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Abstract
In this paper, we study two challenging and less-touched problems in single image dehazing, namely, how to make deep
learning achieve image dehazing without training on the ground-truth clean image (unsupervised) and an image collection
(untrained). An unsupervised model will avoid the intensive labor of collecting hazy-clean image pairs, and an untrained
model is a “real” single image dehazing approach which could remove haze based on the observed hazy image only and no
extra images are used. Motivated by the layer disentanglement, we propose a novel method, called you only look yourself
(YOLY) which could be one of the first unsupervised and untrained neural networks for image dehazing. In brief, YOLY
employs three joint subnetworks to separate the observed hazy image into several latent layers, i.e., scene radiance layer,
transmission map layer, and atmospheric light layer. After that, three layers are further composed to the hazy image in a self-
supervised manner. Thanks to the unsupervised and untrained characteristics of YOLY, our method bypasses the conventional
training paradigm of deep models on hazy-clean pairs or a large scale dataset, thus avoids the labor-intensive data collection
and the domain shift issue. Besides, our method also provides an effective learning-based haze transfer solution thanks to its
layer disentanglement mechanism. Extensive experiments show the promising performance of our method in image dehazing
compared with 14 methods on six databases. The code could be accessed at www.pengxi.me.
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1 Introduction

Haze is a typical atmospheric phenomenon which occurs
when the dust, smoke and other particles accumulate in rel-
atively dry air. These particles absorb and scatter the light
greatly, thus attenuate the scene radiance reflected from scene
point and confuse it with the scattering light. Haze will lead
to a decrease in visibility of the scene point and the images
captured under this weather condition will become poor in
contrast and lose the visual details. Many vision tasks such
as object detection would suffer from performance degra-
dation due to these terrible hazy images. Therefore, image
dehazing, as a preprocessing step and visual enhancement
technology, has been extensively researched and achieves
remarkable performance (Tan 2008; Zhu et al. 2018; Cai et al.
2016; Zhang and Patel 2018; Li et al. 2017; Sakaridis et al.
2018a, b; Li et al. 2015).
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Fig. 1 A visual illustration of the proposed YOLY. a a real world hazy
image; b the clean image recovered by DehazeNet; c the clean image
recovered by YOLY; d the transmission map estimated by YOLY. Note
that DehazeNet is pretrained using a collection of hazy-clean image
pairs as did in (Zhu et al. 2018), whereas our method obtains the result
only using the observed hazy image itself. From the results, one could
find that our method qualitatively performs better than DehazeNet.
Zoom-in is recommended to see the detailed comparisons

In recent, many researchers have shifted their focus to
remove haze from a single image which is more promis-
ing but more challenging in practice since without any extra
information beyond the observed image. A variety of meth-
ods have been proposed (He et al. 2009; Zhu et al. 2015;
Chen et al. 2016; Tarel and Hautiere 2009; Zhu et al. 2018)
by employing a widely recognized atmospheric scattering
physical model (Nayar and Narasimhan 1999), which could
be roughly divided into two categorizes: prior- and learning-
based methods.

To be specific, prior-based methods employ some hand-
crafted priors derived from the intrinsic properties of natural
images, such as texture, contrast, and chromatic aberration.
For instance, He et al. (2009) observe there exists the dark
channel in the local patches of the outdoor haze-free images
and accordingly propose using such a dark channel prior
(DCP) to estimate the transmission map and atmospheric
light for reconstructing the clean image.With the assumption
of the image depth is positively correlated to the difference
between brightness and saturation, Zhu et al. (2015) propose
color attenuation prior (CAP) to estimate the transmission
map. Although these methods have achieved remarkable
performance, the dehazing quality heavily depends on the
consistency between the adopted prior and the actual image
properties.

To alleviate the dependence of priors, learning-based
methods especially deep learning basedmodels have recently
attractedmuch attention and a lot of efforts have been devoted
in recent (Cai et al. 2016; Li et al. 2017; Liu et al. 2019; Zhang
and Patel 2018; Qu et al. 2019; Hahner et al. 2019; Zhang
et al. 2017, 2018;Gouet al. 2020).Different fromprior-based
methods, the parameters of atmospheric scattering model
are learned from a large scale training dataset. For example,
DehazeNet (Cai et al. 2016) estimates the transmission map
by utilizing a deep neural network trained on a large scale
dataset with the supervision of the ground-truth transmission

map. Although these learning methods have achieved state-
of-the-art performance in image dehazing, almost all of them
work in a supervised and trained manner. Namely, they usu-
ally require a large scale training dataset which is with some
kind of ground truths (e.g., hazy-clean image pair). Once
the conditions are unsatisfied, these learning-based methods
would be failed (Fig. 1).

In practice, however, it is daunting even impossible to col-
lect a large scale dataset with the desirable ground truth due
to the variations in scene and the other factors such as illu-
mination. Therefore, most of methods resort to collect some
clean images first and then synthesize the corresponding hazy
images via the atmospheric scattering model with the hand-
crafted parameters. However, the synthesized hazy images
are probably less informative and inconsistent with the real
hazy images, which would lead to the domain shift issue
when the model trained on the synthetic dataset is applied to
the real-world hazy images. To address the above issues, it
is highly expected to develop a novel deep neural network
which could work in an unsupervised and untrained manner
simultaneously, while achieving the promising performance.
However, to the best of our knowledge, such a challenging
task is less touched heretofore.

In this paper,wepropose a novel neural network called you
only lookyourself (YOLY)which employs three joint subnet-
works (i.e., J-Net, T-Net, and A-Net) to disentangle a given
hazy image into three component layers, i.e., scene radiance
layer, transmission map layer, and atmospheric light layer.
After that, these three layers are further used to reconstruct
the observed input. Thanks to the proposed novel objec-
tive function and network structure, YOLY performs image
dehazing by only using the information contained in the
observed single hazy image. In otherwords, the proposed net-
work performs like a “real” single image dehazing method,
which does not follow the conventional paradigm of train-
ing the neural network on an image set with ground-truth.
The major advantages of our YOLY is that it could avoid
the labor-intensive data collection and domain shift issue
of existing deep learning based methods, while achieving
promising results. Besides, benefiting from the disentangle-
ment of scene radiance, transmission map, and atmospheric
light, our method provides an effective way to synthesize
new hazy images in a learning-based rather than handcrafted
fashion, which could also be the first study afak.

To summarize, the contributions are given as follows:

– To the best of our knowledge, this work could be one
of the first unsupervised and untrained neural networks
for single image dehazing, which removes haze without
trainingon an image collection and theground-truth clean
images.

– A new neural network (i.e., YOLY) is proposed, which
consists of three joint disentanglement subnetworks. In
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brief, two non-degenerate convolutional neural networks
(J-Net and T-Net) are used to obtain the clean image
and the transmission map, and a variational auto-encoder
(A-Net) is used to obtain the atmospheric light. The
whole network is learned in a self-supervised manner,
which only explores and exploits the information in the
observed hazy image.

– Our method could also be used to synthesize new hazy
images by transferring the haze from one image to
another clean image, thus avoiding handcrafting the
parameters of the physical model.

2 RelatedWork

In this section, we briefly introduce some existing image
dehazingmethods from theperspective of prior- and learning-
based category. Besides, we will also introduce recent
developments in unsupervised image enhancement.

2.1 Prior-BasedMethods

Almost all existing prior-based methods are shallow mod-
els, which aim to explore various of handcrafted priors
from the hazy-free images, such as texture, contrast and
chromatic aberration. With the prior, the transmission map
and atmospheric light could be estimated, and thus the
under-constrained dehazing problem could be well posed.
Following this paradigm, dark channel prior (He et al. 2009)
was proposed based on the following observation. Namely,
most local patches in haze-free outdoor images contain some
pixels with very low intensities in at least one color chan-
nel. By using such a prior, DCP successfully estimates the
transmission map and atmospheric light of hazy image.
Besides, a variety of priors are employed based on differ-
ent observations/assumptions, such as color attenuation prior
(CAP) (Zhu et al. 2015) and haze-line prior (HLP) (Berman
et al. 2017).

Although promising performance has been achieved by
these prior-based methods, the dehazing performance is
not always desirable due to the inconsistency between the
adopted prior and changeable environment. Moreover, these
methods are shallow models which might be with limited
capacity of handling complex data.

2.2 Learning-BasedMethods

Different from the prior-based methods, learning-based
methods adopt a data-driven manner to learn the transmis-
sion map and/or atmospheric light. In recent, motivated by
the success of neural networks, some studies (Cai et al. 2016;
Ren et al. 2016; Zhu et al. 2018; Li et al. 2017; Liu et al. 2019;
Qu et al. 2019; Ancuti et al. 2018a; Mei et al. 2018) have

been conducted to apply neural networks to image dehazing,
which have achieved the state-of-the-art performance. For
instance, Cai et al. (2016) proposed DehazeNet which uti-
lizes a trainable convolutional neural network to estimate the
transmission map under the supervision of the ground-truth
transmission maps. Ren et al. (2016) proposed a multi-scale
convolutional neural network wherein a coarse- and fine-
scale network are combined to estimate the transmissionmap
for dehazing. Zhu et al. (2018) proposed simultaneously esti-
mating the transmission map and the atmospheric light by
using a generative adversarial network. In summary, like the
neural network in other tasks, the success of these deep image
dehazing methods also rely on a large scale training dataset
which is with some truthful supervisors such as the hazy-
clean image pairs.

The differences of our method with these existing deep
learning based methods (Cai et al. 2016; Ren et al. 2016; Zhu
et al. 2018; Li et al. 2017; Liu et al. 2019; Qu et al. 2019)
are given in the following aspects: (1) the proposed YOLY
works in an unsupervised rather than supervised manner. In
other words, our method does not need the hazy-clean image
pairs; (2) YOLY is an “untrained” instead of “trained”model.
In other words, YOLY does not require training on a dataset,
which could directly handle each single hazy image when it
is observed. These two advantages make our method avoid
the labor-intensive data collection and the domain-shift issue
of using the synthetic hazy images to address the real-world
images; (3) ourmethod coulddisentangle the clean image, the
transmission map, and the atmospheric light from the hazy
image. This makes transferring haze from the real scenes
to another image possible. Namely, our method provides an
effective solution to synthesize new hazy images in a data-
driven rather than human-specific way.

2.3 Unsupervised Deep Image Enhancement
Methods

Although there are only few efforts (Irani 2019) in devel-
oping unsupervised approach for single image dehazing,
some methods have been proposed for other image enhance-
ment tasks in recent (Lehtinen et al. 2018; Krull et al. 2019;
Ulyanov et al. 2018; Irani 2019; Heckel and Hand 2019). For
example, Noise2Noise (N2N) (Lehtinen et al. 2018) shows
that simple statistical arguments lead to new capabilities in
data denoising using neural networks. However, it has to use
a corrupted image set with the same noise distribution to train
the neural network. In other words, it cannot handle the sin-
gle image case like our method does despite the difference
in tasks. Deep image prior (DIP) (Ulyanov et al. 2018) is
another recently proposed unsupervised method which fits
a corrupted image using a random noise vector and early-
stoping strategy to recover the clean image. However, it is a
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daunting task to determine the training epoch at which the
desirable result is obtained.

Although both the aforementioned methods and our
YOLY are unsupervised methods, there are largely different.
First, most of the aforementioned methods are not specif-
ically designed for single image dehazing. Will be shown
in our experiments, they cannot achieve encouraging per-
formance in such a challenging task (haze is a kind of
signal-dependent noises). Second, the methods such as N2N
and its variants require using a data collection for training,
whereas our method will only use the observed hazy image.
Third, our method is based on the layer disentanglement
which is different from these methods in the methodology.
It should be pointed out that our method is also remarkably
different from the recently proposed DDIP (Irani 2019) in
the following two aspects. On one hand, the loss and the net-
work structure are totally different. Tobe specific, ourmethod
employs variational inference tomodel the atmospheric light,
whereas DDIP, same with DIP, adopts a U-Net-like struc-
ture to fit the image. Moreover, our YOLY utilizes the color
attenuation as a supervisor to estimate the clean image,
whereas DDIP mainly employs the early-stopping fitting
strategy (Ulyanov et al. 2018). On the other hand, the input
and the working mechanism are different. In brief, DDIP
takes three random noises as inputs and feeds them into
three generator networks to fit the hazy image, which uti-
lizes the properties of DIP. In contrast, our method directly
feeds the hazy image as the conditional input into three sub-
networks so that different layers are disentangled. In other
words, DDIP performs layer composition in a bottom-to-top
fashion, whereas our YOLY performs layer disentanglement
in a top-to-bottom fashion.

3 ProposedMethod

Given a single hazy image x as the input, we aim to recover
the clean image J (x) without using the information beyond
the image content itself. The basic idea of our methods is to
disentangle x into three layer components using three joint
subnetworks as shown in Fig. 2. More specifically, YOLY
simultaneously feeds x into a clean image estimation network
(J-Net), a transmission map estimation network (T-Net), and
an atmospheric light estimation network (A-Net). After that,
the outputs of them are further combined to reconstruct x at
the top of YOLY through the atmospheric scattering physi-
cal model. In such a way, the whole model is learned in an
unsupervised fashion and these subnetworks are optimized
in an end-to-end manner. Formally, at the top layer of YOLY,
we aim to minimize the following loss:

LRec = ‖I (x) − x‖p, (1)

where ‖ · ‖p denotes p-norm of a given matrix. In this paper,
we simply adopt Frobenius norm. I (x) is computed by com-
posing the outputs of the three subnetworks via

I (x) = J (x)T (x) + A(1 − T (x)) (2)

where J (x) denotes the clean image predicted by J-Net, T (x)
is the medium transmission map predicted by T-Net, and
A is the global atmospheric light on each pixel coordinates
predicted by A-Net. It should be pointed out that some algo-
rithms (Zhu et al. 2018) have been proposed by learning
these factors based on the above physical model, however,
to the best of our knowledge, there are few efforts have been
devoted to developing unsupervised and untrained method
so far.

The loss LRec is designed to constrain the entire network
including the subnetworks towell reconstruct the hazy image
x after layer disentanglement. In other words, it guides the
layer disentanglement and composition through incorporat-
ing the haze generation process. In the following, we will
illustrate how these three networks could obtained desired
layer components, besides directly utilizing the above self-
supervision.

3.1 J-Net

J-Net aims to predict the clean image J (x) from the hazy
image x . As demonstrated in Fig. 2, J-Net takes a non-
degenerate architecture by following (Li et al. 2018).Namely,
our J-Net does not implement the down-sampling operation,
thus preventing the loss of detail in J (x). More specifically,
J-Net only consists of the convolutional layer, batch nor-
malization layer (Ioffe and Szegedy 2015), and LeakyReLU
activation. In the last layer, we choose sigmoid function
to normalize the output into [0, 1]. More details about the
network implementation could refer to the experimental set-
tings.

To supervise J-Net,we propose the following loss function

LJ = ‖V ( f J (x)) − S( f J (x))‖p, (3)

where V ( f J (x)) denotes the brightness of f J (x), and
S( f J (x)) denotes the saturation of f J (x).

The loss term LJ is designed based on the observation
in (Zhu et al. 2015). Namely, in a haze-free region, the dif-
ference between the brightness and the saturation is close
to zero. To utilize this prior in an unsupervised manner, we
recast the prior as the above formulation, i.e., the difference
between the value and saturation should be as small as pos-
sible in the predicted J (x). Equation (3) has two advantages.
On one hand, the formulation has sub-gradients and plug-
gable into our model to enjoy the joint optimization through
back-propagation. On the other hand, it makes possibility to

123



International Journal of Computer Vision

Fig. 2 The architecture of YOLY. In brief, YOLY consists of three
jointly learning subnetworks which are the clean image estimation net-
work (J-Net), the transmission map estimation network (T-Net), and
the atmospheric light estimation network (A-Net). Taking a single hazy
image as the input, these three subnetworks disentangle the input into
three different layers which are then utilized to reconstruct the input

hazy image in a disentanglement-entanglement fashion. Note that, the
atmospheric light f A(x) would be approximately even exact homoge-
neous if the transmission map fT (x) could be well recovered as shown
in the figure. HSV denotes the operation of transforming the recovered
image to its HSV version

recover the clean image without using the ground-truth clean
image.

3.2 T-Net

As the clean background and the transmissionmap are depen-
dent of the input x , we adopt the similar network structure
for J-Net and T-Net. There are only two differences between
them. To be specific, the output layer of J-Net is with three
channels, whereas the output layer of T-Net is with only
one channel. On the other hand, T-Net does not employ
an explicit loss, which only utilizes the self-supervision
back-propagated from the top layer of YOLY to guide the
optimization.

3.3 A-Net

A-Net aims to estimate the global atmospheric light from the
observed images. As the global atmospheric light A is inde-
pendent of the image content and owns the global property, it
is reasonable to assume that A is sampled from a latent Gaus-
sian distribution. Accordingly, we recast the learning of A as
a variational inference problem (Kingma andWelling 2014).
To be specific, A-Net consists of an encoder, a symmetric
decoder, and an intermediate block. Both the encoder and

the decoder consist of four blocks. In the encoder, the blocks
consist of a convolutional layer, a ReLU activation function,
and a max pooling layer in sequence. In the decoder, the
blocks sequentially perform upsampling, convolution, batch
normalization, andReLUactivation. To learn the latentGaus-
sian model, the intermediate block is used to transform the
output (i.e., z) of the encoder to the latent Gaussian distri-
bution N (μz, σ

2
z ), i.e., z → {μz, σ

2
z }, where μz and σ 2

z are
mean and variance of the learned Gaussian model. Through
resampling from the Gaussian model, the reconstruction of
the latent code could be generated, i.e., N (μz, σ

2
z ) → ẑ.

After that, ẑ is fed into the decoder to obtain the reconstruc-
tion of the disentangled atmospheric light f A(x).

The loss function for A-Net is formulated as below:

LA = LH + LK L + λLReg, (4)

where LH is the loss between the disentangled atmospheric
light f A(x) and the initial hint A(x), where A(x) is estimated
from x . LK L and LReg denote the loss for variational infer-
ence and regularization term, respectively. λ is a nonnegative
parameter to balance the regularization.

To be exact, LH is defined as

LH = ‖ f A(x) − A(x)‖F . (5)
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LK L aims to minimize the difference between the latent
code z and the corresponding reconstruction ẑ re-sampled
from the Gaussian model. To enjoy the end-to-end opti-
mization using the standard stochastic gradient methods, the
reparameterization trick could be used to yield a lower bound
estimator (Kingma and Welling 2014). Mathematically,

LK L = K L(N (μz, σ
2
z )||N (0, I ))

= 1

2

∑

i

(
(μzi )

2 + (σzi )
2 − 1 − log(σzi )

2
)

(6)

where K L(·)denotes theKullback-Leibler divergencebetween
two distributions, zi denotes the i th dimension of z.

To avoid overfitting, we enforce LReg on the outputs of
A-Net, i.e., f A(x). Formally,

LReg(x) = 1

2m

m∑

i=1

(xi − 1

|N (xi )|
∑

yi∈N (xi )

yi )
2, (7)

whereN (xi ) is the second order neighborhood of xi , |N (xi )|
is the neighborhood size, and m denotes the pixel number of
x . Clearly, the regularizations play a role of mean filtering,
which enforce A(x) to be smooth. Note that, the high-
frequency details of the recovered haze-free image might
lose if the above regularization is enforced on the output of
J-Net and T-Net.

In summary, the total loss of our YOLY is as below:

L = LRec + LJ + LH + LK L + λLReg

= ‖I (x) − x‖2F + ‖V ( f J (x)) − S( f J (x))‖2F
+ ‖ f A(x) − A(x)‖2F
+

∑

i

(
(μzi )

2 + (σzi )
2 − 1 − log(σzi )

2
)

+ λ

m

m∑

i=1

( f A(x)i − 1

|N ( f A(x)i )|
∑

yi∈N ( f A(x)i )

yi )
2 (8)

4 Experiments

In this section, we evaluate our method on two synthetic test-
ing datasets and four real-world testing datasets, comparing
with 14 baseline methods in terms of PSNR and SSIM. In the
following, wewill first demonstrate the experimental setting,
and then show the qualitative and quantitative results on the
datasets. Furthermore, we conduct experiments to investi-
gate the running time and model size of YOLY with baseline
methods. After that, we will show the effectiveness of our
method for haze transfer. Finally, the ablation study is pre-
sented to verify the effectiveness of the proposed method.

4.1 Experimental Settings

In this part, we elaborate on the used datasets, baselines, the
evaluation metrics, and the implementation details.
Datasets We conduct experiments on RESIDE (Li et al.
2019), I-HAZE (Ancuti et al. 2018b) and O-HAZE (Ancuti
et al. 2018c). RESIDE is a new large scale haze image
dataset, of which the testing subsets consist of Synthetic
Objective Testing Set (SOTS) and Hybrid Subjective Test-
ing Set (HSTS). To be specific, SOTS consists of 500 indoor
hazy images, which are synthesized by the physical model
with handcrafted parameters. HSTS contains 10 synthetic
outdoor haze images and 10 real-world hazy images. Differ-
ent fromRESIDE, I-HAZE andO-HAZE are real world haze
image datasets, whose hazy-clean image pairs are generated
with a professional haze machine. For details, I-HAZE has
30 indoor hazy-clean image pairs. O-HAZE consists of 45
outdoor hazy-clean image pairs. Besides, we also manually
collect 10 real-world hazy images from the Internet for a
more comprehensive investigation.
Baselines For comprehensive comparisons, we compare the
proposed YOLY with 14 methods which are divided into
three groups, namely, four learning-based dehazing meth-
ods, five prior-based dehazingmethods andfive unsupervised
deep image enhancement methods. It should be pointed out
that, both the prior-based and unsupervised deep methods
remove haze from the image without using the ground-truth
clean image, and their major difference is that the for mer is
the shallow model whereas the latter is based on deep neural
networks.

To be specific, the learning-based dehazing methods are
DehazeNet (Cai et al. 2016), MSCNN (Ren et al. 2016),
AOD-Net (Li et al. 2017) and CAP (Zhu et al. 2015). Here,
although CAP uses prior information, we still classify it
into the learning-based category because it employs the
ground-truth transmission as the supervisor. The prior-based
dehazing approaches are DCP (He et al. 2009), FVR (Tarel
and Hautiere 2009), BCCR (Meng et al. 2013), GRM (Chen
et al. 2016), NLD (Berman et al. 2016). The unsupervised
deep image enhancement methods contain N2N (Lehtinen
et al. 2018), N2V (Krull et al. 2019), DIP (Ulyanov et al.
2018), DD (Heckel and Hand 2019) and DDIP (Irani 2019).
Noticed that, N2N, N2V, DD, and DIP are specifically
designed for other image enhancement tasks rather than
image dehazing, which are compared in our experiments for
two reasons. On one hand, there is no unsupervised deep
model for singe image dehazing excepted DDIP so far. Thus,
the comparisons with them could provide a more extensive
study. On the other hand, the inferior performance achieved
by them shows that it would achieve undesirable result if
these methods are simply applied to the dehazing task. Fur-
thermore, among all the tested methods, only N2V, DD, DIP,
DDIP, and our YOLY are untrained neural networks, which
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Table 1 Results on the synthetic
indoor database (SOTS)

Metrics Learning-based dehazing methods Prior-based dehazing methods

DehazeNet MSCNN AOD-Net CAP DCP FVR BCCR GRM NLD

PSNR 21.14 17.57 19.06 19.05 16.62 15.72 16.88 18.86 17.29

SSIM 0.8472 0.8102 0.8504 0.8364 0.8179 0.7483 0.7913 0.8553 0.7489

Metrics Unsupervised neural networks

N2N N2V DIP DD DDIP Ours

PSNR 14.49 10.67 12.28 11.92 16.97 19.41

SSIM 0.7078 0.5397 0.5782 0.6404 0.7147 0.8327

The bold number indicates the best method of each category of methods

means that they do not require training data and only use the
given hazy image.
Evaluation Metrics Like (Ren et al. 2016; Li et al. 2017;
Irani 2019; Qu et al. 2019; Zhang and Patel 2018), two pop-
ular metrics are used in the quantitative comparisons, i.e.,
PSNR and SSIM. Higher value of these metrics indicates
better dehazing performance.
Experimental ConfigurationsWe conduct experiments on an
NVIDIA Titan RTX GPU in PyTorch. To optimize YOLY,
we employ the ADAM optimizer (Kingma and Diederikand
2015) with default learning rate and the maximal epoch is
500. For better reproducibility, we do not exhaustively tune
parameters for our method and instead fix λ = 0.1 for all the
evaluations. To initialize the hint, we use the method similar
to (He et al. 2009). Regarding some of baselines, we directly
refer to the best results reported in the original papers. For
the baselines without the corresponding results, we carry out
them by using the source codes provided by the authors and
adopting their parameter settings. The source code of YOLY
will be released on Github.

4.2 Comparisons on RESIDE

Table 1 and Fig. 3 report the quantitative and qualitative
results on the indoor testing dataset (i.e., SOTS). It is wor-
thy to note that, we do not illustrate the visualization results
of N2N, FVR, BCCR, and NLD due to the space limitation
and their relatively inferior performance. From Table 1 and
Fig. 3, one could observe that:

– Compared with the unsupervised deep methods, YOLY
is 2.44 and 0.1180 higher than the best of them in terms
of PSNR and SSIM, respectively. Compared with the
unsupervised shallow method (i.e., prior-based), YOLY
achieves a gain of 0.55 over the best method in SSIM.

– YOLY surpasses all supervised methods excepted
DehazeNet in the quantitative comparisons. In the qual-
itative comparisons, YOLY shows the best visual results
as shown in Fig. 3, especially in the border areas of the
figures. For example, DehazeNet fails to obtain a desir-

able result from the first image and remove the haze from
the area close to the chair in the second image.

Different from the indoor scenes, the outdoor scenes
are usually much more complex in depth, illustration, and
background. As shown in Table 2 and Fig. 4, our method
achieves promising dehazing performance in the outdoor
scenes (HSTS). More specifically,

– Table 2 shows that our method is remarkably superior to
all the unsupervised baselines including deep and prior-
based shallowmethods.More specifically, it outperforms
the best unsupervised deepmethod by 2.91 and 0.0283 in
terms of PSNR and SSIM, respectively. It is also 4.9 and
0.0941 higher than the best prior-based dehazing meth-
ods. Note that, N2N cannot achieve result on the HSTS
dataset because it requires multiple hazy samples from
the same scenewhereas this dataset only includes a single
sample for each scene.

– AlthoughYOLY is quantitively worse thanDehazeNet, it
shows better recovery performance in the visual compar-
ison (see Fig. 4b of DehazeNet and Fig. 4k of YOLY for
example). In fact, the haze-free images recovered by our
YOLY seem more favorite than the ground truth clean
image (Fig. 4l) which might be corrupted during data
collection.

– The visualization results partially show the limitations of
the traditional prior-based methods in handling the com-
plex scenes which may violate the adopted prior. More
specifically, DCP shows some distortions in the sky area.
The main reason is that the sky and the bright areas do
not satisfy the assumption of DCP, thus resulting in inac-
curate estimation of the transmission map.

– It is worth noting that all unsupervised deep models
excepted DDIP and YOLY cannot perform well in the
qualitative and quantitative comparisons. The reason is
that they are not specifically designed for dehazing. This
shows the difficulty and necessity in developing newdeep
unsupervised single image dehazing methods.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Fig. 3 Visual results on SOTS. From the left to the right column (i.e.,
a–l), the input hazy image, DehazeNet (Cai et al. 2016), MSCNN (Ren
et al. 2016),AOD-Net (Li et al. 2017),DCP (Heet al. 2009),GRM(Chen
et al. 2016), N2V (Krull et al. 2019), DIP (Ulyanov et al. 2018),

DD (Heckel and Hand 2019), DDIP (Irani 2019), our YOLY and the
ground truth are presented in column-wise. Some areas are highlighted
by red rectangles and zooming-in is recommended for a better visual-
ization and comparison

Table 2 Results on the synthetic
outdoor database (HSTS)

Metrics Learning-based dehazing methods Prior-based dehazing methods

DehazeNet MSCNN AOD-Net CAP DCP FVR BCCR GRM NLD

PSNR 24.48 18.64 20.55 21.53 14.84 14.48 15.08 18.54 18.92

SSIM 0.9153 0.8168 0.8973 0.8726 0.7609 0.7624 0.7382 0.8184 0.7411

Metrics Unsupervised neural networks
N2N N2V DIP DD DDIP Ours

PSNR – 11.79 14.55 14.66 20.91 23.82

SSIM – 0.5450 0.5573 0.6409 0.8842 0.9125

The bold number indicates the best method of each category of methods

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) our (l)

Fig. 4 Visual results on HSTS. From the left to the right column (i.e.,
a–l), the input hazy image, DehazeNet (Cai et al. 2016l), MSCNN (Ren
et al. 2016),AOD-Net (Li et al. 2017),DCP (Heet al. 2009),GRM(Chen
et al. 2016), N2V (Krull et al. 2019), DIP (Ulyanov et al. 2018),

DD (Heckel and Hand 2019), DDIP (Irani 2019), our YOLY and
the ground truth are presented in column-wise. Zooming-in is recom-
mended for a better visualization
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 5 Visual results on the real-world dataset. from the left to the
right column (i.e., Fig. 8a, j), the input hazy image, DehazeNet (Cai
et al. 2016), MSCNN (Ren et al. 2016), AOD-Net (Li et al. 2017),
DCP (He et al. 2009), GRM (Chen et al. 2016), DIP (He et al. 2009),

DD (Heckel and Hand 2019), DDIP (Irani 2019) and our method are
presented in column-wise. Some areas are highlighted by red rectangles
and zooming-in is recommended for a better visualization and compar-
ison

Table 3 Results on the I-HAZE Metrics Learning-based dehazing methods Prior-based dehazing methods

DehazeNet MSCNN AOD-Net CAP DCP FVR BCCR GRM NLD

PSNR 16.98 17.28 13.98 12.24 15.29 15.01 12.78 14.05 14.12

SSIM 0.7710 0.7910 0.7320 0.6065 0.7110 0.7646 0.7551 0.7702 0.6540

Metrics Unsupervised neural networks

N2N N2V DIP DD DDIP Ours

PSNR – 12.97 14.18 14.23 15.52 18.35

SSIM – 0.6847 0.3692 0.6465 0.7596 0.8446

The bold number indicates the best method of each category of methods

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) our (k)

Fig. 6 Visual results on I-HAZE. From the left to the right column (i.e.,
a–k), the input hazy image, DehazeNet (Cai et al. 2016), MSCNN (Ren
et al. 2016),AOD-Net (Li et al. 2017),DCP (Heet al. 2009),GRM(Chen

et al. 2016), DIP (Ulyanov et al. 2018), DD (Heckel and Hand 2019),
DDIP (Irani 2019), our YOLY and the ground truth are presented in
column-wise. Zooming-in is recommended for a better visualization

To demonstrate the effectiveness of the proposed method
in real-world hazy scenes, we carry out qualitative experi-
ments on the HSTS real-world image set which is without the
ground-truth clean image. FromFig. 5, one could observe that
YOLY demonstrates the best visualization results in almost
all scenes. Although DehazeNet, MSCNN, AOD-Net, DCP,
and DDIP successfully remove most of haze in the pictures,
they fail to handle the areas with muchmore details. Besides,
the methods such as DCP and DDIP also suffer from the

color distortions in the background. DehazeNet and AOD-
Net lose some details after dehazing in the low-light areas.
In contrast, our method could be immune from these issues
and get a much more favorite recovery.

4.3 Comparisons on RealWorld Datasets

To verify the effectiveness of YOLY in the real-world image
dehazing, we conduct both quantitive and qualitative exper-
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Table 4 Results on the
O-HAZE

Metrics Learning-based dehazing methods Prior-based dehazing methods

DehazeNet MSCNN AOD-Net CAP DCP FVR BCCR GRM NLD

PSNR 16.21 19.07 15.03 16.08 16.59 14.43 15.12 17.07 15.98

SSIM 0.6660 0.7650 0.5390 0.5965 0.7350 0.7157 0.7259 0.7542 0.5850

Metrics Unsupervised neural networks

N2N N2V DIP DD DDIP Ours

PSNR – 13.30 14.18 13.61 18.82 18.70

SSIM – 0.5233 0.3602 0.4353 0.7205 0.8197

The bold number indicates the best method of each category of methods

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) our(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) our (k)(k)

Fig. 7 Visual results onO-HAZE. From the left to the right column (i.e.,
a–k), the input hazy image, DehazeNet (Cai et al. 2016), MSCNN (Ren
et al. 2016),AOD-Net (Li et al. 2017),DCP (Heet al. 2009),GRM(Chen

et al. 2016), DIP (Ulyanov et al. 2018), DD (Heckel and Hand 2019),
DDIP (Irani 2019), our YOLY and the ground truth are presented in
column-wise. Zooming-in is recommended for a better visualization

iments on I-HAZE and O-HAZE, whose hazy-clean image
pairs are generated with a professional haze machine. As
shown in Table 3, 4 and Figs. 6, 7, one could find out that:

– For indoor scenes, as shown in Table 3, YOLY outper-
forms all the other baseline methods in the quantitive
comparisons. Specifically, YOLY is 1.07 and 0.0536
higher than the best of them in terms of PSNR and SSIM.
For the qualitative comparisons, YOLY shows a better
visual results as shown in Fig. 6. Other baseline methods
usually suffer from color distortions.

– On the complex outdoor scenes, YOLY still gets a com-
parable results as shown in Table 4. Although YOLY
is 0.37 lower than the best baseline method, YOLY is
0.0547 higher than the second best method in SSIM. For
the qualitative comparisons, YOLY also achieves better
qualitative results. As shown in Fig. 7, results of YOLY
is much closer to the ground-truth than other baseline
methods.

Besides the results on the I-HAZE and O-HAZE, we
also conduct comparisons on 10 hazy images collected from
Internet by us. As shown in Fig. 8, the proposed YOLY
is remarkably superior to the baselines. Moreover, we also

illustrate the transmission map learned by YOLY for a more
comprehensive investigation in the last column.

4.4 Comparisons on Inference Time and Params

To investigate computational efficiency of our method, we
conduct experiments to investigate the inference time and
model size of our method on the HSTS. As shown in Table 5,
one could find out that:

– YOLY is faster than most of the baselines in terms of
the inference time. It is worth noting that the training
time is not reported in the Table 5 because the learning-
basedmethods are usually trained on a large scale dataset
whereas our YOLY does not. It would be unfair to com-
pare the training cost in such case;

– YOLY is large than the other baselines due to our network
consists of three subnetworks of which A-Net is quite
large. More specifically, the params of J-Net, T-Net and
A-Net are 1.2k, 0.2k and 32.0M, respectively. Though
suffered from large parameters, the VAE used in A-Net
is quite important to the performance of our model. As
shown in the ablation study of the paper, VAE remarkably
improves the performance of YOLY, which indicates its
effectiveness.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Fig. 8 Visual results on the real-world scenes. From the left to the right
column (i.e., a–l), the input hazy image, DehazeNet (Cai et al. 2016),
MSCNN (Ren et al. 2016), AOD-Net (Li et al. 2017), DCP (He et al.
2009), GRM (Chen et al. 2016), N2V (Krull et al. 2019), DIP (He et al.

2009), DD (Heckel and Hand 2019), DDIP (Irani 2019), our method
and the estimated transmission map are presented. Some areas are high-
lighted by red rectangles and zooming-in is recommended for a better
visualization and comparison

Table 5 Inference time cost and params of the tested methods on HSTS

Metrics Learning-based dehazing methods Prior-based dehazing methods

DehazeNet MSCNN AOD-Net CAP DCP FVR BCCR GRM NLD

Inference time 1.19 s 123.37 s 0.38 s 0.13 s 8.84 s 5.58 s 1.67 s 28.65 s 5.53 s

Params 8.3K 8.6K 1.8K – – – – – –

Metrics Unsupervised neural networks

N2N N2V DIP DD DDIP Ours

Inference time 0.49 s 0.92 s 0.27 s 0.01 s 0.21 s 0.21 s

Params 1.2M 5.5M 0.6M 0.1M 1.7M 32.0M
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(a) (b) (c) (d)

Fig. 9 Haze transferring from synthetic indoor hazy images to indoor
clean images. a and b are the ground truth clean image and the corre-
sponding handcrafted hazy image. c Our hazy image synthesized by
transferring the haze from d to a. From the result, one could find that
the handcrafted hazy images show some distortions due to the wrong
depth information, i.e., the area near to the border of the piano in the first
image and the chair near to the camera in the third and fourth images.
There are also some unreal haze distribution in the handcrafted hazy
image, i.e., the area near to the camera in the second image. Some areas
are highlighted by red rectangles and zooming-in is recommended for
a better visualization and comparison

4.5 Haze Transfer

Recent works have witnessed the effectiveness of supervised
neural networks in image dehazing. To well train the neural
networks, a large scale hazy-clean image pairs are required,
and most of works resort to the synthetic dataset by manu-
ally specifying the parameters of the physical model. Such a
handcrafted haze creation solution has suffered fromavariety
of limitations, e.g., the domain shift when using the synthetic
hazy images to address the real-world images. To solve this
problem, it is highly expected to develop new haze creation
methods which work in a learning manner. However, to the
best of our knowledge, there are few efforts have devoted to
this problem so far.

As a by-product of our layer disentanglement idea, our
method could transfer haze from a given hazy image to
another clean one. In other words, we provide a novel solu-
tion to haze creation. To transfer the haze, our method first
disentangles the atmospheric light and the transmission map
from the hazy image. After that, the model is further used to
generate the new hazy images w.r.t. a given clean image.

To demonstrate the effectiveness of our method in haze
transfer, we conduct the following experiments, i.e., transfer-
ring haze (1) from an indoor image to another indoor clean

(a) (b) (c) (d)

Fig. 10 Haze transferring from synthetic indoor hazy images to out-
door clean images. a and b are the ground truth clean image and the
corresponding handcrafted hazy image. c Our hazy image synthesized
by transferring the haze from d to a. One could find out that the haze
is average distributed in the handcrafted hazy image. In contrast, the
transferred hazy images show that the haze is light near the camera and
heavy in other areas. Namely, our transferred hazy images is more real
than the handcrafted ones

image, see Fig. 9; (2) from an indoor image to another out-
door clean image, see Fig. 10; (3) from an outdoor image to
another outdoor clean image, see Fig. 11. From the results,
one could find that our method could successfully transfer
the haze as expected. The performance dominance of YOLY
is more distinct in Fig. 11, where the haze source comes from
the real world. More specifically, one could observe that the
haze nearby the camera is much heavier than other areas
in the second image of Fig. 11b. The major reason might

(a) (b) (c) (d)

Fig. 11 Haze transferring from real-world hazy images to outdoor
clean images. a and b are the ground truth clean image and the cor-
responding handcrafted hazy image. c Our hazy image synthesized by
transferring the haze from d to a. From the result, one could find out
that there are a lot unreal haze distributions in the handcrafted hazy
images. For example, the second image shows a heavy haze near the
camera and light haze in the sky area, which is inconsistent with the real-
world cases. As a contrast, our hazy image is faithful to such common
knowledge
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Table 6 Ablation study on the HSTS database

Metrics w.o. LH w.o. LK L w.o. LJ w.o. LReg Ours

PSNR 21.16 21.68 22.53 22.28 23.82

SSIM 0.8733 0.8690 0.9039 0.8836 0.9125

attribute to the difficulty in estimating the depth information
of outdoor image. In contrast, the hazy images generated by
our method are less suffered from this issue, which shows
the promising haze creation performance of our method.

4.6 Ablation Study

Toverify the effectiveness of our loss function,we conduct an
ablation study on the HSTS dataset by removing one of LH ,
LK L , LJ , and LReg . From Table 6, one could see that: (1)
our method leverages the advantages of variational inference
in haze removal with the formulation of LH and LK L ; (2)
the statistical information used on J-Net could improves the
performance of the model; (3) the performance of YOLY is
slightly improved with the regularization on the estimation
of atmospheric light.

5 Conclusion

In this paper, we propose an unsupervised and untrained
image dehazing neural networkwhich separates the observed
hazy image into scene radiance layer, transmission map
layer and atmospheric light layer. Three advantages of the
proposed YOLY are: (1) unsupervised characteristic means
that the method does not use the information beyond the
image content; (2) untrained characteristic means that the
method does not require using an image collection for train-
ing like most existing neural networks do; (3) transferable
hazy capacity which could synthesize new hazy images by
extracting the haze from a given image in a learning- and
unsupervised-fashion. In addition, our layer-decomposition-
like model enjoys high interpretability in network structure
and output. Extensive experiments on two synthetic datasets
and four real-world datasets demonstrate the promising per-
formance of our method in the quantitative and qualitative
comparisons.

Although ourmethod remarkably outperformsmost exist-
ing unsupervised shallow and deep methods, it is only
comparable to the state-of-the-art supervised image dehazing
approaches. Thus, it is promising to continually improve its
performance in future.Moreover, it is also valuable to explore
how to extend ourmethod to other image/video enhancement
tasks such as denoising, inpainting, and so on.
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