
OPQ: Compressing Deep Neural Networks with One-shot Pruning-Quantization

Peng Hu1, 2, Xi Peng2, Hongyuan Zhu1, Mohamed M. Sabry Aly3, Jie Lin1,∗

1Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore
2College of Computer Science, Sichuan University, Chengdu 610065, China

3Nanyang Technological University, Singapore
{penghu.ml, pengx.gm, hongyuanzhu.cn}@gmail.com; msabry@ntu.edu.sg; lin-j@i2r.a-star.edu.sg

Abstract

As Deep Neural Networks (DNNs) usually are overparam-
eterized and have millions of weight parameters, it is chal-
lenging to deploy these large DNN models on resource-
constrained hardware platforms, e.g., smartphones. Numer-
ous network compression methods such as pruning and quan-
tization are proposed to reduce the model size significantly,
of which the key is to find suitable compression allocation
(e.g., pruning sparsity and quantization codebook) of each
layer. Existing solutions obtain the compression allocation in
an iterative/manual fashion while finetuning the compressed
model, thus suffering from the efficiency issue. Different
from the prior art, we propose a novel One-shot Pruning-
Quantization (OPQ) in this paper, which analytically solves
the compression allocation with pre-trained weight parame-
ters only. During finetuning, the compression module is fixed
and only weight parameters are updated. To our knowledge,
OPQ is the first work that reveals pre-trained model is suf-
ficient for solving pruning and quantization simultaneously,
without any complex iterative/manual optimization at the
finetuning stage. Furthermore, we propose a unified channel-
wise quantization method that enforces all channels of each
layer to share a common codebook, which leads to low bit-
rate allocation without introducing extra overhead brought by
traditional channel-wise quantization. Comprehensive exper-
iments on ImageNet with AlexNet/MobileNet-V1/ResNet-50
show that our method improves accuracy and training effi-
ciency while obtains significantly higher compression rates
compared to the state-of-the-art.

1 Introduction
In recent years, Deep Neural Networks (DNNs) have
achieved great success in various applications, such as image
classification (He et al. 2016; Li et al. 2020) and object de-
tection (He et al. 2017). However, the massive computation
and memory cost hinder their deployment on lots of popu-
lar resource-constraint devices, e.g., mobile platform (Han,
Mao, and Dally 2016; Li, Dong, and Wang 2019). The well-
known over-parameterization of DNNs shows the theoreti-
cal basis to build lightweight versions of these large mod-
els (Zhang and Stadie 2020; Yang et al. 2020b; Li et al.

∗Corresponding author: Jie Lin.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2020). Therefore, DNN model compression without accu-
racy loss has gradually become a hot research topic.

Network pruning is one of the popular compression tech-
niques, by removing redundant weight parameters to slim
the DNN models without losing any performance, e.g., fine-
grained weight pruning (Guo, Yao, and Chen 2016), filter
pruning (Luo, Wu, and Lin 2017), etc. One key problem for
weight pruning is to determine which neuron is deletable.
Recently, the lottery ticket hypothesis (Frankle and Carbin
2019) proves that the removable neurons can be directly de-
termined by the pre-trained model only, without updating
the pruning masks during finetuning (a.k.a., one-shot weight
pruning). Obviously, it is promising to explore whether this
one-shot mechanism generalizes to other compression tech-
niques, e.g., one-shot quantization. Like one-shot pruning,
one-shot quantization is expected to support finetuning the
quantized model without updating the quantizers derived
from the pre-trained model.

Network quantization opts to represent weight parame-
ters using fewer bits instead of 32-bit full precision (FP32),
leading to reduced memory footprint and computation cost
while maintaining accuracy as much as possible. Quantiza-
tion could be roughly classified as layer-wise (He and Cheng
2018; Wang et al. 2019) and channel-wise (Krishnamoorthi
2018) methods. For layer-wise quantization, the weights of
each layer are quantized by a common layer-specific quan-
tizer. Conversely, for channel-wise quantization, each chan-
nel of a layer has its own channel-specific quantizer, i.e.,
multiple different channel-specific quantizers are required
for a layer as illustrated in Figure 1a. With comparable ac-
curacy, the fine-grained channel-wise quantization usually
achieves a higher compression rate than the coarse-grained
layer-wise quantization, while at the expense of extra over-
head introduced (i.e., channel-wise codebooks, etc.) which
in turn increases the difficulty for hardware implementa-
tion (Nagel et al. 2019; Cai et al. 2020).

To further maximize the compression rate, it is desir-
able to simultaneously conduct pruning and quantization on
the DNN models (Wang et al. 2020; Yang et al. 2020a).
However, the pruning-quantization strategy is more com-
plex than either pruning or quantization alone. In other
words, it is almost impossible for manually tuning the prun-
ing ratios and quantization codebooks at fine-grained lev-
els. To address this issue, recent methods adopt certain

-0.10

-0.08

0.02

0.06

0.10

-0.07

…

0.035

(a)

-0.10

-0.08

…

0.02

0.06

0.10

(b)

Figure 1: Difference between (a) existing channel-wise
quantization and (b) the proposed unified quantization.
Cubes with the same color denote a channel. In (a), each
channel of a layer has its individual quantization codebook.
On the contrary, in (b) all channels of a layer share a com-
mon codebook.

optimization techniques, e.g., Bayesian optimization (Tung
and Mori 2020), Alternating Direction Method of Multipli-
ers (ADMM) (Yang et al. 2020a) to iteratively update the
compression allocation (i.e., pruning ratios and quantiza-
tion codebooks) and weights of the compressed models. Al-
though these pruning-quantization methods achieve promis-
ing results, optimizing the compression allocation param-
eters introduces considerable computational complexity at
the finetuning stage.

To address the aforementioned problems, we proposed
a novel One-shot Pruning-Quantization method (OPQ) to
compress DNN models. Given a pre-trained model, a uni-
fied pruning error is formulated to calculate layer-wise prun-
ing ratios analytically which subsequently derive layer-wise
magnitude-based pruning masks. Then we compute a com-
mon channel-wise quantizer for each layer analytically by
minimizing the unified quantization error of the pruned
model. At the finetuning stage, the pruning mask and the
channel-wise quantizer of each layer are fixed and only
the weight parameters are updated in order to compensate
for accuracy loss incurred by the model compression error.
Thus, our method provides an analytical solution to obtain
suitable pruning-quantization allocations in a one-shot man-
ner, avoiding iterative, variable and complex optimization
of the compression module during finetuning. Moreover,
the proposed unified channel-wise quantization enforces all
channels of each layer to share a common quantization code-
book as illustrated in Figure 1. Unlike traditional channel-
wise quantization methods, our unified quantization does
not introduce any overheads (i.e., channel-wise scales and
offsets). Thus, our method embraces the benefits of both
the fine-grained channel-wise quantization and the coarse-
grained layer-wise quantization simultaneously.

The main contributions of this work are three-fold:

1. A One-shot Pruning-Quantization method for compres-
sion of DNNs. To our knowledge, this is the first work re-
veals that pre-trained model is sufficient for solving prun-
ing and quantization simultaneously, without any iterative
and complex optimization during finetuning.

2. A Unified Channel-wise Quantization method remarkably

reduces the number of channel-wise quantizers for each
layer, and thus avoids the overhead brought by the tradi-
tional channel-wise quantization.

3. Extensive experiments prove the effectiveness of the
one-shot pruning-quantization strategy. On AlexNet,
MobileNet-V1, and ResNet-50, our method boosts the
state-of-the-art in terms of accuracy and compression rate
by a large margin.

2 Related Works
In this section, we briefly review the most related works
from the following three aspects: pruning, quantization, and
pruning-quantization methods.

2.1 Pruning Methods
Pruning aims at removing unimportant weights/neurons
to slim the over-parameterized DNN models. Since fully-
connected layers contain the dominant number of parame-
ters in early stage of the classical DNN models, research
works focus on removing the neurons in the fully-connected
layers (Yang et al. 2015; Cheng et al. 2015). Follow-up
works attempt to sparsify the weights in both convolutional
and fully-connected layers (Srinivas and Babu 2015; Guo,
Yao, and Chen 2016; Zhu and Gupta 2017), e.g., with ten-
sor low rank constraints, group sparsity (Zhou, Alvarez,
and Porikli 2016), constrained Bayesian optimization (Chen
et al. 2018), etc. Pruning methods can be roughly grouped
into unstructured pruning (e.g., weights) (Guo, Yao, and
Chen 2016) or structured pruning (e.g., filters) (Luo, Wu,
and Lin 2017; He et al. 2020). The former shrinks network
size by simply defining hard threshold for pruning criteria
such as magnitude of weights. The latter removes the sub-
tensors along a given dimension in the weight tensors with
pruning criteria such as L1/L2 norm of filters. Structured
pruning is compatible with existing hardware platforms,
while unstructured pruning requires the support of hard-
ware architecture with specific design. On the other side,
unstructured pruning usually achieves much higher com-
pression rate than structured pruning at comparable accu-
racy, which is an attractive feature for embedded systems
that with extreme-low resource constraints.

2.2 Quantization Methods
Quantization enforces the DNN models to be represented by
low-precision numbers instead of 32-bit full precision rep-
resentation, leading to smaller memory footprint as well as
lower computational cost. In recent years, numerous quan-
tization methods are proposed to quantize the DNN mod-
els to as few bits as possible without accuracy drop, e.g.,
uniform quantization with re-estimated statistics in batch
normalization and estimation error minimization of each
layer’s response (He and Cheng 2018), layer-wise quan-
tization with reinforcement learning (Wang et al. 2019),
channel-wise quantization (Banner, Nahshan, and Soudry
2019), etc. The extreme case of quantization is binary neu-
ral networks, which represent the DNN weights with binary
values. For instance, Rastegari et al. adopted binary values

Pretrained Model Compressed ModelCompress & Finetune

Pruning Masks

Quantization Steps

Full precision Quantized weights Pruned weights

Quantizing Pruning

One-shot

Figure 2: The pipeline of our method. Channels of each layer share the same quantizer (i.e., the same codebook). Cubes in black
color indicate pruned weights. Given a pre-trained model, the pruning masks {Mi}Li=1 (see Section 3.2) and quantization steps
{∆i}Li (see Section 3.3) are analytically derived in one-shot and fixed while finetuning the compressed model.

to approximate the filters of DNN, called Binary-Weight-
Networks (Wu et al. 2016).

2.3 Pruning-quantization Methods
Obviously, both pruning and quantization can be simulta-
neously conducted to boost the compression rate. Han et
al. proposed a three-stage compression pipeline (i.e., prun-
ing, trained quantization and Huffman coding) to reduce
the storage requirement of DNN models (Han, Mao, and
Dally 2016). In-parallel pruning-quantization methods are
proposed to compress DNN models to smaller size without
losing accuracy. Specifically, Tung et al. utilized Bayesian
optimization to prune and quantize DNN models in par-
allel during fine-tuning (Tung and Mori 2020). In (Yang
et al. 2020a), Yang et al. proposed an optimization frame-
work based on Alternating Direction Method of Multipli-
ers (ADMM) to jointly prune and quantize the DNNs auto-
matically to meet target model size.For the aforementioned
methods, the pruning masks and quantizers for all layers
are manually set or iteratively optimized at finetuning stage.
How to directly obtain the desirable compression module
from the pre-trained models without iterative optimization
at finetuning stage is less explored in earlier works.

3 The Proposed Method
3.1 Preliminaries
We first provide notations and definitions for neural net-
work compression, i.e., pruning and quantization. LetW =
{Wi}Li=1 be the FP32 weight tensors of a L-layer pre-
trained model, where Wi is the weight parameter tensor of
the i-th layer. To simplify the presentation, let Wij (j =
1, 2, · · · , Ni) be the j-th element of Wi and Wijk (k =
1, 2, · · · , Nij) be k-th element from the j-th channel of
the i-th layer, where Ni is the number of weight param-
eters in Wi and Nij is the number of weight parameters
from the j-th channel of i-th layer. The weights of each
layer satisfy a symmetrical distribution around zero such as
Laplace distribution (Ritter, Botev, and Barber 2018; Ban-
ner, Nahshan, and Soudry 2019). We define a probability
density function fi(x) for the i-th layer. Different from the

prior art (Han, Mao, and Dally 2016; Yang et al. 2020a;
Tung and Mori 2020), given a target pruning rate and quan-
tization bit-rate, our method analytically solves the pruning-
quantization allocations (i.e., pruning masks {Mi}Li=1 and
quantization steps {∆i}Li) with pre-trained weight parame-
ters only in one-shot, meaning that the pruning masks and
quantization steps are fixed while finetuning the weights
of the compressed model. Given a pre-trained model, the
pruning-quantization is conducted on its weight parameters
W by Ŵ = M ◦

(
∆bW∆ e

)
, where ◦ is the Hadamard

product, b·e is the round operator, and ∆bW∆ e represents
the quantized weights with quantization step ∆. For fine-
tuning the compressed model, the Straight-Through Estima-
tor (STE) (Bengio, Léonard, and Courville 2013) is applied
on ∆bW∆ e to compute the gradients in the backward pass.

The pipeline of the proposed method is shown in Fig-
ure 2 and Algorithm 1. The details on solving {Mi}Li=1 and
{∆i}Li will be given in the following sections.

Algorithm 1 Optimization process of our method
Input: A pre-trained FP32 model with L layers, objective
pruning rate p∗, objective quantization bitwidth B, batch
size Nb, and maximum epoch number Ne.
Output: Finetuned compressed model.

1: Compute the pruning masks {Mi}Li=1 for all layers (see
Section 3.2).

2: Calculate the qunatization steps {∆i}Li for all layer (see
Section 3.3).

3: for 1, 2, · · · , Ne do
4: repeat
5: Randomly sample a minbatch from the training set.
6: Compress the weights using {∆i}Li and {Mi}Li=1

for the model.
7: Forward propagate with the pruned and quantized

weights, and compute the cross entropy loss.
8: Update the model weights with descending their

stochastic gradient.
9: until all samples selected

10: end for

3.2 Unified Layer-wise Weight Pruning
In this section, we present a general unified formulation to
prune the weights W of all layers given a pre-trained neu-
ral network model. The pruning problem aims to find which
weights could be removed. To simplify the formulation, we
reformulate the problem as finding the pruning ratios of all
layers {pi}Li=1, where pi is the percentage of weights with
small magnitude (i.e., minor absolute values around zero)
to be removed in the i-th layer. Specifically, it removes the
weights in a symmetric range [−βi, βi] around zero for the
i-th layer like (Tung and Mori 2020), where βi is a positive
scalar value. Thus, the pruning rate of the whole model can
be calculated by

p =
1

N

L∑
i=1

∫ βi

−βi
Nifi(x)dx =

2

N

L∑
i=1

∫ βi

0

Nifi(x)dx. (1)

Accordingly, the pruning error of the i-th layer can be for-
mulated as follows:

Lβi =

Ni∑
j=1

(Wij)
2

∣∣∣∣
|Wij |6βi

= 2

∫ βi

0

Nix
2fi(x)dx. (2)

Obviously, we aim to minimize the errors caused by
weight pruning, with the objective that the pruned model is
as consistent as possible with the original model. To achieve
the goal, we have the following pruning objective function:

β∗1 , · · · , β∗L = arg min
β1,β2,··· ,βL

1

N

L∑
i=1

Lβi

= arg min
β1,β2,··· ,βL

2

N

L∑
i=1

∫ βi

0

Nix
2fi(x)dx.

(3)

For a given objective pruning rate p∗, we could solve the
minimizing problem of Equation (3) through the Lagrange
multiplier. With the Lagrangian with a multiplier λ, we can
obtain:

L(β1, · · · , βL, λ) =

L∑
i=1

2

N

∫ βi

0

Nix
2fi(x)dx

− λ

(
2

N

L∑
i=1

∫ βi

0

Nifi(x)dx− p∗
)
.

(4)

In order to solve for βi, we set the partial derivative of the
Lagrangian function L(β1, · · · , βL, λ) with respect to βi as
zero. Then, we can obtain β∗1 = β∗2 = · · · = β∗L =

√
λ.

Like the solution process of {βi}Li=1, we can obtain the λ
through setting the partial derivative of the Lagrangian func-
tion L(β1, · · · , βL, λ) with respect to λ as zero:

∂L(β1, · · · , βL, λ)

∂λ
=

2

N

L∑
i=1

∫ √λ
0

Nifi(x)dx− p∗

= 0.

(5)

Since fi(x) could be a Laplace probability density function
1

2τi
e
− |x|
τi (Banner, Nahshan, and Soudry 2019), the proba-

bility distribution function could be obtained by F (x) =

∫ x
0
fi(y)dy =

∫ x
0

1
2τi
e
− |y|
τi dy = − 1

2e
− y
τi

∣∣∣x
0

. Then, Equa-
tion (5) can be reformulated as follows:

∂L(β1, · · · , βL, λ)

∂λ
≈ 1

N

L∑
i=1

Ni

(
1− e−

√
λ
τi

)
− p∗

= 0.

(6)

The well-known Levenberg-Marquardt algorithm could be
used to fit F (x) for the weights at each layer in order to
derive the layer-wise scalar parameter τi.Moreover, we use
Newton-Raphson method to solve Equation (6) in order to
obtain λ, then {βi}Li=1 could be derived with the obtained λ.
{βi}Li=1 can be used to calculate the pruning ratio of each
layer by pi =

∫ βi
−βi Nifi(x)dx, and meanwhile derive the

binary pruning mask Mi ∈ {0, 1}|Wi| via magnitude-based
thresholding. The pruning mask Mi is used to remove unim-
portant weights from the i-th layer by Mi ◦Wi, where ◦ is
the Hadamard product. The remaining unpruned weights are
sparse tensors that could be stored by leveraging index dif-
ferences and encoded with lower bits, one can refer to (Han,
Mao, and Dally 2016) for more implementation details.

3.3 Unified Channel-wise Weight Quantization
Different from existing per-channel weight quantization
(Krishnamoorthi 2018; Banner, Nahshan, and Soudry 2019),
we enforce all channels of a layer to share a common scale
factor and offset (i.e., a common codebook), so that it does
not introduce additional overheads (i.e., channel-wise code-
books). To this end, we perform uniform quantization on the
unpruned weights of all channels with a unified quantiza-
tion step, i.e., a unified codebook. That is to say, all chan-
nels of a layer share a common quantization step ∆ be-
tween two adjacent quantized bins/centers. Let Kij denote
the number of bins assigned to the j-th channel of the i-th
layer, which is the number of quantization centers required
to store the unpruned weights of the channel. Denoting a
positive real value αij as the maximum for the j-th channel
(i.e.,Wijk ∈ [−αij , αij]), the range [−αij , αij] can be parti-
tioned toKij equal quantization bins. Therefore, the number
of quantization bins Kij is established as follows:

Kij =

⌊
2αij
∆i

⌉
, (7)

where b·e is the round operator which rounds a value to the
nearest integer, αij = max

{
|Wijk| |k = 1, 2, · · · , N̄ij

}
, |·|

is the absolute value operator, Wijk is the k-th weight from
the j-th channel of the i-th layer, N̄ij is the number of un-
pruned weights in the j-th channel of the i-th layer. Obvi-
ously, the average number of quantized bins required for the
i-th layer is computed as follows:

Ki =
1

N̄i

Ci∑
j=1

N̄ijKij , (8)

where N̄i =
∑N̄i
j=1 N̄ij is the number of all unpruned

weights in the i-th layer. Thus, the average number of bins

for the whole model could be formulated as follows:

1

N̄

L∑
i=1

KiNi

∫ +∞

βi

fi(x)dx =
1

N̄

L∑
i=1

Ci∑
j=1

N̄ijKij = 2B , (9)

where B is the objective number of bits required to store
the unpruned weights for all layers, and N̄ =

∑L
i=1 N̄i is

the number of all unpruned weights in the model. With the
quantization step ∆i, each weight of the corresponding layer
could be uniformly quantized as certain discrete levels. The
channels from the same layer share a common quantization
function denoted as:

Qi(x) = sgn(x)∆i

⌊
|x|
∆i

⌉
, (10)

where sgn(x) is the sign function. Then, the mean-square-
errors caused by quantization can be formulated as:

Lq =

L∑
i=1

1

N̄i

Ni∑
j=1

Mij (Wij −Qi(Wij))
2
. (11)

Since fi(x) is a symmetric distribution function, we could
simplify the quantization error Lq in Equation (11) as:

Lq = 2

L∑
i=1

1

N̄i

∫ +∞

βi

Nifi(x)(x−Qi(x))2dx ≈
L∑
i=1

∆2
i

12
, (12)

where N̄i = 2Ni
∫ +∞
βi

fi(x)dx is the number of unpruned
weights in the i-th layer.

To minimize Lq with bit constraint, we introduce a mul-
tiplier λ (i.e., a Lagrange multiplier) to enforce the bit-
allocation requirement in Equation (9) as follows:

L(∆1, · · · ,∆L, λ)

=

L∑
i=1

1

12
∆2
i + λ

 1

N̄

L∑
i=1

Ci∑
j=1

N̄ij
2αij
∆i
− 2B

 ,
(13)

where N̄ij is the number of unpruned connections in the j-th
channel of the i-th layer. Similar to the Lagrange derivation
for pruning in Section 3.2, we apply Lagrange derivation to
derive ∆i and λ as:

∆i =
1

2B−1N̄

L∑
i=1

Ci∑
j=1

N̄ijαij , (14)

λ =

 1

2B−1N̄

L∑
i=1

3

√
N̄

12

∑Ci
j=1 N̄ijαij

3

√∑Ci
j=1 N̄ijαij

3

. (15)

Combining Equations (14) and (15), we obtain the quantiza-
tion quotas (i.e., {∆i}Li=1) for all layers, which can be used
to quantize the given DNN model in the forward pass.

4 Experiments
In this section, we evaluate our method by com-
pressing well-known convolutional neural networks, i.e.,
AlexNet (Krizhevsky, Sutskever, and Hinton 2012), VGG-
16 (Simonyan and Zisserman 2015), ResNet-50 (He et al.

2016), MobileNet-V1 (Howard et al. 2017). All experiments
are performed on ImageNet (i.e., ILSVRC-2012) (Deng
et al. 2009), a large-scale image classification dataset con-
sisted of 1.2M training images and 50K validation images.
To demonstrate the advantage of our method, we compare
our results with state-of-the-art pruning, quantization and in-
parallel pruning-quantization methods. Finally, we conduct
error analysis to verify the validity of our method.

4.1 Implementation Details
The proposed method is implemented by PyTorch. We set
the batch size as 256 for all models at finetuning stage. The
SGD otpimizer is utilized to finetune the compressed models
with the momentum (= 0.9), weight decay (= 10−4), and
learning rate (= 0.005). Since pruning has a greater impact
on performance than quantization, we adopt two-stage strat-
egy to finetune the compressed networks. First, we finetune
the pruned networks without quantization till they recover
the performance of the original uncompressed models. Sec-
ond, pruning and quantization are simultaneously applied at
the finetuning stage.

4.2 Comparisons with State-of-the-Art
We performed extensive experiments to evaluate the ef-
fectiveness of the proposed method by comparing with 12
state-of-the-art methods, including 6 pruning methods (i.e.,
i.e., Data-Free Pruning (Srinivas and Babu 2015), Adaptive
Fastfood 32 (Yang et al. 2015), Less Is More (Zhou, Al-
varez, and Porikli 2016), Dynamic Network Surgery (Guo,
Yao, and Chen 2016), Circulant CNN (Cheng et al. 2015),
and Constraint-Aware (Chen et al. 2018)), 3 quantization
methods (i.e., Q-CNN (Wu et al. 2016), Binary-Weight-
Networks (Rastegari et al. 2016), and ReNorm (He and
Cheng 2018)), 3 pruning-quantization methods (i.e., Deep
Compression (Han, Mao, and Dally 2016), CLIP-Q (Tung
and Mori 2020), and ANNC (Yang et al. 2020a)).

AlexNet on ImageNet For AlexNet, we compare our
method with pruning only (i.e., Data-Free Pruning (Srini-
vas and Babu 2015), Adaptive Fastfood 32 (Yang et al.
2015), Less Is More (Zhou, Alvarez, and Porikli 2016), Dy-
namic Network Surgery (Guo, Yao, and Chen 2016), Circu-
lant CNN (Cheng et al. 2015), and Constraint-Aware (Chen
et al. 2018)), quantization only (i.e., Q-CNN (Wu et al.
2016) and Binary-Weight-Networks (Rastegari et al. 2016))
and pruning-quantization (i.e., Deep Compression (Han,
Mao, and Dally 2016), CLIP-Q (Tung and Mori 2020), and
ANNC (Yang et al. 2020a)) methods. Unlike our one-shot
pruning-quantization framework, all the compared methods
gradually learn their pruning masks and/or quantizers dur-
ing fine-tuning process. Our method compresses the pre-
trained uncompressed AlexNet which achieves 56.62% top-
1 accuracy and 79.06% top-5 accuracy. Experimental results
are shown in Table 1. From the table, we observe that our
method compresses AlexNet to be 138.96× smaller while
preserving the accuracy of the uncompressed AlexNet on
ImageNet. Our method could even achieve 0.46% top-1 and
1.20% top-5 accuracy improvements. Compared to ANNC
with 118x compression rate, our method performs slightly

Method Top-1 (%) Top-5 (%) Prune Rate (%) Bit Rate
Data-Free Pruning (Srinivas and Babu 2015) 55.60 (2.24↓) - 36.24 32 1.57×
Adaptive Fastfood 32 (Yang et al. 2015) 58.10 (0.69↑) - 44.12 32 1.79×
Less Is More (Zhou, Alvarez, and Porikli 2016) 53.86 (0.57↓) - 76.76 32 4.30×
Dynamic Network Surgery (Guo, Yao, and Chen 2016) 56.91 (0.3↑) 80.01 (-) 94.3 32 17.54×
Circulant CNN (Cheng et al. 2015) 56.8 (0.4↓) 82.2 (0.7↓) 95.45 32 18.38×
Constraint-Aware (Chen et al. 2018) 54.84 (2.57↓) - 95.13 32 20.53×
Q-CNN (Wu et al. 2016) 56.31 (0.99↓) 79.70 (0.60↓) - 1.57 20.26×
Binary-Weight-Networks (Rastegari et al. 2016) 56.8 (0.2↑) 79.4 (0.8↓) - 1 32×
Deep Compression (Han, Mao, and Dally 2016) 57.22 (0.00↑) 80.30 (0.03↑) 89 5.4 6.66×
CLIP-Q (Tung and Mori 2020) 57.9 (0.7↑) - 91.96 3.34 119.09×
ANNC (Yang et al. 2020a) 57.52 (1.00↑) 80.22 (0.03↑) 92.6 3.7 118×
Ours 57.09 (0.46↑) 80.25 (1.20↑) 92.30 2.99 138.96×

Table 1: AlexNet on ImageNet.

Method Top-1 (%) Top-5 (%) Prune Rate (%) Bit Rate
ThiNet-GAP (Luo, Wu, and Lin 2017) 67.34 (1.0↓) 87.92 (0.52↓) 94.00 32 16.63×
Q-CNN (Wu et al. 2016) 68.11 (3.04↓) 88.89 (1.06↓) - 1.35 23.68×
Deep Compression (Han, Mao, and Dally 2016) 68.83 (0.33↑) 89.09 (0.41↑) 92.5 6.4 66.67×
CLIP-Q (Tung and Mori 2020) 69.2 (0.7↑) - 94.20 3.06 180.47×
Ours 71.39 (0.24↓) 90.28 (0.09↓) 94.41 2.92 195.87×

Table 2: VGG-16 on ImageNet.

lower in Top-1 and slightly higher in Top-5, but with over
3x less finetuning time (160h vs 528h).

VGG-16 on ImageNet For VGG-16, we compare our
method with pruning only (i.e., ThiNet-GAP (Luo, Wu, and
Lin 2017)), quantization only (i.e., Q-CNN (Wu et al. 2016))
and pruning-quantization (i.e., Deep Compression (Han,
Mao, and Dally 2016), and CLIP-Q (Tung and Mori 2020))
methods. Our method compresses the pre-trained uncom-
pressed VGG-16 of PyTorch which achieves 71.63% top-1
and 90.37% top-5 accuracy. Experimental results are shown
in Table 2, one can see that our method can compress VGG-
16 to be 195.87× smaller with only negligible accuracy
loss comparing with the uncompressed model. Compared to
other approaches, out method still achieves the best accuracy
with the highest compression rate.

MobileNet-V1 on ImageNet For MobileNet-V1, we
compare our method with pruning only (i.e., To Prune
or Not To Prune (Zhu and Gupta 2017)), quantization
only (i.e., Deep Compression (Han, Mao, and Dally 2016),
ReNorm (He and Cheng 2018), and HAQ (Wang et al.
2019)) and pruning-quantization (i.e., CLIP-Q (Tung and
Mori 2020) and ANNC (Yang et al. 2020a)) methods. A pre-
trained uncompressed MobileNet-V1 model, which achieves
70.28% top-1 and 89.43% top-5, is adopted for pruning and
quantization. Table 3 shows the experimental results com-
paring with the aforementioned compression methods. From
the table, we can see that our method is superior to all the
other methods with better accuracy and higher compression
rate. Specifically, our method achieves a 0.55% top-1 ac-
curacy improvement (i.e., 70.83%) with compressing rate
23.26×, while CLIP-Q (Tung and Mori 2020) with no im-
provement in top-1 accuracy at a much lower compression

rate 13.19×. Our method also outperforms the most recent
in-parallel pruning-quantization method ANNC (Yang et al.
2020a) by a large margin in terms of accuracy improvement
and compression rate.

ResNet-50 on ImageNet For ResNet-50, we compare our
method with pruning only (i.e., ThiNet (Luo, Wu, and Lin
2017)), quantization only (i.e., Deep Compression (Han,
Mao, and Dally 2016), HAQ (Wang et al. 2019), and
ACIQ (Banner, Nahshan, and Soudry 2019)) and pruning-
quantization (i.e., CLIP-Q (Tung and Mori 2020)) meth-
ods. Our method compresses a pre-trained uncompressed
ResNet-50 model which reports 76.01% top-1 and 92.93%
top-5 on ImageNet. Table 4 shows the experimental results
of our method comparing with the aforementioned state-
of-the-art methods. From the table, we can see that our
method could compress ResNet-50 to be 38.03× smaller
with 0.40% top-1 and 0.11% top-5 improvements. Compar-
ing to all the other methods, out method achieves the best
accuracy (76.41% top-1 and 93.04% top-5) with the high-
est compression rate, while without gradually learning the
pruning masks and quantizers at finetuning stage.

Summary In conclusion, extensive experimental results
on ImageNet with various neural network architectures
show that in-parallel pruning-quantization boosts the model
compression rate by a large margin without incurring ac-
curacy loss, compared to pruning only and quantization
only approaches. More importantly, our One-shot Pruning-
Qunatization consistently outperforms the other in-parallel
pruning-quantization approaches which gradually optimize
the pruning masks and quantizers at finetuning stage, sug-
gesting that pre-trained model is sufficient for determining
the compression module prior to finetuning, and the com-

Method Top-1 (%) Top-5 (%) Prune Rate (%) Bit Rate
To Prune or Not To Prune (Zhu and Gupta 2017) 69.5 (1.1↓) 89.5 (0.0↑) 50 32 2×
Deep Compression (Han, Mao, and Dally 2016) 65.93 (4.97↓) 86.85 (3.05↓) - 3 10.67×
ReNorm (He and Cheng 2018) 65.93 (9.75↓) 83.48 (6.37↓) - 4 8×
HAQ (Wang et al. 2019) 67.66 (3.24↓) 88.21 (1.69↓) - 3 10.67×
CLIP-Q (Tung and Mori 2020) 70.3 (0.0↑) - 47.36 4.61 13.19×
ANNC (Yang et al. 2020a) 69.71 (1.19↓) 89.14 (0.76↓) - 3 10.67×
ANNC (Yang et al. 2020a) 66.49 (4.41↓) 87.29 (2.61↓) 58 2.8 26.7×
Ours 70.83 (0.55↑) 89.70 (0.27↑) 57.78 3.26 23.26×
Ours 70.24 (0.04↓) 89.30 (0.13↓) 67.66 3.08 32.15×

Table 3: MobileNet-V1 on ImageNet.

Method Top-1 (%) Top-5 (%) Prune Rate (%) Bit Rate
ThiNet (Luo, Wu, and Lin 2017) 71.01 (1.87↓) 90.02 (1.12↓) 51.76 32 2.07×
Deep Compression (Han, Mao, and Dally 2016) 76.15 (0.00↑) 92.88 (0.02↑) - 4 8×
HAQ (Wang et al. 2019) 76.14 (0.01↓) 92.89 (0.03↑) - 4 8×
ACIQ (Banner, Nahshan, and Soudry 2019) 75.3 (0.8↓) - - 4 8×
CLIP-Q (Tung and Mori 2020) 73.7 (0.6↑) - 69.38 3.28 31.81×
Ours 76.41 (0.40↑) 93.04 (0.11↑) 74.14 3.25 38.03×

Table 4: ResNet-50 on ImageNet.

plex and iterative optimization of the compression module
may not be necessary at finetuning stage.

4.3 Error Analysis
In this section, we investigate the relationships between the
analytic errors and the real ones computed on ResNet-50.
From Figure 3a, we can see that the Laplace probability
density function approximates the real pruning error well,
demonstrating the validity of Equation (6). From Figure 3b,
we observe that the approximation error

∑L
i=1

∆2
i

12 is in a
good agreement with the real quantization error of Equa-
tion (11), which verifies the effectiveness of the proposed
approximation. Therefore, the proposed method is able to
capture the prior knowledge of the pre-trained models ef-
fectively, which in turn guides the design of our analytical
solution for one-shot pruning-quantization.

5 Conclusion
In this paper, we propose a novel One-shot Pruning-
Quantization method (OPQ) to compress DNN models. Our
method has addressed two challenging problems in net-
work compression. First, different from the prior art, OPQ
is a one-shot compression method without manual tuning
or iterative optimization of the compression strategy (i.e.,
pruning mask and quantization codebook of each layer).
The proposed method analytically computes the compres-
sion allocation of each layer with pre-trained weight pa-
rameters only. Second, we propose a unified channel-wise
pruning to enforce all channels of each layer to share a
common codebook, which avoids the overheads brought
by the traditional channel-wise quantization. Experiments
show that our method achieves superior results comparing
to the state-of-the-art. For AlexNet, MobileNet-V1, ResNet-

0.01 0.26 0.51 0.76 0.96
10 -8

10 -6

10 -4

10 -2
Real
Analysis

(a) Pruning Error Analysis.

3 4 5 6 7 8
10 -6

10 -4

10 -2
Real
Analysis

(b) Quantization Error Analysis.

Figure 3: Error analysis on ResNet-50. (a) illustrates
the difference between the analyzed and the real prun-
ing errors. “Real” denotes the real pruning error, i.e.,
1
N

∑L
i=1

∑Ni
j=1 (Wij)

2 ||Wij |6βi in Equation (3). “Analysis”
denotes the approximated pruning error using Laplace prob-
ability density functions, i.e., 2

N

∑L
i=1

∫ βi
0
Nix

2fi(x)dx,

where fi(x) = 1
2τi
e
− |x|
τi . (b) shows the difference be-

tween the analyzed and the real quantization errors. “Real”
presents the real quantization error, i.e., Equation (11).
“Analysis” denotes the approximated quantization error, i.e.,∑L
i=1

∆2
i

12 in Equation (12).

50, our method could improve accuracy even at very high
compression rates. For future work, we will explore how to
further compress DNN models, and implement our method
with custom hardware architecture in order to validate the
inference efficiency of the compressed models on practical
hardware platforms.

Acknowledgments
This work is supported in part by the Agency for Sci-
ence, Technology and Research (A*STAR) under its AME
Programmatic Funds (Project No.A1892b0026 and Project
No.A19E3b0099); the Fundamental Research Funds for the
Central Universities under Grant YJ201949; and the NFSC
under Grant 61971296, U19A2078, and 61836011.

Broader Impact Statement
Neural network compression is a hot topic which has drawn
tremendous attention from both academia and industry. The
main objective is to reduce memory footprint, computation
cost and power consumption of the training and/or infer-
ence of deep neural networks, and thus facilitate their de-
ployments on resource-constrained hardware platforms, e.g.,
smartphones, for a wide range of applications including
computer vision, speech and audio, natural language pro-
cessing, recommender systems, etc.

In the paper, we mainly focus on exploring the one-
shot model compression mechanism, in particular in-parallel
pruning-quantization, for model compression at extremely
high compression rate without incurring loss in accuracy.
Our One-shot Pruning-Quantization method (OPQ) largely
reduces the complexity for optimizing the compression
module and also provides the community new insight into
how can we perform efficient and effective model compres-
sion from alternative perspective. Although OPQ achieves
promising performance in network compression, we should
also care about the potential negative impacts including 1)
the compression bias caused by OPQ because of unusual
weight distribution, too lower objective compression rate,
etc. Usually, this requires domain experts to manually eval-
uate them. 2) the robustness of the compressed models for
decision making, especially in health care, autonomous ve-
hicles, aviation, fintech, etc. Question to be answered could
be is the compressed model vulnerable to adversarial attacks
because of the introduction of prunining and quantization
into the model? We encourage further study to understand
and mitigate the biases and risks potentially brought by net-
work compression.

References
Banner, R.; Nahshan, Y.; and Soudry, D. 2019. Post train-
ing 4-bit quantization of convolutional networks for rapid-
deployment. In Advances in Neural Information Processing
Systems, 7948–7956.

Bengio, Y.; Léonard, N.; and Courville, A. 2013. Estimat-
ing or propagating gradients through stochastic neurons for
conditional computation. arXiv preprint arXiv:1308.3432 .

Cai, Y.; Yao, Z.; Dong, Z.; Gholami, A.; Mahoney, M. W.;
and Keutzer, K. 2020. Zeroq: A novel zero shot quantization
framework. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 13169–13178.

Chen, C.; Tung, F.; Vedula, N.; and Mori, G. 2018.
Constraint-aware deep neural network compression. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 400–415.

Cheng, Y.; Yu, F. X.; Feris, R. S.; Kumar, S.; Choudhary,
A.; and Chang, S.-F. 2015. An exploration of parameter re-
dundancy in deep networks with circulant projections. In
Proceedings of the IEEE International Conference on Com-
puter Vision, 2857–2865.

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255. Ieee.

Frankle, J.; and Carbin, M. 2019. The lottery ticket hypoth-
esis: Finding sparse, trainable neural networks. In Interna-
tional Conference on Learning Representations.

Guo, Y.; Yao, A.; and Chen, Y. 2016. Dynamic network
surgery for efficient dnns. In Advances in neural information
processing systems, 1379–1387.

Han, S.; Mao, H.; and Dally, W. J. 2016. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. In International Confer-
ence on Learning Representations.

He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. 2017. Mask
r-cnn. In Proceedings of the IEEE international conference
on computer vision, 2961–2969.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.

He, X.; and Cheng, J. 2018. Learning compression from lim-
ited unlabeled data. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), 752–769.

He, Y.; Ding, Y.; Liu, P.; Zhu, L.; Zhang, H.; and Yang, Y.
2020. Learning Filter Pruning Criteria for Deep Convo-
lutional Neural Networks Acceleration. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2009–2018.

Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang,
W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 .

Krishnamoorthi, R. 2018. Quantizing deep convolutional
networks for efficient inference: A whitepaper. arXiv
preprint arXiv:1806.08342 .

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.

Li, Y.; Dong, M.; Wang, Y.; and Xu, C. 2020. Neural archi-
tecture search in a proxy validation loss landscape. In In-
ternational Conference on Machine Learning, 5853–5862.
PMLR.

Li, Y.; Dong, X.; and Wang, W. 2019. Additive Powers-of-
Two Quantization: An Efficient Non-uniform Discretization
for Neural Networks. In International Conference on Learn-
ing Representations.

Luo, J.-H.; Wu, J.; and Lin, W. 2017. Thinet: A filter level
pruning method for deep neural network compression. In
Proceedings of the IEEE international conference on com-
puter vision, 5058–5066.

Nagel, M.; Baalen, M. v.; Blankevoort, T.; and Welling, M.
2019. Data-free quantization through weight equalization
and bias correction. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 1325–1334.

Rastegari, M.; Ordonez, V.; Redmon, J.; and Farhadi, A.
2016. XNOR-Net: Imagenet classification using binary con-
volutional neural networks. In European conference on com-
puter vision, 525–542. Springer.

Ritter, H.; Botev, A.; and Barber, D. 2018. A scalable laplace
approximation for neural networks. In 6th International
Conference on Learning Representations.

Simonyan, K.; and Zisserman, A. 2015. Very deep convolu-
tional networks for large-scale image recognition. In Inter-
national Conference on Learning Representations.

Srinivas, S.; and Babu, R. V. 2015. Data-free parameter
pruning for deep neural networks. In British Machine Vi-
sion Conference (BMVC).

Tung, F.; and Mori, G. 2020. Deep Neural Network Com-
pression by In-Parallel Pruning-Quantization. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 42(3):
568–579.

Wang, K.; Liu, Z.; Lin, Y.; Lin, J.; and Han, S. 2019. HAQ:
Hardware-aware automated quantization with mixed preci-
sion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 8612–8620.

Wang, T.; Wang, K.; Cai, H.; Lin, J.; Liu, Z.; Wang, H.; Lin,
Y.; and Han, S. 2020. APQ: Joint Search for Network Archi-
tecture, Pruning and Quantization Policy. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2078–2087.

Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; and Cheng, J. 2016.
Quantized convolutional neural networks for mobile de-
vices. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 4820–4828.

Yang, H.; Gui, S.; Zhu, Y.; and Liu, J. 2020a. Automatic
Neural Network Compression by Sparsity-Quantization
Joint Learning: A Constrained Optimization-based Ap-
proach. In In IEEE Conference on Computer Vision and
Pattern Recognition.

Yang, Z.; Moczulski, M.; Denil, M.; de Freitas, N.; Smola,
A.; Song, L.; and Wang, Z. 2015. Deep fried convnets. In
Proceedings of the IEEE International Conference on Com-
puter Vision, 1476–1483.

Yang, Z.; Wang, Y.; Chen, X.; Shi, B.; Xu, C.; Xu, C.;
Tian, Q.; and Xu, C. 2020b. Cars: Continuous evolution
for efficient neural architecture search. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 1829–1838.

Zhang, M. S.; and Stadie, B. 2020. One-Shot Pruning of
Recurrent Neural Networks by Jacobian Spectrum Evalua-

tion. In 8th International Conference on Learning Repre-
sentations.
Zhou, H.; Alvarez, J. M.; and Porikli, F. 2016. Less is more:
Towards compact cnns. In European Conference on Com-
puter Vision, 662–677. Springer.
Zhu, M.; and Gupta, S. 2017. To prune, or not to prune: ex-
ploring the efficacy of pruning for model compression. arXiv
preprint arXiv:1710.01878 .

