normalized mutual information (NMI), and
F-measure (F-mea) to evaluate all the tested methods. A higher value of these metrics indicates a
better performance.

7



4.2 Comparison with State of The Arts

To evaluate the effectiveness of PVC on the partially view-aligned data, we first construct the partially
view-aligned data from the above four datasets. For Caltech101-20, Reuters and Scene-15, we
randomly split them into two partitions ({A(v),U(v)}mv=1) with the equal size. The partition {A(v)}v
remains the known correspondence and the partition {U(v)}v are randomly permuted. For the Pascal,
we directly use the training set as {A(v)}v and shuffle the testing set as {U(v)}v .

As the almost all existing MVC methods including the above baselines cannot handle with the
partially view-aligned data, we adopt two alternative solutions for comparisons: 1) We adopt PCA to
project the raw data into a latent space so that the Hungarian algorithm could be applied to establish
the correspondence of {U(v)}v . After that, we carry out these baselines on the aligned data to achieve
clustering. This evaluation could demonstrate the effectiveness of our whole model. 2) We run these
baselines on the original data which are with the ground-truth correspondence. In other words, these
baselines directly handle the fully-aligned data without any preprocessing. This evaluation could
verify our claim that set-level alignment could favor clustering performance.

Table 1 shows the quantitative comparison results, from which one could observe that: 1) In the
first evaluation, our PVC remarkably outperforms the other methods by a considerable margin.
Specifically, in terms of NMI, PVC achieves about 11.2% (Reuters), 4.55% (Caltech101-20), 1.86%
(Scene-15) and 7.14% (Pascal) progress compared to the best baseline. 2) In the second evaluation,
our method PVC still achieves competitive results even though the baselines are with ground-truth
alignment whereas our method does not. It is surprising that PVC could be better than all baselines
in this test on Reuters. The possible reason is two-fold. First, Reuters is a document database
that consists of English documents and its machine-translated versions. Thus there may be some
noise/incorrect pairs in the fully-aligned dataset which could be addressed by our alignment module.
Second, the re-aligned multi-view data may improve data consistency and meet the intrinsic data
distribution, thus boosting the clustering performance.

4.3 Ablation Studies and Parameter Analysis

0
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0.0 0.01 0.1 1 10 100 200 500 1000

ACC NMI

(a) The balance parameter λ

0

0.15

0.3

0.45

0.6

0.2 0.4 0.5 0.6 0.8 1.0

ACC NMI

(b) The alignment ratio

0

0.15

0.3

0.45

0.6

0

0.275

0.55

0.825

1.1

1 10 50 200 400 600 800 1000 1200 1400 1600 1800 2000

Loss ACC NMI

(c) The training epochs

Figure 3: (a) Clustering performance of PVC with varying λ on Reuters. (b) Clustering performance
of PVC on the Reuters dataset with varying alignment ratio. (c) Clustering Performance of PVC
with increasing epoch on the Reuters. The x-axis denotes the training epoch, the left and right y-axis
denote the loss value and the corresponding clustering performance respectively.

To further investigate the influence of the parameter λ of our method, we conduct the experiment on
the Reuters dataset by reporting the ACC and NMI score with varying lambda values. Note that, the
alignment module is ablated from our method when λ = 0. Fig. 3(a) demonstrates that ACC and
NMI keep increasing until λ = 100 and then decline with increasing value.

Moreover, to investigate the performance of the proposed model on the partially aligned data with
different unaligned proportions, we conduct experiments on the Reuters dataset. From Fig. 3(b),
one could observe that the clustering performance generally increases with the alignment ratio.
Note that, PVC achieves the best result when 80% rather than 100% of data are with ground-truth
correspondence. The reason may come from our alignment module. Specifically, in the testing stage,
all data will be realigned and thus lead to an inferior result.
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4.4 Convergence Analysis

In this section, we investigate the convergence of our PVC by reporting the loss value and the
corresponding clustering performance with increasing epoch. As shown in Fig. 3(c), one could observe
that the loss decreases a lot in the first 600 epoch, then continuously decrease until convergence. As
for the clustering performance, both the ACC and NMI continuously increases in the first 600 epoch
and then only keep fluctuation in a narrow range.

5 Conclusion

In this paper, a challenging problem in multi-view clustering, namely the partially view-aligned
problem, is studied for the first time. The solution to this problem could alleviate intensive labor
for fully-aligned data collection. To solve this challenging problem, we propose a novel multi-view
clustering method termed as partially view-aligned clustering consists of a differentiable alignment
module and a representation learning module. The alignment module is a differentiable surrogate
of the non-differentiable Hungarian algorithm, which could establish the correspondence of two
views. Besides, the module could enjoy the high interpretability in neural structure and outputs as it
is derived from the Dysktra’s projection algorithm. Extensive experiments verify the effectiveness of
our learning paradigm. In the future, we plan to explore the potential of our method to handle other
multi-view analysis tasks. Moreover, it is still unknown how to handle fully unaligned data and the
data which simultaneously encounters the missing views and unaligned data problems.

Broader Impact Statement

Multi-view clustering is a common topic in multi-view learning which could be applied to a wide range
of applications including computer vision, recommender systems, data retrieval, natural language
processing. Our work could address the partially view-aligned problem faced by many real-world
applications and perform multi-view clustering.

While there will be important impacts resulting from the use of PVC in general (depend on various
multi-view applications), here we focus on the impact of using our method to address the partially
view-aligned problem which is widely faced by the real-world applications. There are many benefits
to solving this problem, such as reducing the costs of manually aligning multi-view data, increasing
the robustness for downstream tasks by handling PVP. Besides the benefits we should also care about
the potential negative impacts including 1) The risk of automation bias [21] for decision making,
especially in aviation, health care, and autonomous vehicles. 2) The job loss caused by the PVC
since it can automatically establish the correspondence on the unaligned data. Usually, this requires
domain experts to manually align them.

We would encourage further work to understand and mitigate the above biases and risks. Concerning
the risk of automation bias, we encourage research to understand the final decision with domain
expertise.
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