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Deep Spectral Representation Learning
From Multi-View Data
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Abstract— Multi-view representation learning (MvRL) aims to
learn a consensus representation from diverse sources or domains
to facilitate downstream tasks such as clustering, retrieval, and
classification. Due to the limited representative capacity of the
adopted shallow models, most existing MvRL methods may
yield unsatisfactory results, especially when the labels of data
are unavailable. To enjoy the representative capacity of deep
learning, this paper proposes a novel multi-view unsupervised
representation learning method, termed as Multi-view Laplacian
Network (MvLNet), which could be the first deep version of the
multi-view spectral representation learning method. Note that,
such an attempt is nontrivial because simply combining Laplacian
embedding (i.e., spectral representation) with neural networks
will lead to trivial solutions. To solve this problem, MvLNet
enforces an orthogonal constraint and reformulates it as a layer
with the help of Cholesky decomposition. The orthogonal layer is
stacked on the embedding network so that a common space could
be learned for consensus representation. Compared with numer-
ous recent-proposed approaches, extensive experiments on seven
challenging datasets demonstrate the effectiveness of our method
in three multi-view tasks including clustering, recognition, and
retrieval. The source code could be found at www.pengxi.me.

Index Terms— Unsupervised multi-view representation
learning, multi-view clustering, cross-modal retrieval.

I. INTRODUCTION

REPRESENTATION learning is crucial to a variety of
tasks including recognition, clustering, and retrieval.
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Over the past decades, a great number of methods have
been proposed and achieved promising results [1]–[4]. Among
them, manifold learning has taken a dominant position in a
long time. The typical methods include locally linear embed-
ding (LLE) [5], Laplacian Eigenmaps (LE) [6], t-SNE [7], low
rank representation (LRR) [3] and subspace learning [8]–[11].
The basic idea of these methods is learning a low-dimensional
representation by using local/global invariance as an affinity.
Despite the success of these methods, they do not explore
the latent relations across different views and thus may get
inferior performance when handling multi-view data or called
multimodal data. Therefore, it is highly expected to develop
multi-view representation learning (MvRL) methods to over-
come the challenges accompanied by the booming data.

The key point to MvRL is how to exploit the diverse
and complementary information contained in different views.
The existing multi-view representation learning methods could
be roughly classified into three categories, namely, unsuper-
vised methods [12]–[20], supervised methods [21]–[24] and
semi-supervised methods [25]–[27]. A comprehensive survey
could refer to [28].

In this paper, we only focus on the unsupervised MvRL
which learns a shared/consensus representation from different
views by exploring the latent data structure without using label
information. Unsupervised MvRL methods could be further
partitioned into two categories, i.e., shallow models and deep
models. One of the most effective shallow MvRL methods is
canonical correlation analysis (CCA) [29], [30] which projects
different views into one common space by maximizing the cor-
relation of pairwise modalities. Another typical method is the
multi-view subspace learning (MvSL) [26], [31]–[37] which
learns view-specific representations under the graph Laplacian
framework [6] and a common representation by enforcing the
view-specific representations as similar as possible. The main
difference among the existing works is the formulation of the
cross-view consistency or within-view similarity.

Benefited from the powerful nonlinear parametric mapping
capacity, deep neural networks (DNNs) have made huge
progress in numerous single-modality applications [38], espe-
cially, in the scenario of supervised learning. Inspired by the
success of DNNs, some deep multi-view approaches have
been proposed to learn a common representation, e.g., deep
canonical correlation analysis (DCCA) [12], deep canoni-
cally correlated autoencoder (DCCAE) [39], multi-view deep
matrix factorization (MvDMF) [40], multi-view adversarial
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learning [41]–[43], and multi-view deep hashing methods [44],
[45], to name a few. The shared idea of these methods is
employing a neural network to learn view-specific representa-
tions which are further merged into a common representation
by referring to the traditional MvRL paradigm.

Although more and more works have recognized the effec-
tiveness of DNNs in multi-view representation learning, there
are no attempts to develop deep multi-view subspace learning
approaches so far. In fact, this is not strange due to the follow-
ing technical challenge. In brief, most MvRL methods always
require solving an eigenvalue decomposition (ED) problem
(Eq. 2) with the orthogonal constraint, thus making it difficult
even impossible in back-propagating the gradient through a
neural network. To overcome this challenge, we recast the
orthogonal constraint as a neural layer with a theoretical
guarantee. In other words, we reformulate a non-differentiable
matrix decomposition problem as a differentiable neural layer
that could be plugged into existing neural networks. Note that,
the orthogonal layer is quite general, which could be used as
a surrogate for similar problems.

In this paper, we propose the Multi-view Laplacian
Network (MvLNet) which learns a common space from
multi-view data using a parametric deep model. Specifically,
MvLNet consists of four modules, i.e., 1) a Siamese Net-
work [46] that is used to learn view-specific affinity which
could incorporate discrimination with the help of the synthe-
sized positive and negative pairs, 2) an embedding network
that is used to learn view-specific representation by preserving
the graph structure based on the Laplacian matrix, 3) an
orthogonal layer that is used to guarantee the orthogonality of
the view-specific representation to avoid the aforementioned
gradient back-propagation issue and trivial solutions, and 4) a
constraint that is used to learn a common space in which the
view-consistency is enforced. In addition, we propose a new
training algorithm called alternative orthogonal and embed-
ding (AOE) to train our network in a coordinate descent fash-
ion. To the best of our knowledge, the proposed MvLNet could
be the first effective deep extension of multi-view spectral rep-
resentation learning by solving the gradient back-propagation
issue, which is complementary to the classical MvSL and
unsupervised deep learning. From the view of the classical
MvSL, our work may provide a promising way to boost the
performance and revive it in the era of big data and deep learn-
ing. Moreover, the constructed orthogonal layer is actually the
neural network implementation of the orthogonality constraint,
which is pluggable into existing networks to enjoy the benefits
from orthogonality. Note that, the orthogonality has been theo-
retically and experimentally proved effective to representation
learning [47]. Extensive experiments on real-world datasets
show the superior performance of MvLNet in the task of
clustering, classification, and retrieval. Fig. 1 presents the
visualization results of MvLNet to show its effectiveness and
fast convergence.

The main contributions of our work are summarized as
follows:

• We proposed a new multi-view unsupervised representa-
tion learning method named MvLNet which integrates
the local invariance and the cross-view consistency to

Fig. 1. The visualization on Noisy MNIST w.r.t. increasing training epoch,
where t-SNE is used to visualize our learned representation. Different colors
denote different digits. As shown, our method separates the data into different
clusters with growing training epochs, while converging quickly.

learn the common representation progressively. To the
best of our knowledge, MvLNet could be the first deep
version of the multi-view spectral representation learning
method by solving the optimization problem caused by
eigen-decomposition with neural networks.

• Instead of using the Euclidean distance like tradi-
tional MvSL approaches did, we adopt the Siamese
network [46] to better characterize the local manifold
structure.

• Unlike traditional MvSL approaches that explicitly opti-
mize the objective function to achieve orthogonality, our
MvLNet reformulates the orthogonality constraint as an
independent layer which could be plugged into existing
neural networks. Moreover, to train the proposed network
efficiently, we propose an optimization algorithm (i.e.,
AOE) which works in a coordinate descent fashion.

• Extensive experiments on three different tasks demon-
strate the effectiveness of the proposed model compared
to the state-of-the-art unsupervised methods.

Notations: For ease of presentation, we first define the
used mathematical notations through this paper. In brief,
the lower-case letters denote scalars, the lower-case bold letters
denote vectors, and the upper-case bold ones denote matrices.
Note that, I denotes the identity matrix. And for a given matrix
A, Tr(A) denotes the trace of A.

II. RELATED WORKS

In this section, we briefly review some works in multi-view
representation learning, including multi-view spectral repre-
sentation methods and deep approaches proposed in recent
years.

A. Multi-View Spectral Representation

Firstly we give a brief introduction to one pioneer work on
representation learning, i.e., spectral representation or called
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Laplacian Eigenmaps (LE) [6]. For a given dataset X =
[x1, x2, · · · , xn] ∈ R

d×n distributed over c classes, LE first
builds an affinity matrix or called similarity graph of which
each vertex represents a data point and any two data points
are connected in the graph i.i.f. one of them is among k
nearest neighbors of the other. To construct the affinity matrix
W, there are numerous methods are proposed during past
decade, e.g. sparsity [31], [48], [49], low-rankness [3], [50],
[51], denseness [52], [53], and so on. Among these choices,
the vanilla LE method adopts the Euclidean distance with the
Gaussian kernel as below:

Wij =
{

exp(−‖xi−x j ‖2
2

2σ 2 ), xi , x j are connected.

0, otherwise.
(1)

where Wij ∈ W is the connection weight between the i -th and
the j -th data point.

With the precomputed W, the objective function of SC is
defined by:

arg min
Y

T r(Y�LY)

s.t . Y�Y = I (2)

where Y is the final representation, L is a Laplacian matrix
defined by L = D − W, D is a diagonal matrix defined by
Dii = ∑

j Wi j . The optimal solution to Eq. 2 consists of c
eigenvectors corresponding to c smallest eigenvalues of L.

For ease of presentation, let {X(v)}m
v=1 (m ≥ 2) be the

dataset consisting of v views. For example, x(1)
i and x(2)

i denote
the same object xi in the first and second views. A general
formulation of MvSL can be found in [28], [54] as below,

arg min
Y,a(v)

m∑
v

(a(v))r Tr(Y�L(v)Y)

s.t . Y�Y = I,
m∑
v

a(v) = 1, a(v) > 0 (3)

where a(v) is the non-negative normalized variable for reflect-
ing the contribution/importance of the v-th view and r is
a scalar to control the distribution of different weights on
different views. More details could refer to [54], [55].

B. Deep Multi-View Representation Learning

Thanks to the success of DNNs in a variety of applica-
tions, some recent works have been devoted to extending the
traditional multi-view learning methods to deep ones. Among
these works, DCCA incorporates deep neural networks with
CCA [29]. For the given data X(1) and X(2), DCCA uses two
neural networks ( fθ1, fθ2) to extract features for each view
and maximizes the canonical correlation between the extracted
features as follows:

arg max
θ1,θ2,U,V

1

N
Tr(U� fθ1(X

(1)) fθ2(X
(2))�V)

s.t . U�(
1

N
fθ1(X

(1)) fθ1(X
(1))� + rx I)U = I

V�(
1

N
fθ2(X

(2)) fθ2(X
(2))� + ryI)V = I

u�
i fθ1(X

(1)) fθ2(X
(2))�v j = 0,∀i �= j, (4)

where U = {u1, · · · , uL} and V = {v1, · · · , vL} are two CCA
directions that maximize the correlation among the neural
network outputs, and rx and ry are regularization parameters
with positive value. Once the network converged, DCCA uses
the final projection mapping U� fθ1 and V� fθ2 to obtain the
final view-specific representations and apply them for the
downstream tasks.

Different from DCCA, DCCAE [39] employs an autoen-
coder rather than a simple feedforward neural network to
learn the view-specific representation. The objective function
of DCCAE is as follows:

arg min
θ1,θ2 ,w1
w2,U,V

λ

N

N∑
i=1

‖x(1)
i − gw1(x

(1)
i )‖2 + ‖x(2)

i − gw2(x
(2)
i )‖2

− 1

N
Tr(U� fθ1(X

(1)) fθ2(X
(2))�V)

s.t . U�(
1

N
fθ1(X

(1)) fθ1(X
(1))� + rx I)U = I

V�(
1

N
fθ2(X

(2)) fθ2(X
(2))� + ryI)V = I

u�
i fθ1(X

(1)) fθ2(X
(2))�v j = 0,∀i �= j, (5)

where λ > 0 is a trade-off parameter. gw1 and gw2 are two
autoencoders with weights collection w1 and w2.

III. MULTI-VIEW LAPLACIAN NETWORK

In this section, we propose a deep multi-view learning
model, termed Multi-view Laplacian Network (MvLNet). Dif-
ferent from the existing multi-view learning methods, MvLNet
is a deep MvRL which implements the deep neural networks
as a parametric function fθ : R

d → R
c, where d denotes

the data dimension, c is the class number, and θ denotes the
parametric model. Once the representations are obtained with
the well-trained θ , the final representations are used for the
downstream tasks such as clustering, recognition, retrieval, and
so on.

A. Multi-View Laplacian Loss

To deeply perform multi-view representation learning,
we enforce the within-view local invariance and cross-view
consistency with the following objective function:

L = (1 − λ)

m∑
v=1

L(v)
1 + λL2, (6)

where the within-view invariance loss L(v)
1 enforces similar

points as close as possible in each single view and the
cross-view consistency loss L2 aims to learn a common space
in which the discrepancy among different views is minimized.
λ ∈ [0, 1] is a scalar to balance the contribution of these two
losses.

In our objective function, L(v)
1 encapsulates local invariance

on manifold based on the widely-used manifold assumption [6]
as follows:

L(v)
1 = 1

n2

n∑
i, j

W (v)
i j ‖y(v)

i − y(v)
j ‖2

2, (7)
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Fig. 2. The architecture of the proposed MvLNet. Our model consists m embedding networks { f (1)
θ , · · · , f (m)

θ }, which output the representations of
original data {X(i)}m

i=1 from different views. First we train the Siamese network for each view as the left panel showed. After all the Siamese networks are
well trained, the affinity matrix W are used for the embedding network. In order to obtain the orthogonal representations {Ŷ(i)}m

i=1, each embedding network
is followed by an orthogonal layer which performs the QR decomposition to achieve the orthogonality. Once we obtain the representation of the batch data,
we compute the objective function and update the network weight using the gradients.

where W (v)
i j denotes a precomputed similarity graph and y(v)

i

denotes the output of a neural network w.r.t. the input x(v)
i .

Namely, y(v)
i = f (v)

θ (x(v)
i ), where f (v)

θ is the v-th sub-network
that is used to handle the v-th view. By minimizing the∑m

v L(v)
1 , the yielded embeddings could remain the local

structure of the original data on the subspaces via DNNs.
Regarding L2, we try to learn the consistency across views

by learning a common representation.

L2 = 1

nm2

m∑
v �=p

n∑
i

‖y(v)
i − y(p)

i ‖2
2, (8)

Note that, we do not explicitly learn a common representation
that is close to different view-specific representations. Instead,
we learn a common space in which the view-specific represen-
tations are as close as possible and obtain the final represen-
tations. The advantage of such an approach is two-fold. One
major advantage is that fewer variables need optimization, thus
remarkably decreasing the optimization complexity. The other
advantage is close to the downstream task. Taking retrieval
as an example, it aims to retrieval one modality from another
modality, e.g., to retrieval the images from the description text.
Clearly, such a task needs view-specific representations instead
of a single common representation which only plays a role in
keeping view-consistency.

Although our network with the above objective function
could be easily optimized by the back-propagation algorithm,
it will lead to a trivial solution that maps all inputs to the same
point into the common space, i.e.

y(v)
i = y,∀(i, v), (9)

It is easy to find that our objective will obtain the minimum
of 0 with Eq.9. In other words, all the data points will collapse
into the same point y. Clearly, such a solution is undesirable
for the downstream tasks. In order to avoid the trivial solution,
a constraint is used to orthogonalize all view-specific repre-
sentation via

(Y(v))�Y(v) = In×n, (10)

where Y(v) is a n×d matrix in which i -th denotes the y(v)
i . The

orthogonal constraint has shown effectiveness in numerous

theoretical and experimental studies [6], [47], [56], [57]. This
is why we adopt it rather than other relaxed constraints such
as low-rankness in our method.

To achieve orthogonality, the orthogonal constraint is
usually incorporated into Eq. 6 as a regularization term,
which has been widely adopted by plenty of shallow model
[3], [31], [53], [55], [56]. However, such a learning paradigm
has suffered from two limitations. On the one hand, a new
parameter has to be introduced to determine the contribution
of the orthogonal term, whose optimal value cannot be deter-
mined in a data-driven way. On the other hand, the involved
optimization cannot guarantee the strict orthogonality of Y(v).
Thus we choose to achieve the orthogonality by recasting the
constraint as an independent layer with the following theorem:

Theorem 1: Given a matrix A and suppose A�A is full
rank, Q is an orthogonal matrix which is defined as:

Q = A(L−1)� (11)

where L is obtained by Cholesky decomposition as
A�A = LL� and L is a lower triangular matrix.

Proof: For a matrix A that A�A is full rank, one could
perform the Cholesky decomposition as below:

A�A = LL� (12)

where L is a lower triangular matrix. Thus L−1 is lower
triangular and (L−1)� is upper triangular accordingly. For
Q = A(L−1)�, it is easy to find that Q is an orthogonal
matrix as

Q�Q =L−1A�A(L−1)� = L−1LL�(L−1)� = I. (13)

The proof is complete. �
With Theorem 1, we construct a new layer to implement

the orthogonal constraint to enforce the strong orthogonality
on the final representations. To be specific, the orthogonal
layer first performs Cholesky decomposition on (Y(v))�Y(v)

to obtain L(v) and then obtains the orthogonal representation
via Ŷ(v) = Y(v)((L(v))−1)�. Note that, the full rankness of
(Y(v))�Y(v) could be easily guaranteed by adding a suffi-
ciently small number (e.g., 10−5) at the diagonal elements
without loss of generality. In addition, the orthogonality aims
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at avoiding trivial solution into a batch of samples. In other
words, we do not require the orthogonality across different
batches during optimizing our neural network.

B. Affinity Learning

In our objective function, L1 aims to preserve the local
invariance on the manifold, where the local invariance is
usually formulated as an affinity matrix as introduced in
Section II. Most subspace learning methods define the local
invariance using Euclidean distance with a Gaussian ker-
nel [56] or self-expressive representation [3], [31], [48], [49],
[53], [58]. Although these methods have shown impressive
results, they may obtain inferior performance when the data
distribution is complex. For example, when the data is insuf-
ficient sampling, either of them might not give a desirable
affinity matrix as pointed out in [59].

Different from the aforementioned affinity building meth-
ods, we employ Siamese network [46] to learn the affin-
ity for each single view. Siamese network is one of the
most effective metric learning methods, which has achieved
impressive performance in numerous tasks [14], [60]. Given
pairs of positive (similar) or negative (dissimilar) samples
(xi , x j ), Siamese network learns a parametric model gθ (·) by
minimizing the distance of positive pairs while maximizing the
distance of negative pairs under the help of the ground-truth.
Note that, for ease of presentation, we discard the superscript
of x(v)

i in this section, which will not cause misunderstandings.
Formally, the objective function of the Siamese network is
defined as:

Ls = P‖gθ (xi ) − gθ (x j )‖2
2

+(1 − P)max(γ − ‖gθ (xi ) − gθ (x j )‖2
2, 0), (14)

where the ground-truth P = 0/1 if the pair (xi , x j ) is
negative/positive, gθ is a neural network to embed the input xi

into a latent space, and γ denotes the margin which is fixed
to 1.0.

As in the unsupervised settings, the ground-truth is unavail-
able. To solve this issue, we construct a collection of positive
and negative pairs using the k-NN graph. Specifically, (xi , x j )
is a positive pair if x j falls into the k-neighborhood of xi . To
construct the negative pairs, we use xi and its k non-neighbors
that are randomly selected. Note that, the positive pairs and
the negative pairs are of equal size. Once the Siamese network
convergences, all data points are passed through the network
gθ (·) and the affinity is computed via

Wij =
{

exp(−‖gθ (xi )−gθ (xi )‖2
2

2σ 2 ), xi , x j are connected.

0, otherwise.
(15)

C. Alternative Orthogonal and Embedding Training

In this section, we elaborate on the structure and training
procedure of our model. As shown in Fig. 3, the proposed
MvLNet consists of two stages involving two networks. The
first network learns the affinity matrix for each view using a
Siamese network. The second one passes the original data of
each view into an embedding network and further projects

Fig. 3. The Siamese network aims to minimize the distance between the
positive pairs (two blue rectangles) and maximizes the distance between
negative ones (blue and orange) at the same time.

the view-specific representations into a common space to
achieve view-consistency. These two networks are with only
one difference in structure. To be specific, the second network
replaces the output layer of the first network with a fully
connected layer consisting of c neurons followed by the
orthogonal layer, where c is the cluster number.

According to Theorem 1, we implement the orthogonal
constraint as a pluggable layer, which makes back-propagating
the gradient possible. We propose the alternative orthogonal
and embedding (AOE) algorithm to train our network in a
coordinate descent fashion. More specifically, we alternatively
perform the following two optimization steps in each training
iteration with different mini-batch sampled uniformly from the
training set until our network converges:

• Orthogonal step: We use the Cholesky decomposition as
shown in Eq. 11 to obtain the orthogonal representations
and update the orthogonal layer weights for each view
accordingly.

• Embedding step: We use the standard back-propagation
to optimize the parameters of the embedding network.

Once our MvLNet convergences, we forward the original
data and obtain the final representations for the downstream
tasks. A detailed algorithm of MvLNet is presented in the
supplementary material.

D. Discussion

In brief, our method is the deep version of the multi-view
spectral clustering. Here we present a detailed discussion
on the relationship between the proposed model and some
well-known related works. First, compared to the CCA-based
approaches (including the shallow version [29] and deep
version [12], [39]), our method incorporates the within-view
manifold invariance and cross-view consistency, i.e. L1 and
L2, while the CCA-based approaches aim to maximize
the canonical correlation between two views based on the
cross-covariance matrix. Second, different from the other
multi-view learning methods including the above mentioned,
we employ the Siamese network to learn the better affinity,
boosting the representation learning performance in various
downstream tasks.

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed
MvLNet for three typical multi-view applications including
clustering, classification, and retrieval. To improve the per-
formance and reduce the computational cost, we use an
auto-encoder to preprocessing the raw data by reducing the
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dimensionality. To investigate the contributions of components
of our model, we also report the performance of the following
three variants, namely,

• MvLNet (k-NN): it uses the k-NN graph to compute the
affinity matrix W in the raw features. This baseline is
used to show the effectiveness of affinity learning based
on the Siamese network.

• MvLNet (w.o. AE): it passes the raw data through the
embedding network, which is used to show the effective-
ness of our autoencoder based learning paradigm.

• MvLNet (λ = 0) discards the L2 term, which is used
to show the importance of our constraint of cross-view
consistency.

All the following experiments are implemented using
Keras+TensorFlow on a standard Ubuntu-16.04 OS with an
NVIDIA 1080Ti GPU. Due to space limitation, the training
and network structure detail is presented in the attached
supplementary materials.

A. Clustering Performance

Clustering aims to group a set of data points so that the
data in the same cluster are as similar as possible, while
the data in the different clusters are dissimilar to each other.
As multi-view clustering favors a common representation
rather than view-specific representations, we obtain the final
representation by concatenating all view-specific representa-
tions as [31], [53] did. With the final representation, we per-
form k-means to obtain the clustering assignments.

1) Experimental Setting: For comparison, we evaluate the
MvLNet with 10 state-of-the-art clustering methods including
three single-view methods and seven multi-view clustering
methods. To be exact, the single view methods include spectral
clustering (SC) [56] or equivalently LE [6] + k-Means,
LRR [3], SNet [60]. The multi-view clustering methods
include CCA [29], DCCA [12], DCCAE [39], DiMSC [61],
LMSC [53], MvDMF [40], SwMC [62], BMVC [63]. For the
single-view methods, we report their results by concatenating
the feature vectors of all views.

We carry out experiments on four popular multi-view
datasets, namely, Noisy MNIST,1 Caltech101-20,2 Reuters3

and NUS-WIDE-OBJ.4 To be specific,

• Noisy MNIST: The dataset is generated using the MNIST
dataset 5 and we adopt the setting used in [39]. Specifi-
cally, we use the original dataset as view 1 and randomly
select within-class images with additive noise as view 2.
Thus, we obtain a binary-view dataset consisting of 70K
samples for each view.

• Caltech101-20: The dataset consists of 2386 images
of 20 subjects selected from the original Cal-
tech101 dataset. We follow the setting used in [40] to
extract six handcrafted features as six views, including

1http://ttic.uchicago.edu/∼wwang5/dccae.html, createMNIST.m
2http://www.vision.caltech.edu/Image Datasets/Caltech101/
3https://archive.ics.uci.edu/ml/datasets.html
4http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
5http://yann.lecun.com/exdb/mnist/

Gabor feature (48D), Wavelet Moments (40D), CEN-
TRIST feature (254D), HOG feature (1984D), GIST
feature (512D), and LBP feature (928D).

• Reuters: We use a subset of the Reuters database which
consists of the English version and the translations in
four different languages, i.e., French, German, Spanish
and Italian. The used subset consists of 18,758 samples
from six classes.

• NUS-WIDE-OBJ: This dataset consists of 30K images
distributed over 31 classes. We use five features provided
by NUS, i.e., Color Histogram (65D), Color Moments
(226D), Color Correlation (145D), Edge Distribution
(74D) and wavelet texture (129D).

Note that, we use 10K samples randomly selected from
Noisy MNIST, Reuters and NUSWIDEOBJ in experiments
since most of the baselines are inefficient to handle large-scale
datasets. For a fair comparison, we randomly split the dataset
into two partitions of equal size, one partition is used to
tune parameters for all the methods and the other partition
is used for evaluation. For a comprehensive investigation,
we adopt Accuracy (ACC), normalized mutual information
(NMI), adjusted mutual information (AMI), and F-measure
(F-mea) as the performance measurement. A higher value
indicates better performance for all metrics.

2) Clustering Results: Tables I– II show the quantitative
comparison with 10 state-of-the-art methods on four datasets.
Note that, as DCCA/DCCAE can only handle bi-view dataset,
we report their performance on the best two views accordingly.
From Table I, one could observe that our MvLNet outperforms
the other tested methods in terms of all the evaluation metrics.
Specifically our model achieves 99.18% on Noisy MNIST,
which is the best performance to the best of our knowledge.
Moreover, our model outperforms the other methods with a
large margin on Caltech101-20. Similarly, Table II shows
that MvLNet outperforms the other methods on Reuters
and NUSWIDEOBJ in most cases and LMSC achieves a
competitive result in terms of NMI and AMI. Regarding the
ablation studies with MvLNet (k-NN), MvLNet (w.o. AE) and
MvLNet (λ = 0), the proposed model outperforms them in
all tests. This demonstrates the effectiveness of the proposed
method. Especially, when the data is complex (Caltech101-
20, Reuters), MvLNet remarkably outperforms the MvLNet
(k-NN), indicating the superiority of affinity learning based
on the Siamese network.

B. Recognition Performance

Besides boosting the clustering performance, the represen-
tation learned by MvLNet could also be applied to recogni-
tion task. Different from clustering, recognition needs label
information. To investigate the performance of MvLNet on
the recognition task, we evaluate it with the aforementioned
baselines on three datasets, i.e., Caltech101-20, Reuters, and
NUSWIDEOBJ. Note that, we cannot report the result of
SwMC since it does not explicitly learn a representation for
this task. In addition, as SC could be regarded as identi-
cal with LE + k-means, we replace SC with LE in this
experiment.
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TABLE I

CLUSTERING PERFORMANCE COMPARISON USING NOISY MNIST AND CALTECH101-20 DATASETS

TABLE II

CLUSTERING PERFORMANCE COMPARISON USING REUTERS AND NUSWIDEOBJ DATASETS

TABLE III

RECOGNITION PERFORMANCE COMPARISON USING CALTECH101-20, REUTERS AND NUSWIDEOBJ DATASETS

1) Experimental Setting: Similar to the experiment setting
in the clustering task, we only use 10K samples of Reuters
and NUSWIDEOBJ in this evaluation. In each test, we split
the dataset into two partitions of equal size, one for training
and one for testing. For all methods, we first obtain the rep-
resentations with them and then perform the nearest neighbor
classifier (1-NN classifier) to obtain the classification result.

In the experiments, we adopt the accuracy (ACC), F-measure
(F-mea), and precision for evaluation.

2) Recognition Results: Table III reports the recognition
results on the three datasets. One could observe that the
proposed MvLNet outperforms the tested methods on all
the datasets in terms of all the evaluation metrics. The
results demonstrate the effectiveness of MvLNet in the
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TABLE IV

RETRIEVAL PERFORMANCE COMPARISON USING WIKIPEDIA, PASCAL AND NUSWIDE-10K DATASETS IN TERMS OF MAP SCORE

recognition task. Regarding the three alternative baselines
(MvLNet(k-NN)), MvLNet(w.o. AE) and MvLNet(λ = 0),
the proposed model outperforms them in all cases. Again,
the comparison verifies the effectiveness of the proposed
model as a whole.

C. Retrieval Performance

A typical application of multi-view analysis is the retrieval
task, i.e. retrieving the related samples across different
views/modalities based on the learned final view-specific
representation. A representative example is to retrieval the
expected images from a gallery with a given description text
sequence, which needs two views at least. Since MvLNet
can learn the view-specific representations, we perform the
following retrieval experiment on three wildly used datasets
as elaborate later.

1) Experimental Setting: For comparison, we evaluate the
MvLNet with 13 state-of-the-art multi-view retrieval methods,
including CCA [29], CFA [64], KCCA [30], DCCA [12],
DCCAE [39], Bimodal AE [65], Multi-DBN [66], Cor-
rAE [67], JRL [68], LGCFL [69], CMDN [41], Deep-SM [70],
ACMR [42], GSPH [71].

In this evaluation, we carry out experiments on three popular
multi-view retrieval datasets including Wikipedia [72], Pascal
Sentences [73], and NUSWIDE-10K.6 All of these datasets
contain at least two modalities. The datasets are with following
details:

• Wikipedia: The dataset is generated from the featured
articles of Wikipedia. It contains 2,866 image/text pairs
of 10 classes. In each pair, the text is descriptions of
the corresponding image. The classes are of high-level
semantics, such as history and warfare. We split the
dataset into three parts by following [43], where the
training, testing, and validation set consists of 2,173, 462,
and 231 pairs, respectively.

• Pascal Sentences: The dataset consists of 1,000 images
each with 5 corresponding description sentences.

6http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

This dataset is categorized into 20 categories. We follow
the setting in [43] to split the data into three parts like
Wikipedia, i.e., 800 pairs for training, 100 pairs for testing
and 100 pairs for validation.

• NUSWIDE-10K: This dataset is constructed by ran-
domly selecting 10,000 image/tag pairs from 10 largest
classes in NUS-WIDE dataset. Therefore, each class
consists of 1,000 pairs. Note that NUS-WIDE only con-
tains the tag description instead of the text description.
Similar to other datasets, we split it into three parts,
namely, 8,000 pairs for training, 1,000 pairs for testing
and 1,000 pairs for validation.

Following the setting in [43], we use the AlexNet
pre-trained on ImageNet to extract image features for these
three datasets. As a result, the image feature is 4,096D.
Regarding the text modality, a 3,000D BoW feature is
extracted from the Wikipedia, and a 1,000D BoW feature is
extracted from the NUS-WIDE and Pascal Sentences datasets.

To evaluate the performance, we report the mean average
precision (MAP) scores of cross-view retrieval tasks for all
methods. Note that, all the retrieval results are considered
when computing the MAP score.

2) Retrieval Results: Table IV shows the experimental
results in terms of the MAP score on all query results. For
the Wikipedia dataset, our method gives the best retrieval
performance with 0.387 in image → text and 0.444 in
text → image with an average performance gain of 0.013. For
the Pascal dataset, our method also obtains the best result with
0.497 in image → text and 0.507 in text → image with an
average performance margin of 0.041. As for the NUSWIDE-
10K dataset, MvLNet again achieves the best result of 0.477
in image → text. As for MvLNet (λ = 0), it achieves
an inferior result because of the specific characteristics of
the retrieval task. In brief, it aims to seek the most similar
samples in different modalities, rather than separate samples
into different classes like classification and clustering. Without
L2, MvLNet will only learn the view-specific representations
for each modality and the cross-view information is ignored
during learning. As a result, it is impossible to retrieve the
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TABLE V

VIEW-SPECIFIC VS. THE COMMON REPRESENTATION

Fig. 4. The influence of training epoch w.r.t. the loss and clustering
performance on Noisy MNIST, where the left y-axis denotes the normalized
loss and the right y-axis corresponds to the clustering performance.

samples across different modalities due to the aforementioned
loss of the cross-view consistency.

D. Analysis Experiment

In this section, we conduct some experiments to further
investigate the performance of MvLNet. The experiments aim
to investigate the view-specific representation concatenating
effects in the clustering task and training convergence.

1) View-Specific Representation vs. Common
Representation: To investigate the effectiveness of the
common representation learned by the adopted concatenating
representation, we conduct k-means on each view-specific
representation and the common representation given by our
method. From Table V, one could find that the common
representation learned by our method remarkably outperforms
the view-specific case with a large margin on Noisy MNIST,
Reuters and NUSWIDEOBJ. In other words, the learned
common representation is more discriminative and informative
than any view-specific representation, which verifies that

our method could explore the complementary information
underlying different views.

2) Convergence Analysis: In addition, we also investigate
the convergence performance w.r.t. training epochs in Fig. 4.
As shown, the loss consistently decreases with more training
epochs, which declines quickly in the first 30 epochs. In terms
of ACC and NMI, they first quickly increase in the first
30 epochs, and then increase smoothly and slowly.

V. CONCLUSION

In this paper, we proposed a deep unsupervised multi-view
representation method, termed as Multi-view Laplacian
Network (MvLNet). Thanks to the collaboration of the
within-view invariance, the cross-view consistency, the non-
linear embedding network, and the orthogonal layer, MvLNet
could effectively learn a common space to facilitate the per-
formance on the downstream tasks including clustering, recog-
nition, and retrieval. Extensive experiments are conducted on
multiple challenging datasets to show the efficacy of MvLNet
compared to the state-of-the-art MvRL methods in these three
tasks.
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