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Abstract— Cross-modal retrieval (CMR) enables flexible
retrieval experience across different modalities (e.g., texts versus
images), which maximally benefits us from the abundance of
multimedia data. Existing deep CMR approaches commonly
require a large amount of labeled data for training to achieve
high performance. However, it is time-consuming and expensive
to annotate the multimedia data manually. Thus, how to trans-
fer valuable knowledge from existing annotated data to new
data, especially from the known categories to new categories,
becomes attractive for real-world applications. To achieve this
end, we propose a deep multimodal transfer learning (DMTL)
approach to transfer the knowledge from the previously labeled
categories (source domain) to improve the retrieval performance
on the unlabeled new categories (target domain). Specifically,
we employ a joint learning paradigm to transfer knowledge by
assigning a pseudolabel to each target sample. During training,
the pseudolabel is iteratively updated and passed through our
model in a self-supervised manner. At the same time, to reduce
the domain discrepancy of different modalities, we construct mul-
tiple modality-specific neural networks to learn a shared semantic
space for different modalities by enforcing the compactness of
homoinstance samples and the scatters of heteroinstance samples.
Our method is remarkably different from most of the existing
transfer learning approaches. To be specific, previous works
usually assume that the source domain and the target domain
have the same label set. In contrast, our method considers a more
challenging multimodal learning situation where the label sets
of the two domains are different or even disjoint. Experimental
studies on four widely used benchmarks validate the effectiveness
of the proposed method in multimodal transfer learning and
demonstrate its superior performance in CMR compared with
11 state-of-the-art methods.

Index Terms— Cross-modal retrieval (CMR), domain adapta-
tion, multimodal learning, multimodal transfer learning.
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I. INTRODUCTION

OVER the past decades, various types of media data,
such as audios, texts, images, and videos, have shown

explosive growth on Internet, and different types of data are
usually used for describing the same event or topic [1]. For
example, a post on Facebook may consist of paired texts and
images. Cross-modal retrieval (CMR) provides an efficient
way to search semantically relevant results of different modal-
ities for a given query of any modality, enabling the users
to earn more information about the concerned event/topic.
It thus has attracted increasing interests in both academia and
industry. One major challenge in CMR is that the distributions
and representations of different media types are inconsistent,
known as the heterogeneity gap [1], which makes measuring
the distance between the samples from different modalities
hard [2]. To bridge the heterogeneity gap, numerous mul-
timodal analysis approaches [3], [4] have been developed
to learn modality-specific transformations to map different
modalities into a common space [5]. The early attempts are
lying on exploring correlations from the heterogeneous data.
In recent years, supervised methods [6]–[8], which utilize
the label information to learn discriminative features for
CMR, have been proposed and achieved much higher retrieval
accuracy than unsupervised methods. Supervised approaches
commonly require a large amount of labeled data for training
to achieve high performance. However, we can get access to
the abundant target data but with no labels, and it would
be expensive to obtain the annotations for them, especially
with various and dynamically increasing categories in the
real-world applications.

To deal with such a problem, we investigate the possibil-
ity of transferring valuable knowledge from existing labeled
categories (source domain) to unlabeled new categories (tar-
get domain) for boosting the CMR accuracy. As shown
in Fig. 1, it is intractable to approach such a multimodal
transfer learning case through conventional transfer learning
methods due to the following two challenges: 1) how to
bridge the heterogeneity gap between different modalities
and 2) how to transfer semantic knowledge between two
domains whose label sets are disjoint. To overcome the
abovementioned two challenges, we propose a deep mul-
timodal transfer learning (DMTL) approach to narrow the
heterogeneity gap of different modalities and transfer the
knowledge learned from the labeled categories to the unlabeled
categories. More specifically, we develop a novel joint learning
paradigm to transfer knowledge by synthesizing and assign-
ing a pseudolabel to the samples from the new categories.
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Fig. 1. Two challenges of transferring knowledge from the known categories to new categories in multimodal learning. In the figure, different shapes
represent different categories; the filled and unfilled shapes denote the image modality and the text modality, respectively. The source domain contains the
labeled categories of bird and horse, whereas the target domain contains the unlabeled categories of airplane and train as a showcase.

During training, the pseudolabel is iteratively updated and
feedbacks to our model in a self-supervised manner, thus
boosting the retrieval performance. Furthermore, to bridge
the heterogeneity gap, we construct multiple modality-specific
neural networks to learn a shared semantic space, which
could preserve the latent structure of different modalities by
enforcing compactness of homoinstance samples and scatters
of heteroinstance samples. The proposed method transfers the
knowledge from every source modality driving the learning
of all modality-specific networks forward. In other words, our
approach can use all available modalities of the source domain,
and it is flexible to the number of available modalities in the
source domain.

Note that the problem setting of transfer learning in this
work is different from semisupervised learning (SSL) [9].
SSL aims to exploit unlabeled data to improve the perfor-
mance of a supervised learner. Generally, the categories of
unlabeled data are the same as the categories of labeled
data in SSL, such as semisupervised cross-modal learning
approaches [10]–[12], while our proposed transfer learning
method aims to leverage labeled data to improve the per-
formance of unsupervised learning, where the categories of
the unlabeled data (target domain) differ from the categories
of labeled data (source domain). Furthermore, our method
is remarkably different from the existing transfer learning
approaches from the following aspects. On the one hand,
unlike the conventional transfer learning methods that aim to

explore the structure of the unlabeled data set that contains the
same categories with the labeled data set, our method considers
a more challenging situation where the label sets of the two
domains are different or even disjoint. On the other hand, our
method differs from existing pseudolabel-based methods. For
instance, Ding et al. [13], Grandvalet and Bengio [14], and
Zhong et al. [15] performed classification by minimizing the
entropy of the output probabilistic vectors (i.e., pseudolabels)
on the unlabeled data, and the cotraining method [16] lever-
ages the consistency of the pseudolabels from two classifiers
on unlabeled samples. Our method minimizes the difference
between the pseudolabels on the unlabeled data with respect
to two continuous iterations. In this manner, the knowledge
extracted from the source domain is gradually transferred
to the target domain so that the learned features could be
discriminative and robust for the task at hand.

The main contributions and the novelty of this work could
be summarized as follows.

1) We proposed a DMTL approach, which transfers the
valuable knowledge from existing labeled data to unla-
beled data in a joint learning manner so that the semantic
relationships between the samples of the new unla-
beled categories are discovered and exploited. To the
best of our knowledge, this could be the first work
which explores the joint learning paradigm of assigning
pseudolabels to the samples of the new categories for
knowledge transfer in the multimodal learning scenario.
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2) We design modality-specific networks that aim to learn
a conditional distribution space to match the desired dis-
tribution space induced by all the available data samples.
Such a distribution approximation process could enforce
the learned transformations be capable of narrowing the
heterogeneity gap between different modalities.

II. RELATED WORK

This section mainly discusses the related work in two lines
and highlights the difference of our method by comparing it
with existing ones.

A. Multimodal Learning

Multimodal learning aims to learn a set of modality-specific
transformations that map the samples from different modalities
into a shared space. As a result, the semantic similarity
between the samples of different modalities could be mea-
sured in the shared space. With such a goal, a variety of
approaches [17]–[21] have been proposed during the past
decade, which could be divided into three groups: 1) unsu-
pervised methods; 2) supervised methods; and 3) semisu-
pervised methods. For the unsupervised methods, only the
co-occurrence information is used to learn transformations for
different modalities. One representative approach is canon-
ical correlation analysis (CCA) [22], which determines the
linear projections by maximizing the pairwise correlations
between two sets of heterogeneous data samples. CCA is
further extended to learn nonlinear transformations for dif-
ferent modalities, such as deep canonical correlation analy-
sis (DCCA) [23] and deep canonically correlated autoencoders
(DCCAEs) [24].

Different from unsupervised methods, supervised methods
exploit label information to learn transformations for different
modalities. In brief, they enforce to map the intraclass samples
as close as possible, while the interclass samples to be far apart
in the shared space. Following this manner, Kan et al. [25]
proposed a multiview discriminant analysis (MvDA) method
to learn the linear transformations by using a Fisher criterion.
Zhen et al. [6] introduced deep supervised CMR (DSCMR)
to extract discriminative features by minimizing the discrim-
ination losses in the label space and the common represen-
tation space simultaneously. Xu et al. [26] adopted a hybrid
matching approach to perform cross-modal attention for local
region-word alignment and multilabel prediction for global
semantic consistency. Shen et al. [27] proposed a dubbed sub-
space relation learning strategy to exploit relation information
of labels in semantic space to make similar data from different
modalities closer in the common Hamming subspace.

Besides, Zhang et al. [12] proposed a so-called general-
ized semisupervised structured subspace learning (GSS-SL)
method to learn the transformations in a semisupervised way.
All these methods learn the transformations from the source
domain and directly apply the learned model to the target
domain, thus suffering from the domain shift problem caused
by the different data distributions of the source domain and
the target domain.

This article proposes a multimodal learning strategy that
transfers valuable knowledge from the labeled data to unla-
beled data in a joint learning manner, where the source domain
and the target domain have disjoint label sets.

B. Transfer Learning

Transfer learning aims to improve the learning of the target
predictive function in the target domain by using the knowl-
edge in the source domain [28]. In recent, transfer learning
has shown effectiveness to deep learning, whose performance
heavily relies on a large-scale well-annotated data set. Gener-
ally, transfer learning could be categorized into three groups:
1) unsupervised transfer learning [29]; 2) inductive transfer
learning [30]; and 3) transductive transfer learning [31]. The
common characteristic of the first two settings is that the
target task is different from the source task. Their difference is
that the inductive transfer learning uses some labeled samples
from the target domain to induce an objective predictive
model for the target domain. In contrast, unsupervised transfer
learning assumes that there are no labeled data in both source
and target domains during training. Different from these two
settings, this article proposes a transductive transfer learning
method, where the source and the target task are the same, but
the source and target domains are different. Moreover, we have
no labeled data in the target domain, but the labeled data in
the source domain are available.

A large number of transductive transfer learning meth-
ods have been developed in the past decade. For exam-
ple, Ding et al. [32] developed a graph adaptive knowledge
transfer model, which jointly optimizes the target labels and
domain-free features in a unified framework. Long et al. [33]
proposed a residual transfer network approach, which simul-
taneously learns adaptive classifiers and transferable features.
Tzeng et al. [34] outlined a generalized framework for
adversarial transfer learning and developed the adversarial
discriminative domain adaptation (ADDA) approach. These
approaches all assume that the label sets of the source and
target domains are the same. Zhang et al. [35] relaxed this
assumption by treating the target label set as a subset of
the source label set. However, this assumption is still easily
violated. For instance, labeled animals from different data sets
are easily accessible. We still face challenges when we want
to conduct CMR on the samples of animals in the wild since
some native species do not exist in the labeled data sets.
Nevertheless, they are all focused on single-modal application
scenarios, where the source and target domains share the same
single modality (such as an image data set to another image
data set).

In recent years, there are some attempts to knowledge
transfer in a multimodal learning scenario. For example,
modal-adversarial hybrid transfer network (MHTN) [36] is
proposed to transfer knowledge from single-modal source
domain to cross-modal target domain. Furthermore, some
multiview domain adaption methods [37], [38] are proposed
for classification tasks. In [37], all the data are employed to
impose consistencies among multiple views, and the labeled
data from the source domain is exploited to construct a large
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margin classifier. In [38], the maximum mean discrepancy
regularizer is conducted to minimize the view disagreement
under the CCA framework. However, these methods that
require the data in the target domain are labeled or have the
same categories of data in the source domain and the target
domain.

In this work, we consider the multimodal transfer learning in
the situation where the data in the target domain are unlabeled
and have different categories with the labeled categories in
the source domain. Such a transfer paradigm is essential
to real-world CMR applications, which is also challenging
because of the heterogeneity gap between different modalities
and the semantic difference between the labeled categories in
the source domain and the unlabeled categories in the target
domain.

Recently, to address this challenge, a few zero-shot
learning-based cross-modal learning methods have been pro-
posed. Xu et al. [39] designed a self-supervised module
to leverage the word vectors of both seen categories and
unseen labels as guidance to enable the knowledge transfer
and utilized the adversarial learning scheme to minimize the
discrepancy among different modalities. Chi and Peng [40]
proposed a dual adversarial network (DADN), which learns
the transformations that could preserve the structure of the
data set and strengthen relations of different categories. They
have achieved promising performance, but they need the word
vectors of both seen and unseen labels in the training process,
while our method does not have such a constraint.

III. OUR PROPOSED METHOD

In this section, we first introduce the CMR problem con-
sidered in this work. Then, we present our proposed method
to transfer knowledge from the labeled categories to the
unlabeled categories for boosting CMR performance.

A. Problem Description

Without loss of generality, we focus on CMR for bimodal
data, e.g., for image and text data. We assume having cS
labeled categories (in source domain) with m instances of
image-text pairs, denoted as S = {(sα

i , sβ
i )}mi=1 and cX unla-

beled new categories (in target domain) with n instances of
image-text pairs, denoted as X = {(xα

j , xβ
j )}nj=1. Here, sα

i and

sβ
i are the input image and text samples of the i th instance of

the labeled data, and xα
j and xβ

j are the input image sample and
text samples of the j th instance of the unlabeled data. Each
pair of labeled samples in the source domain (sα

i , sβ
i ) has been

assigned a semantic label vector yi = [y1i , y2i , . . . , ycS i ] ∈
R

cS. If the i th instance belongs to the kth category, then
yki = 1; otherwise, yki = 0. However, the samples in the target
domain are provided without labels, and the target categories
are assumed to be disjoint with the labeled categories in the
source domain, i.e., there is no overlap categories between S
and X . This kind of multimodal transfer learning problems is
challenging and commonly exists in real-world applications.

The samples from different modalities cannot be directly
compared since they are in different representation spaces
and typically have different statistical properties. Multimodal

learning aims to learn two transformations for the two modal-
ities, i.e., hα for the image modality and hβ for the text
modality, to map the samples of different modalities into
a common representation space. Therefore, the similarity of
the samples from different modalities can be measured with
commonly used metrics, e.g., the cosine similarity. Further-
more, in such a setting, the unlabeled new categories in the
target domain are disjoint with the labeled known categories
in the source domain. The underlying data distributions of the
labeled categories and unlabeled new categories are different.
If we learn the transformations from the source domain, then
directly using them to the target domain without transfer
learning would cause an unknown bias, i.e., so-called category
gap. Thus, the learning approaches have to overcome such a
category gap as well.

B. Framework of DMTL

The general framework of the proposed method is shown
in Fig. 2. One could see that our model includes two coupled
networks hα and hβ , which projects the image and text modal-
ities into a shared semantic space. More specifically, a convo-
lutional neural network (CNN) is used to generate the original
high-level semantic representation of the image modality. After
that, several fully connected layers with nonlinear activation
functions are connected to obtain the common representation
for each image. To learn the common representation from
the text modality, we employ a natural language processing
network (NLP Net) to generate the high-level representation,
which is further passed through several fully connected layers
similarly. Each network is learned to map the input samples
to approximate a conditional true matching distribution in the
shared space. At the same time, the category information about
the labeled data set in the source domain is exploited to learn
the semantic relationships of the unlabeled samples in the
target domain. More specifically, the common representations
of the source and the target domain are both feedforward
to a linear classifier for labels prediction. Different from the
standard semisupervised scenario, where the unlabeled data set
has the same categories as the labeled data set, our multimodal
transfer learning has no overlap categories between the source
domain and the target domain.

To the end, we develop a joint learning strategy to assign a
soft pseudolabel for each sample in the target domain, and such
a pseudo-label would feedback the information to guide the
learning of the modality-specific transformations during the
training process. In this manner, the heterogeneity gap as well
as the category gap between different modalities is narrowed.
Consequently, the relevant samples of different data types in
the data set can be returned for one query of any data type
for the unlabeled new categories in CMR.

C. Objective Function

The goal of DMTL is to transfer the knowledge from
labeled data in the source domain to unlabeled data in
the target domain, thus enjoying the discriminative and
modality-invariant features learned for the CMR in the tar-
get domain. It transfers the knowledge from the labeled
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Fig. 2. General framework of our proposed DMTL method. It consists of two modality-specific subnetworks and a joint learning module. The samples
from different modalities are mapped into a common shared semantic space such that the similarity of the samples from different modalities can be measured
directly.

categories to the disjoint unlabeled categories. At the same
time, it bridges the heterogeneity gap of different modalities.
To achieve this goal, we propose to minimize the following
objective function:

L = Lm + λ1Ls + λ2Lt (1)

where Lm is the modality-invariance loss, Ls and Lt are
the discrimination losses for the labeled source data set and
the unlabeled target data set, respectively, and λ1 and λ2

are the tradeoff parameters that control the contributions of
these three terms. In the following, we will detail these three
terms.

It is well known that the label information is greatly helpful
to the learning of discriminative features. To exploit the label
information of the labeled source data set, we propose to
minimize the discrimination loss function

Ls = 1

m

m∑
i=1

(
�Phα(sα

i )− yi�2 + �Phβ(sβ
i )− yi�2

)
(2)

where P is the weight matrix of the linear classifier and hα

and hβ are the transformation functions for the image and text
samples, respectively.

To explore the unlabeled target data set, we assume that
there are pseudolabels zα

j and zβ
j (initialized randomly) for the

image and text samples in the unlabeled target data set. The
information of the pseudolabels is passed through the networks
to learn discriminative features for unlabeled categories by
minimizing the discrimination loss for the target data set

Lt = 1

n

n∑
j=1

(
�Phα(xα

j )− zα
j �2 + �Phβ(xβ

j )− zβ
j �2

)
(3)

where P, hα , and hβ are the same as the definitions in (2).

During training, the pseudolabels of the samples in the target
data set will be updated at each iteration by

zα
j = Phα(xα

j )

zβ
j = Phβ(xβ

j ). (4)

It is worth noting that some works [13], [14] adopt the
entropy minimization strategy on the predicted pseudolabels
to improve the learning of discriminative features for the
unlabeled data in the target domain. However, such a strategy
is unsuitable for our setting, which includes different label sets
between the source and target domains instead of having the
same categories constraint for the existing methods. Another
difference between our DMTL and the existing methods is
that our pseudolabels are the flexible similarities/dissimilarities
from the source domain to the target domain instead of
the exactly predicted class labels in these methods. In other
words, we use the categories of the source domain to rep-
resent/transfer the semantics of the target domain with the
real values, i.e., pseudolabels, instead of predicting the exact
label. The degrees of dissimilarity and similarity are both
important for the semantic representation, and negative and
positive values are used to measure the amount of the dissim-
ilarity and similarity, respectively. The similarity representa-
tions (pseudolabels) are calculated by the linear classifier that
is jointly trained on both the source and target domains. Thus,
the knowledge of the source domain can be transferred into
the target domain, and the semantic information can also be
transmitted in the target domain. Our proposed strategy learns
the discriminative features for the target data set by minimizing
the difference of the pseudolabels between two continuous
iterations. It makes the learning process more smooth and
stable in terms of the prediction results for the unlabeled data,
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thus improving the knowledge transfer between the source
and target domains. Also, to bridge the heterogeneity gap
between different modalities, we design two coupled networks
to learn modality-specific transformations. For each image
sample dα

i ∈ Sα
⋃X α , we define a conditional distribution

over all text samples dβ
1 , dβ

2 , . . . , dβ
m+n , and dβ

j ∈ Sβ
⋃X β

such that

p(dβ
j |dα

i ) = e−�h
α(dα

i )−hβ (dβ
j )�2∑m+n

k=1 e−�hα(dα
i )−hβ(dβ

k )�2

(5)

where hα and hβ are the transformation functions that are the
same as the definitions in (2).

To achieve an ideal matching distribution, we assume that
only the samples from the same pair are mapped to a single
point and infinitely far away from the other samples, i.e.,

q(dβ
j |dα

i ) =
{

1, if i = j

0, otherwise.
(6)

The coupled networks are designed to enforce the trans-
formation functions hα and hβ that can make p(dβ

j |dα
i )

be as close as possible to q(dβ
j |dα

i ), thus preserving the
modality-invariance of different modalities on both the source
and the target data sets. To match these two distributions,
we minimize the following KL divergence function from
image to text:

Ji2t = 1

m + n

m+n∑
i=1

m+n∑
j=1

q(dβ
j |dα

i ) log
q(dβ

j |dα
i )

p(dβ
j |dα

i )+ σ
(7)

where σ is a small number to avoid numerical problem and
typically set it as 10−6.

Similarly, the KL divergence function from text to image
can be computed by exchange dα

i and dβ
j in (5)–(7) as

Jt2i = 1

m + n

m+n∑
i=1

m+n∑
j=1

q(dα
i |dβ

j ) log
q(dα

i |dβ
j )

p(dα
i |dβ

j )+ σ
(8)

where σ is the same as the definition in (7).
At last, we obtain the modality-invariance loss by combining

the losses in (7) and (8) as

Lm = Ji2t + Jt2i . (9)

Note that the heterogeneity gap between two different
modalities is narrowed both on the source and the target data
set by minimizing Lm . The proposed method transfers not only
the knowledge about different semantic categories but also the
correlation relationship of different modalities.

D. Optimization

The objective function of DMTL in (1) involves two
subproblems. For the first subproblem, we use a stochastic
gradient descent optimization algorithm to update the weights
by fixing the pseudolabels of the new category samples.
After that, we exploit the learned parameters to update the
pseudolabels zα

j and zβ
j in (4). These two subproblems are

optimized alternatively.

To solve the first subproblem, we assume that zα
j and zβ

j are
assigned and calculate the gradients of the objective function
L in(1) with respect to the parameters of the two coupled
networks �α and �β as follows:

∂L
∂�α

= ∂Lm

∂�α
+ λ1

∂Ls

∂�α
+ λ2

∂Lt

∂�α

∂L
∂�β

= ∂Lm

∂�β
+ λ1

∂Ls

∂�β
+ λ2

∂Lt

∂�β
. (10)

Regarding to �α, we have

∂Ls

∂�α
= 1

m

m∑
i=1

PT Phα(sα
i )− PT yi

�Phα(sα
i )− yi�2

∂hα(sα
i )

∂�α
(11)

∂Lt

∂�α
= 1

n

n∑
j=1

PT Phα(xα
j )− PT zα

j

�Phα(xα
j )− zα

j �2

∂hα(xα
j )

∂�α
(12)

and

∂Lm

∂�α
=

∂

(
1

m+n

∑m+n
j=1 log 1

p(dβ
j |dα

j )+σ

)
∂�α

= − 1

m + n

m+n∑
j=1

1

p

(
dβ

j |dα
j

)
+ σ

∂p

(
dβ

j |dα
j

)
∂�α

. (13)

Denoting �hα(dα
j ) − hβ(dβ

k )�2 in (5) as ξk for k ∈
{1, 2, . . . , m + n}, we obtain that

∂p(dβ
j |dα

j )

∂�α

=
(
∑m+n

k=1 e−ξk ) 1
ξ j

e−ξ j (hβ(dβ
j )− hα(dα

j ))
∂hα(dα

j )

∂�α

(
∑m+n

k=1 e−ξk )2

+ e−ξ j
∑m+n

k=1
1
ξk

e−ξk (hβ(dβ
k )− hα(dα

j ))
∂hα(dα

j )

∂�α

(
∑m+n

k=1 e−ξk )2
. (14)

Regarding to �β , we have

∂Ls

∂�β
= 1

m

m∑
i=1

PT Phβ

(
sβ

i

)
− PT yi

�Phβ

(
sβ

i

)
− yi�2

∂hβ

(
sβ

i

)
∂�β

(15)

∂Lt

∂�β
= 1

n

n∑
j=1

PT Phβ

(
xβ

j

)
− PT zβ

j

�Phβ

(
xβ

j

)
− zβ

j �2

∂hβ

(
xβ

j

)
∂�β

(16)

and

∂Lm

∂�β
=

∂

(
1

m+n

∑m+n
j=1 log 1

p(dα
j |dβ

j )+σ

)
∂�β

= − 1

m + n

m+n∑
j=1

1

p(dα
j |dβ

j )+ σ

∂p

(
dα

j |dβ
j

)
∂�β

. (17)
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Algorithm 1 Optimization Procedure of Our DMTL
Input: The labelled source dataset S and the corresponding

semantic labels y1, y2, . . . , ym , the unlabelled target dataset
X , the dimensionality of the shared semantic space d ,
the batch size mb, the learning rate τ and the parameter
λ.

Output: The optimal coupled networks for the transformation
functions hα and hβ .

1: Randomly initialise the weight parameters of the two
coupled networks �α and �β , the weight matrix of the
linear classifier P, and the pseudo-labels zα

j and zβ
j ( j =

1, 2, . . . , n).
2: while not converge do
3: for 
 = 1, 2, . . . , �m+n

mb
�} do

4: Randomly sample mb image-text pair samples from
S ⋃X to construct a mini-batch.

5: Calculate the objective function in Equation (1) based
on the mini-batch.

6: Update the parameters �α and �β by minimising L in
Equation (1) with descending their stochastic gradient:
�α ← �α − τ ∂L

∂�α ;
�β ← �β − τ ∂L

∂�β .
7: Update the pseudo-labels zα

j and zβ
j via Equation (4).

8: end for
9: end while

Denoting �hβ(dβ
j )−hα(dα

k )�2 as ζk for k ∈ {1, 2, . . . , m+n},
we obtain that

∂p(dα
j |dβ

j )

∂�β

=
(
∑m+n

k=1 e−ζk ) 1
ζ j

e−ζ j (hα(dα
j )− hβ(dβ

j ))
∂hβ(dβ

j )

∂�β

(
∑m+n

k=1 e−ζk )2

+ e−ζ j
∑m+n

k=1
1
ζk

e−ζk (hα(dα
k )− hβ(dβ

j ))
∂hβ(dβ

j )

∂�β

(
∑m+n

k=1 e−ζk )2
. (18)

Then, �α and �β can be updated by using the gradient
descent algorithm as follows until the termination condition
been reached:

�α ← �α − τ
∂L
∂�α

�β ← �β − τ
∂L
∂�β

(19)

where τ is the learning rate.
Once we have optimized the model parameters, the

pseudolabels for the unlabeled data in the target domain are
updated via (4). Then, the updated pseudolabels are further
used to optimize the deep model parameters �α and �β .

The optimization procedure of our method is summarized
in Algorithm 1. The maximal number of training epochs T is
taken as the termination condition in this work.

IV. EXPERIMENTAL STUDY

To verify the effectiveness of our proposed method, we con-
duct experiments on four widely used benchmark data sets: the
Pascal Sentences data set [41], the Wikipedia data set [42],

TABLE I

STATISTICAL RESULTS OF THE FOUR BENCHMARK DATA SETS USED IN
OUR EXPERIMENTS, WHERE di AND dt ARE THE DIMENSIONALITIES

OF THE IMAGE AND TEXT FEATURES, RESPECTIVELY

the NUS-WIDE data set [43], and the XMediaNet data
set [2]. In the experiments, we first compare the proposed
DMTL method with state-of-the-art methods to evaluate its
performance. Then, we provide further analysis of DMTL.
It includes the convergence investigation, the visualization of
the learned representations in the common space, and the
impacts of different components in (1).
A. Data Sets and Features

Pascal Sentences [41] is selected from the 2008 PASCAL
development kit, which contains 1000 image-text pairs.
Each pair has one image and its description of five sentences.
The image-text pairs are classified into 20 semantic classes,
such as person, bird, and train. We split the data set into two
sets: a training set of 800 image-text pairs and a test set of
200 image-text pairs.

Wikipedia [42] is constructed from Wikipedia’s “featured
articles,” which contains a total of 2866 image-text pairs of
ten semantic categories. Each image-text pair only belongs to
one category. In each pair, it contains a single image and a
text of (several paragraphs) description about this image. The
categories are of high-level semantics, such as art, history, and
sports. The data set is randomly split as a training set of 2173
pairs and a test set of 693 pairs by following [42].

NUS-WIDE [43] is originally a real-world web image data
set. It contains about 270 000 images with their tags from
81 semantic categories. The data set is highly imbalanced in
different categories. In the experiments, we only select ten
largest categories by following [44] and [45], and the set of the
tags of an image is viewed as the text description of the target
image. As a result, there are 71 643 image-text pairs, where
42 942 image-text pairs are for training and 28 661 image-text
pairs are for testing.

XMediaNet [2] is a large-scale data set with five modalities,
which contains 100 000 instances of text, image, audio, video,
and 3-D model. These instances are grouped into 200 semantic
categories: 153 artifact species and 47 animal species. In this
work, we use image-text data in XMediaNet for CMR exper-
iments by following [40]. There are 40 000 image-text pairs,
which are divided into two parts: a training set of 32 000
image-text pairs and a test set of 8000 image-text pairs.

In the experiments, to evaluate the performance of the
transfer learning from the existing labeled categories to unla-
beled new categories, i.e., the transductive setting [46], [47],
we follow the data set partition and feature exaction strategies
from [40]. Furthermore, we adopt a 19-layer VGGNet [48]
to learn the representations of the image samples and obtain
a 4096-D representation vector outputted by the fc7 layer of
the network for each image. For representing text samples,
we adopt the Doc2Vec model [49] to extract a 300-D rep-
resentation vector for each text. The statistical results of the
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four data sets are summarized in Table I. It is notable that
all the compared methods adopt the same image and text
features as the features used in our method. For all the four
data sets, inspired by [40] and [50], we further randomly split
the training data set and the testing data set into a subset of
labeled categories (source data set) and a subset of unlabeled
new categories (target data set), respectively, and each subset
includes 50% categories. The testing of the CMR is performed
on the unlabeled new categories (target data set).
B. Evaluation Metric

In our experiments, we evaluate the performance of the
compared methods for two different CMR tasks: 1) retriev-
ing text samples using image queries (image-query-text) and
2) retrieving images using text queries (text-query-image).
In the testing stage, we map the multimedia data into the
common space using the multimodal learning methods. Then,
for each image (or text) query, it returns the nearest neighbors
from the text (or image) retrieval database by measuring the
similarity between the common representation vectors of the
query and the samples in the retrieval database with the cosine
distance.

We adopt two evaluation metrics to evaluate the retrieval
performance: the mean average precision (mAP) score [51]
and the precision-recall (PR) curve [52]. The mAP score is the
mean value of average precision (AP) values over all queries
in the query set, and AP can be calculated as

AP = 1

R

N∑
r=1

P(r)σ (r) (20)

where N is the number of samples in the retrieval database,
R is the number of relevant items, P(r) denotes the precision
of the top r retrieved items, and σ(r) = 1 if the r th retrieved
item is relevant to the query (i.e., the r th retrieved item belongs
to the category of the query) and σ(r) = 0 otherwise. The
mAP metric jointly considers the ranking information and
precision, which is a widely used performance evaluation
criterion in the research of CMR [1], [5]. The higher the mAP
score, the better the performance.

The PR curve shows the tradeoff between precision and
recall for different thresholds. In information retrieval, pre-
cision is a measure of result relevancy, whereas recall is
a measure of how many truly relevant results are returned.
A larger area under the PR curve represents both higher recall
and higher precision, which indicates better performance.
C. Experimental Settings

In this work, we connect three fully connected layers
with rectified linear unit (ReLU) [53] active function on the
top of each high-level feature extractor (i.e., VGGNet and
Doc2Vec) to output the representations in the common space.
The numbers of the hidden units for the three layers are 4096,
4096, and 512, respectively. The entire model is trained in
an end-to-end manner on an NVIDIA GTX 1080 Ti GPU in
PyTorch.1 For training, we employ the Adam optimizer [54]
with a learning rate of 10−4 and a batch size of 100 and set
the maximal number of epochs as 50.

1Pytorch Open Source Toolkit at https://github.com/pytorch/pytorch

TABLE II

PERFORMANCE COMPARISON IN TERMS OF THE (MEAN ± STD) MAP
SCORES ON PASCAL SENTENCES OVER TEN TIMES OF MONTE

CARLO SIMULATIONS. † REFERS TO THE RESULT

REPORTED IN [40]

D. Comparison With State-of-the-Art Methods
To verify the effectiveness of our proposed method,

we compare DMTL with 11 state-of-the-art methods in the
experiments, including six supervised learning-based meth-
ods, namely GMLDA [17], MvDA [55], MvDA-VC [25],
ACMR [5], DANZCR [45], and DADN [40], four unsuper-
vised learning-based methods, namely MCCA [56], PLS [57],
DCCA [23] and DCCAE [24], and an SSL method GSS-
SL [12]. The experiment on each data set has two settings:
1) only use the labeled data samples (source data set) in the
training set to train the model and apply the model on the
unlabeled categories of the test set for testing and 2) use both
the labeled data samples (source data set) and the unlabeled
data samples (target data set) in the training set to train the
model and apply the model on the unlabeled categories of
the test set for testing. Since the data set is randomly into
a source data set of 50% categories and a target data set of
the other 50% categories, we report the mean the standard
deviation (std) of mAP scores over ten times of Monte Carlo
simulations.

1) Results on Pascal Sentences: The mAP scores of our
DMTL and the compared methods on Pascal Sentences [41]
are reported in Table II, from which we have the following
four observations.

1) Our method obtains the highest mAP scores under both
of the two experimental settings. Specifically, it outper-
forms the peer methods with an improvement of 0.5%
and 6.3% average mAP scores on the two settings,
respectively.

2) The unsupervised methods and our method, which use
both the labeled data (source domain) and the unlabeled
data (target domain) for training, significantly outper-
form other supervised methods, which only use the
labeled data (source domain) for training.

3) The performance of our method on the second setting
is much better than that on the first setting. Specifically,
it has an improvement of 27.3% in terms of average
mAP scores.

4) GSS-SL, a semisupervised method, is inferior to other
methods under the second experimental setting, even
it uses the label information of source data set. The
potential reason is that the semantic gap between the
labeled categories (in the source domain) and the unla-
beled categories (in the target domain) is quite large.
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TABLE III

PERFORMANCE COMPARISON IN TERMS OF THE (MEAN ± STD) MAP
SCORES ON WIKIPEDIA OVER TEN TIMES OF MONTE CARLO

SIMULATIONS. † REFERS TO THE RESULT

REPORTED IN [40]

TABLE IV

PERFORMANCE COMPARISON IN TERMS OF THE (MEAN ± STD) MAP
SCORES ON NUS-WIDE OVER TEN TIMES OF MONTE CARLO

SIMULATIONS. † REFERS TO THE RESULT REPORTED IN [40]

2) Results on Wikipedia: The mAP scores of our DMTL
and the compared methods on Wikipedia [42] are reported
in Table III, from which we can see that the following holds.

1) Our method outperforms other methods under both of
the two experimental settings. Specifically, it achieves
an improvement of 0.3% and 6.9% average mAP scores
over the second best method on the two settings,
respectively.

2) The mAP score of our method on the image→text
retrieval is higher than that on the text→image retrieval,
especially the case in the second experimental setting.

3) The mAP scores of the tested methods on Wikipedia are
lower than the results on Pascal Sentences.

The potential reasons are that some images are not closely
related to their corresponding text description and their
assigned categories, which leads to the extracted image feature
vectors cannot reflect the semantic properties appropriately,
and the categories of Wikipedia are of high-level semantics,
such as art, history, and sports. Some of the samples may
belong to multiple categories but are assigned to one category
in the labeling process, which makes the search much more
difficult than that on Pascal Sentences, which contains the
categories of lower level semantics, e.g., person, bird, and
horse.

3) Results on NUS-WIDE: The mAP scores of our DMTL
and the compared methods on NUS-WIDE [43] are shown
in Table IV. From the results, we find that our method
still outperforms the peer methods under two settings. The
proposed transfer learning strategy can effectively transfer

TABLE V

PERFORMANCE COMPARISON IN TERMS OF THE (MEAN ± STD) MAP
SCORES ON XMEDIANET OVER TEN TIMES OF MONTE CARLO

SIMULATIONS. † REFERS TO THE RESULT REPORTED IN [40]

the knowledge from the labeled categories to the unlabeled
categories, even they have disjoint label sets, i.e., a large
semantic gap in the two domains. The NUS-WIDE data set is a
large-scale data set, which provides a large number of training
samples for the tested methods. Therefore, they all obtain
much higher mAP scores on NUS-WIDE than the results on
Pascal Sentences and Wikipedia.

4) Results on XMediaNet: The results on the XMediaNet
data set [2] are reported in Table V. They are consistent
with the results on the other three data sets that our method
performs better than all the peer methods with a large margin,
especially under the second setting. Our method achieves an
improvement of 57.9% average mAP scores over the second
best method when both the labeled source data and the
unlabeled target data are available for training. This illustrates
the effectiveness of our proposed multimodal transfer learning
method. Also, it improves the average mAP score from 10.6%
(by using only the source data) to 71.8% (by using both the
labeled source data and unlabeled target data), which means
that the unlabeled data of the target domain is significant for
our method to achieve high performance on CMR. At last,
we can see that the mAP scores of the other CMR on this
data set are much lower than the other three data sets. The
potential reason is the number of categories is up to 200, which
makes the recognition of different categories more challenging.
However, our methods transfer the knowledge from a large
number of labeled data and conquer the domain-shit problem,
thus obtaining a much higher mAP score.

Overall, from the above analysis, we find that our DMTL
outperforms other peer methods under the two settings, which
is consistent with the results of the PR curves on the four data
sets from one simulation, as shown in Fig. 3. From the results,
we can see that our method outperforms all other methods
under all thresholds of the decision function on the four data
sets. In addition, our method can achieve a recall of 80%
with the corresponding precision of > 75% on NUS-WIDE.
It validates the effectiveness of our DMTL. The supervised
methods result in relatively low mAP scores. The potential
reason is that they only learn on the labeled categories,
but retrieval on the unlabeled categories. The labeled known
categories and the unlabeled new categories have different data
distribution and disjoint label sets. The supervised methods
lack the knowledge about the unlabeled new categories and
suffer from the domain shift problem. This is also verified by
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Fig. 3. PR curves of the image-query-texts (image→text) and text-query-images (text→image) on Wikipedia, Pascal Sentences, NUS-WIDE, and XMediaNet.
DMTL-1 and DMTL-2 denote our proposed method under the first setting and the second setting, respectively. (a) Pascal Sentences (image→text). (b) Wikepedia
(image→text). (c) NUS-WIDE (image→text). (d) XMediaNet (image→text). (e) Pascal Sentences (text→image). (f) Wikepedia (text→image). (g) NUS-WIDE
(text→image). (h) XMediaNet (text→image).

Fig. 4. Value of the objective function of DMTL versus the number of training epochs on the four benchmark data sets. (a) Pascal Sentences. (b) Wikipedia.
(c) NUS-WIDE. (d) XMediaNet.

the results of our method on the two different experimental
settings, where it uses the source data only in the first setting
and uses both the source data and the target data in the second
setting. The potential reason why the semisupervised method
of GSS-SL obtains such a low mAP score is also due to
that the source domain and the target domain have different
categories. The classifier may enforce the whole network
to learn more discriminative features for the source domain
instead of that for the target domain. Specifically, GSS-SL
constructs a label graph constraint to ensure the intrinsic
geometric structures of different feature spaces consistent with
that of label space. Besides, GSS-SL proposes to classify each
of the unlabeled samples into one of the labeled categories, i.e.,
it adopts a hard-label strategy. However, the relationships of
the categories in the target domain may significantly different
from that of the categories in the source domain, leading
GSS-SL to a domain-shit problem as well.

E. Further Analysis of DMTL

In this section, we investigate more details about the
proposed method, including its convergency, the visual-
ization of representations in the common shared space,

Fig. 5. Value of the loss term Lt of DMTL versus the number of training
epochs on (a) Pascal Sentences and (b) Wikipedia.

the ablation study, and the parameter analysis. In the following
experiments, we use both the labeled data in the source domain
and the unlabeled data in the target domain for training.

1) Convergency: Fig. 4 shows the objective function of our
method versus the different number of training epochs on
Pascal Sentences, Wikipedia, NUS-WIDE, and XMediaNet.
From the results, we find that during the entire training
procedure, the value of the objective function decreases almost
monotonously and converges smoothly on the four data sets.
The value of the objective function becomes stable after
50 epochs, which indicates that DMTL can be efficiently
trained by adopting the stochastic gradient descent optimiza-
tion algorithm Adam [54].
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Fig. 6. Visualization for the new category data from the Pascal Sentences data set by using the t-SNE method [58]. The samples that come from the same
semantic category are marked with the same color. Different shapes denote different modalities, and the filled shapes represent the samples in the training
set and the unfilled shapes represent the samples in the test set. (a) Original image samples represented by the VGGNet [48] features. (b) Original text
samples represented by the Doc2Vec [49] features. (c) Image representations in the common representation space. (d) Text representations in the common
representation space. (e) Image and text representations in the common space.

Also, we investigate the convergence of the loss term Lt

on the pseudolabels of the data in the target domain on Pascal
Sentences and Wikipedia, as shown in Fig. 5. It shows that the
loss decreases along with the increase of the training epoch
and becomes stable after 40 epochs and almost equals zero.

2) Visualization of the Learned Representations: To visually
investigate the effectiveness of DMTL, we adopt the t-SNE
approach [58] to embed the representations of the image
and text samples (in the common space) into a 2-D plane.
The results of the original images represented by the 4096-D
(VGGNet [48]) features and the text samples represented
by the 300-D (Doc2Vec [49]) features (after the embedding
process) are shown in Fig. 6(a) and (b), respectively. We can
see that the distributions of the image modality and the text
modality in the Pascal Sentences data set are largely different
and the interclass samples from both the image modality and
the text modality are hard to be distinguished in the original
input space. Fig. 6(c) and (d) shows the 2-D distributions
of the image and text representations in the common space.
From the results, we can see that our proposed method can
model the discrimination between the samples from different
semantic categories. It effectively separates the representations
into several semantically discriminative clusters. We can also
find that a small number of the representations of different
semantic categories are mixed together, which makes DMTL
prone to return some irrelevant results for a query. These
results are in accordance with the retrieval results shown
in Table II. Furthermore, the distributions of image modality
and text modality in Fig. 6(e) are well mixed together and

are difficult to be separated from each other. It means that
the cross-modal discrepancy is largely reduced by using the
proposed method. At last, for each category (marked with
different colors), most of the filled shapes and the unfilled
shapes are overlapped. It means that DMTL has effectively
connected the test data set with the training data set for the
new categories, which can be helpful to achieve high CMR
performance on the target data set of new categories.

3) Impact of Different Components: The objective function
of our DMTL consists of three terms: the discrimination loss
for the source data set Ls , the discrimination loss for the target
data set Lt , and the domain-invariance loss Lm . To investigate
the impacts of these terms on the performance of DMTL,
we develop and evaluate its three variations: DMTL with Lm

only, DMTL with Ls only, and DMTL without Lt . Table VI
reports the performance comparisons of DMTL and its three
variations on the four data sets. From the results, we have the
following observations.

1) The full DMTL outperforms the variant of DMTL
(without Lt ), which demonstrates the advantages of
using pseudolabels to feedback information to learn
discriminative features for the new categories. The Lt

term achieves an improvement of 9.7% on NUS-WIDE
in terms of the average mAP score.

2) The variant of DMTL (with Lm only) can achieve
promising results, which demonstrates the effectiveness
of our proposed distribution approximation strategy.

3) The variant of DMTL (with Ls only) results in the lowest
mAP scores on the four data sets. The potential reason
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TABLE VI

PERFORMANCE COMPARISONS OF THE PROPOSED DMTL AND ITS THREE
VARIATIONS IN TERMS OF MAP SCORES

Fig. 7. mAP scores versus hyperparameters on the NUS-WIDE data set.
(a) mAP versus λ1 when λ2 = 0. (b) mAP versus λ2 when λ1 = 1.5.

is that it suffers the domain shift problem. However,
the variant of DMTL (without Lt ) outperforms the
variant of DMTL (with Lm only), which indicates that
using the labeled known category data can improve the
retrieval performance on the new category data set.

The above analysis indicates that all of the three terms in
the objective function contribute to the final accuracy.

4) Parameter Sensitivity Analysis: In this section, we inves-
tigate the parameter sensitivity of our proposed method. There
are two hyperparameters λ1 and λ2. We conduct the analysis
by varying the value of one parameter while fixing the value
of another parameter. Specifically, we first set the value of
λ2 as zero to search the optimal value of λ1 and then fix
λ1 and search the optimal value of λ2. The results on the
NUS-WIDE data set are shown in Fig. 7, from which we
can see that DMTL obtains the highest mAP score under
λ1 = 1.5 when fixing the value of λ2 as zero, and then, its
mAP scores dropdown along with the increase of the value of
λ1. In addition, if we fix λ1 as 1.5, the average mAP scores
of DMTL increase first and then reduce slightly along with
the growth of the value of λ2. The mAP scores of DMTL are
higher than 65% in a large range of values for λ1 and λ2 and
that DMTL is robust against the two hyperparameters.

V. CONCLUSION

In this article, we proposed a novel approach (DMTL)
to achieve the CMR on the new categories by transferring
the knowledge from the known categories. To overcome the

domain shift problem, we designed a joint learning paradigm
to exploit the annotated labels and the pseudolabels to learn
discriminative features for the target data set of new categories.
Following the proposed learning paradigm, we optimize the
modality-specific networks and update the pseudolabels alter-
natively to achieve the multimodal transfer learning. Fur-
thermore, to bridge the heterogeneity gap between different
modalities, we designed two coupled networks to learn two
conditional distribution spaces to match the ideal distribution
spaces induced by the available data set of two different
modalities. It can preserve the latent structure of the data set
and achieve better performance. Extensive experimental results
and the comprehensive analysis have validated the effective-
ness of the proposed joint learning strategy and the designed
distribution approximation networks. Our method achieves the
promising CMR performance on the new categories compared
with state-of-the-art methods.

Despite its high competitiveness, our method faces the
following two limitations: 1) it cannot handle increasing
categories efficiently and 2) it assumes that the pairwise
information between different modalities is available, which is
not always able to meet in some real-world applications. In this
regard, investigating how to leverage incremental learning and
unpaired cross-modal learning to address these two issues is
the focus of our subsequent study.
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