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Locality-Aware Crowd Counting
Joey Tianyi Zhou, Le Zhang, Jiawei Du, Xi Peng, Zhiwen Fang , Zhe Xiao and Hongyuan Zhu

Abstract—Imbalanced data distribution in crowd counting datasets leads to severe under-estimation and over-estimation problems,
which has been less investigated in existing works. In this paper, we tackle this challenging problem by proposing a simple but effective
locality-based learning paradigm to produce generalizable features by alleviating sample bias. Our proposed method is locality-aware
in two aspects. First, we introduce a locality-aware data partition (LADP) approach to group the training data into different bins via
locality-sensitive hashing. As a result, a more balanced data batch is then constructed by LADP. To further reduce the training bias and
enhance the collaboration with LADP, a new data augmentation method called locality-aware data augmentation (LADA) is proposed
where the image patches are adaptively augmented based on the loss. The proposed method is independent of the backbone network
architectures, and thus could be smoothly integrated with most existing deep crowd counting approaches in an end-to-end paradigm to
boost their performance. We also demonstrate the versatility of the proposed method by applying it for adversarial defense. Extensive
experiments verify the superiority of the proposed method over the state of the arts.

Index Terms—Long-tail Distribution, Data-imbalance Learning, Data Augmentation, Crowd Counting, Adversarial Defense.

F

1 INTRODUCTION

C ROWD counting has attracted increasing attention recently
due to its wide-ranging applications in video surveillance,

metropolis security, scene understanding, human behavior anal-
ysis, and resource management. In past several years, numerous
methods have been proposed to estimate the number of people
in an image. For example, Lempitshky and Zisserman [1] recast
this task from the perspective of automated counting of objects.
Similar to other vision tasks, the pioneer crowd counting meth-
ods [2], [3] are based on hand-crafted features [4] which are
specifically designed by domain experts and may be unable to
reveal the latent data distribution. More recently, several learning
based methods [5], [6], [7] have shown significant improvements
in counting performance, especially in some complex scenar-
ios [8], [9]. Unfortunately, in those complex scenarios, handcrafted
features are not powerful enough to handling occlusions, scale
variations, high contrast, and so on.

To achieve crowd counting in complex scenarios, recent atten-
tion has shifted into deep learning. These works usually employ
convolutional neural networks (CNNs) to extract feature in a data-
driven way, which could be roughly classified into two categories,
i.e., the counts based methods and the density-map based methods.
The counts based methods usually learn a regression function to
predict people number with the learned deep representations [8],
[10], [11], [12]. Although these methods have achieved good per-
formance, most of them ignore the spatial layout, thus weakening
their generalization ability to new scenarios. To solve this problem,
some density-map based methods are proposed by introducing
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Fig. 1. Highly Imbalanced Training Original Data

salience information for counting and have shown effectiveness
in performance improvement. Furthermore, in practice, the crowd
images are in a large variance in terms of the crowd density and
volume, thus making difficulty in number estimation. To handle
these issues especially to improve the model generalization ability,
a lot of efforts has been devoted by aggressively exploring deeper
model [13] or wider architectures [9] or heuristic engineering
approaches [14], [10] or multitask learning pipeline [11]. Among
these works, the density-map based approaches [9], [15], [16] with
the standard structure of “convolution + pooling” have achieved
state-of-the-art performance in the crowd counting task.

Compared with other vision tasks, one major challenge faced
by crowd counting is the extremely imbalanced data distribution.
Such a data characteristic will lead to inferior counting perfor-
mance caused by over-estimation or under-estimation [11]. Due
to the inherit difficulty, such a data characteristic has less been
investigated in existing works. To quantitatively show this case,
we present the statistics of two datasets, i.e., ShanghaiTech part
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(a) w/o. LA-Batch (b) w. LA-Batch

Fig. 2. Comparison between without and with the LA-Batch on the
ShanghaiTech Part B dataset: x-axis represents the ground truth and
y-axis represents the estimated number.

B [9] and UCF-QNRF dataset [17]. More specifically, Figure 1
demonstrates the statistics of generated image patches from these
two datasets, where the data batch consists of multiple image
patches during training phase. One could observe that the range
of counts in patches is large and the low-density regions are
overwhelmingly dominant. In consequence, such highly imbalance
training data results in over/under-estimation in counting number.
As shown in Figure 2(a), one could observe that MCNN [9]
overestimates on sparse images while underestimating on dense
images.

Based on the above observation, we propose solving the under-
/over-estimation problem by introducing locality-aware concept.
To be specific, we propose a simple but effective batch construc-
tion method termed Locality-Aware Batch Construction (LA-
Batch) which serves as an alternative to the commonly used
random batch construction with better generalization abilities. In
brief, to jointly consider the intrinsic data structure and their
ground truth, we apply local-sensitive hashing to partition the
training data into different bins from which the training batches
are randomly sampled . Furthermore, we propose a locality-aware
data augmentation approach which employs upsampling or down-
sampling to augment the training data based on the loss. Different
from most existing works with delicate design of architecture, the
proposed method is readily pluggable into any CNNs architecture
and amenable to the end-to-end training. As shown in Figure 2(b),
MCNN equipped with the proposed LA-Batch is able to deliver a
better optimization approach to alleviate the overfitting problem.
The contribution of this paper could be summarized as follows:

• A data-dependent batch construction method (LA-Batch)
is proposed, which not only samples the candidate exam-
ples to favor diverse instances with high representation
ability, but also adaptively augments the training data
based on the training loss.

• The performance enhancement of LA-Batch enjoys com-
putational efficiency. Like random batch SGD, our method
with gradient computation (backpropagation) is also scal-
able because it only uses a small subset of all candidates.
Moreover, the proposed LA-Batch is easy to implement
without any sophisticated architecture design.

• LA-Batch is independent from any backbone network
architectures and could serve as a complementary piece
to recent improvements in crowd counting and adversar-
ial defense. Extensive experiments on different state-of-
the-art architectures and a customized one validates this
advantage.

2 RELATED WORK

Counting by regression has been extensively adopted in crowd
counting thanks to their remarkable performances. To further en-
joy better generalization ability in scenarios with different crowd
densities, a large number of deep learning methods have been
proposed, which are briefly reviewed in this section.

Context-aware CNNs Wang et al. [10] proposed to directly
regress the total people number by adopting AlexNet [18] to
extract features. To further improve the generalization ability,
Fu et al. [19] proposed classifying the image into different density
levels. In addition, a series of methods were proposed to consider
a variety of local contexts such as density map [8], locality-aware
features [20], [21], and Contextual Pyramid CNNs [22]. More
recently, some methods are proposed to focus on producing a
high-quality density map. For example, dilated kernels are used to
deliver larger reception fields and to replace pooling operations in
[23], [24]. Cao et al. [25] proposed a so-called pattern consistency
loss to exploit the local correlation of density maps. There are also
some methods are proposed to refine the density maps [26], [27],
[28].

Scale-aware CNNs Different from Context-aware CNNs, some
works proposed employing different multi-scale CNN architec-
tures to achieve robust performance across different scenes with
various perspectives, crowd densities, and scale variations. For
example, Boominathan et al. [13] proposed a convolutional neural
network consisting of both deep and shallow model for crowd
counting. Similarly, Zhang et al. [9] proposed a multi-column
CNN (MCNN) architecture, where the receptive fields of three
different sizes are adopted in each individual CNN. However,
these models are with a lot of training parameters which require
exhaustive model pretraining and finetuning. Similar to MCNN,
“Hydra CNN” [14] was proposed to estimate object densities in
different crowded scenarios in a scale-aware manner. To select
the optimal CNN regressor for a particular input patch, switching
and growing mechanism are introduced in [15] and [29] to equip
different regressors with different receptive fields, respectively.
However, all these aforementioned methods inevitably increase
training complexity caused by the sophisticated architectures.
The deeply learned features with different receptive fields were
encapsulated into a compact single vector representation amenable
to efficient and accurate counting by the way of “Vector of Locally
Aggregated Descriptors” (VLAD) [30]. Shen et al. [31] applied
cross-scale consistency constraints to adversarially train a deep
regression model.

Multi-task CNNs Based on the observation that a single predictor
is insufficient to achieving a robust crowd counting, Kumagai et
al. [32] proposed Mixture of CNNs (MoCNN) which employs
a set of expert CNNs and a gating CNN to adaptively select
the appropriate expert CNN for each input image. Walach et
al. [33] deployed CNNs in a boosting process where the training
is done in stages. DecideNet [11] proposed combining detection
and regression together to learn a density map, which has shown
a better generalization. Decorrelated ConvNet (D-ConvNet) [16],
[34] extended the negative correlation learning into a deep neural
network so that a pool of decorrelated deep regressors are learned
simultaneously. Idrees et al. [35] proposed a composition loss
that simultaneously solves the problems of counting, density map
estimation and localization of people in a given dense crowd
image.
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Learning with Additional Data Wang et al. [10] augmented
training data with additional negative samples whose ground truth
count is set to zero. Liu et al. [36] proposed leveraging available
unlabeled crowd imagery for crowd counting in a learning-to-rank
framework. Wang et al.[37] used synthetic data to augment the
crowd counting model via domain adaptation. In contrast with
these methods, our data augmentation method is able to create
new loss-adaptive training patches from the original data itself
instead of borrowing other data, thus enjoying a narrower data
distribution gap.

Different from most existing crowd counting methods which
focus on the design of network architectures, this work contributes
to the learning paradigm and the proposed method is independent
from the network architecture. In other words, our method enjoys
compatibility and generalization to existing deep crowd counting
approaches.

3 LOCALITY-AWARE BATCH CONSTRUCTION FOR
CROWD COUNTING

As discussed in Introduction, extremely dense crowd image la-
beling is quite labor-intensive since each image often contains
hundreds even thousands of persons, which makes difficulty in
precise annotation. Such a phenomenon will make the dataset
overwhelmed by less crowded images and lead to poor gener-
alization in testing phase.

To construct locality-aware batch for training deep neural
networks, we propose first partition the training data by hashing
followed by loss-adaptive sampling. These two steps are elabo-
rated in following sections.

3.1 Locality-Aware Data Partition

It is well known that deep learning is usually optimized by
SGD where randomly selected samples are constructed as batches
in each iteration. Compared to full gradient optimization, the
stochastic batch optimization has shown advantages in handling
large-scale problem since the cost of computation at each step is
only proportional to the batch size. When encountering imbalance
data, however, the stochastic batch is always dominated with data
coming from a small subset in the target space, which may lead
to a biased prediction. To simultaneously enjoy the advantages
of stochastic optimization and full gradient optimization, we
propose using a subset of data points as the “surrogates” of the
whole dataset at each iteration. Unlike the stochastic optimization
methods using random data points at each step, we pick up
surrogate data points by taking the internal structure of data into
consideration to construct the batch. The process of Locality-
Aware Data Partition (LADP) is summarized in Algorithm 1.

We first partition the training data based on the output value
(see line 1 in Algorithm 1). Specifically, let G be the number
of groups, then each group is with the width of dymax/Ge,
where ymax denotes the maximum value of the people counts. In
consequence, the estimation people numbers in groups are sorted
in ascending order and constrained into [0, ymax]. In addition,
we utilize the internal structure of data for further data partition
(see lines 2–3 in Algorithm 1). For each bin, we propose to use
a low cost hashing method termed Locality-Sensitive Hashing
(LSH) [38] to map training image patches into smaller bins such

that similar image patches collapse to the same bin. In details, the
hash code h(i) for each training image patch xi ∈ RL×W×3

h(i)← 1

3

3∑
c=1

wc
>vec(xi(:, :, c)), (1)

is calculated by for each data, where L,W denotes the image
length and width, vec denotes the vectorization operator. The
projection vector wc ∈ RLW is randomly generated by Gaussian
distribution for each channel c 1. We evenly divide the group into
a set of B sub-bins according to their hash values. One surrogate
patch is selected from each bin as the approximation of data points
collide in the same bin.

The overall loss ˜̀ is obtained by summing the losses of the
surrogate data points

∑C
i `(xi, yi), where C denotes the batch

size. Then the weights of the deep model for crowd counting
are updated based on the loss function ˜̀ with the standard back-
propagation algorithm.

Algorithm 1 LSH for Data Partition

INPUT: {(xi, yi)|ni=1} with x ∈ RL×W×3 , B, G.
1: Group the data into G group with width dymax/Ge
2: Generate wc ∈ RLW for each channel, whose element is

drawn from Gaussian Distribution.
3: Set hash value h(i)← 1

3

∑3
c=1 wc

>vec(xi(:, :, c))
4: We evenly divide the group into a set of B bins according to

their hash values.
5: for t = 0, 1, 2, · · · , do
6: Sample one data point from each bin, compute the corre-

sponding `(xi, yi) of the sampled data.
7: Compute ˜̀←

∑C
i `(xi, yi)

8: Update gradient and model parameters.
9: end for

OUTPUT: Updated network parameters.

3.1.1 Theoretical Insight of LSH based Sampling
In this subsection, we give the theoretical analysis on LSH on
error bound inspired by p-stable distribution.

We first give the definition of p-stable distribution (also termed
Lévy alpha-stable distribution) as follows:

Definition 1. [39] A distribution D over R is called p-stable,
if there exists p ≥ 0 such that for any n real numbers
a1, a2, · · · , an and i.i.d. variables x1,x2, · · · ,xn with dis-
tribution D, the random variable

∑
i aixi has the same distri-

bution as the variable (
∑
i |ai|p)(1/p)x, where x is a random

variable with distribution D.

Specifically, a Gaussian distribution DG, defined by the den-
sity function g(x) = 1√

2π
e−x

2

dx is 2-stable [40].
For any p-stable distribution, the probability of any two data

points collide in the same bin enjoys the following property:

Lemma 1 (Collision Probability). For any two data points
{xi, yi}, {xj , yj}, let c = ‖xi − xj‖p, p(u) denote the the
probability (as a function of u) that xi,xj collide for a hash
function h(·), fp(t) be the probability distribution function
of the absolute value of the p-stable distribution, and bin
width r ∈ R, then the probability of two data points under

1. For gray images, we have h(i)← wc
>vec(xi(:, :)).

Authorized licensed use limited to: SICHUAN UNIVERSITY. Downloaded on November 26,2021 at 03:54:50 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2021.3056518, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

the mapping of the p-stable distribution collide in the same
bin is

p(u) = Pr[h(i) = h(j)] =

∫ r

0

1

c
fp(

t

c
)(1− t

r
)dt, (2)

A direct result for Gaussian distribution following the previous
lemma is expressed as:

Lemma 2 (Locality Aware). The probability of any two data
points with euclidean distance c in original space under the
mapping of the Gaussian distribution to collide in the same
bin ( bin width r) is bounded by the Gaussian integral

2√
π

∫ r√
2c

0 e−x
2

dx

Proof. The probability distribution function of the absolute value
of the Gaussian distribution (folded normal distribution [41]), i.e.,
fp(x), is defined as f2(x) = 2√

2π
e
−x2

2 [42].
By plugging f2(x) into 2, we have

Pr[h(i) = h(j)] =

∫ r

0

1

c

2√
2π
e−( t

c )2/2(1− t

r
)dt (3)

=
2√
π

∫ r

0
e−( t

c )2/2d
t√
2c
− 1√

2cr

∫ r

0
e−( t

c )2/2tdt

≤ 2√
π

∫ r

0
e−( t

c )2/2d
t√
2c

=
2√
π

∫ 2√
2c

0
e−x

2

dx

�

Remark 1. LSH is locality-aware in context of counting, since 1)
the patches are sampled from different locations in the original
image that are used in constructing bins; 2) the geometric
property remains after hashing. Specifically, when the two
original datapoints distance c→ 0, the probability of collision
is almost 1, which means when two data points are close to
each other, they will collide in the same bin with probability of
1. The Gaussian integral bound gives us the intuition the nearer
two points in original space, they will be hashed into the same
with higher probability, which explains why our proposed
LADP is locality-aware. Furthermore, r is one of the key factor
to decide to whether two data points collide in the same bin.
If c � r, the two data points are unlikely to be hashed into
same bin. Different from other sampling strategies such as
random sampling or balanced sampling that only output space
y is considered, our proposed LADP also incorporates intrinsic
structure of input space for batch construction. This essentially
lessens the difficulty of the optimization, which is verified by
our following experiments.

3.2 Locality-Aware Data Augmentation
As shown in Figure 1, the imbalance and complex data distribution
has been one of major factors to hinder the performance improve-
ment of crowd counting. To solve this problem, we further propose
a Loss-Aware Data Augmentation (LADA) approach to conduct
data augmentation so that the diversity of training data could be
increased and the data imbalance issue is alleviated. Furthermore,
most state-of-the-art deep architectures are trained with stochastic
batch mode, which means that the training batch is dominated by
data coming from a small subset in target space as illustrated in
Figure 1. As a result, the model prediction favors the majority

of training outputs. To alleviate such a training bias, we propose
zoom-in/-out strategy on each individual training patch for data
augmentation. For the over-estimation cases, we aim at increasing
training data with small outputs, i.e., less crowded image patches.
For the under-estimate cases, we aim at generating training data
with large outputs, i.e., more crowded image patches. Specifically,
we first calculate the residual et of data x for t-th epoch,

et = ỹt − y, (4)

where ỹt is the prediction at the t-th epoch and y refers to the
ground truth of people counting. The scale factor αt is defined as
follows,

αt = et/y. (5)

Note that, αt is normalized according to the ground truth
value. We further define the zoom rate function g(αt) as follows,

rt = g(αt) = 1 + λ(
1

1 + exp γαt
− 0.5) (6)

where the parameters 0 < λ < 2 and γ > 0 are used to
control the scale. The function is visually illustrated in Figure
3. From the result, one could observe when αt > 0 (i.e., the
residual `t > 0), the zoom rate rt < 1. In other words, if
the prediction is overestimated, zoom-in strategy is adopted to
generate less crowded image patches. When αt < 0 (i.e., the
residual `t < 0), the zoom rate rt > 1. In other words, if
the prediction is overestimated, the zoom-out strategy is used to
generate more crowded image patches.

With the above settings and definitions, a new zoomed image
xt+1 at the t-th epoch will be generated as below:

-0.6 -0.4 -0.2 0.2 0.4 0.6 α

0.7

0.8

0.9

1.1

1.2

1.3
r

Fig. 3. Zooming function rt = g(αt), where λ = 2/3 and γ = 10.

xt+1 = f(xt, rt), (7)

where f denotes the new image generation process with the zoom
rate rt. The procedure is illustrated in Figure 4. With the above
generation, one could obtain a lot of new data to alleviate the
aforementioned data imbalance issue.

4 EXPERIMENTS

We evaluate our proposed method on five different datasets of
which four are publicly accessed. Different from most existing
DNN based methods, the proposed approach is simple and could
be regarded as an addon which is complementary and able to
improve most existing architectures as verified in the following
experiments.

The Network Architecture To demonstrate the effectiveness of
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Fig. 4. Locality-Aware Data Augmentation

the proposed LA-Batch, we simply employ a pre-trained VGG-
16 network with small modifications. More specifically, the stride
of the fourth max-pool layer is set to 1, and the fifth pooling
layer was removed. As a result, a much larger feature map with
richer information is given. To handle the receptive-field mismatch
caused by the removal of stride in the fourth max-pool layer,
we duplicate the receptive field of convolutional layers after the
fourth max-pool layer by using the technique of holes introduced
in [43]. Furthermore, we apply group convolution on the output
feature map to obtain the density map. For those datasets without
providing density map, we just follow the protocol in [9] to
compute the ground-truth density map for regression. In order
to show the versatility of the proposed method, we also apply
LA-Batch to the recently proposed CRSNet [23].

Our method is implemented in Tensorflow on a workstation
with a TitanX GPU. The Adam optimizer is used in the proposed
network with a mini-batch size of 60. We use an exponential
learning rate decay with a initial learning rate of 0.0001. The
learning rate decays every 5 epochs with a decay rate of 0.95.
For all the dataset, we also report the results from our baseline
method in which both LADP and LADA are disabled. We name it
as “Base Model”.

There are two parameters in the LADP, i.e., the number
of group G and the number of bin B. We empirical find that
satisfactory performance is obtained with G = 6, B = 10. In
LADA, there are also two parameters in the zooming function to
control scale of zooming, i.e., λ and γ. We empirical find that
λ = 2/3, γ = 10 could give satisfactory performance.

The Evaluation Metric The widely used mean absolute error
(MAE) and the root mean squared error (RMSE) are adopted to
evaluate the performance of all the tested approaches. The MAE
and RMSE are defined as follows:

MAE =
1

N

N∑
i=1

|(yi − ỹi)|,

RMSE =

√√√√ 1

N

N∑
i=1

|yi − ỹi|2,

(8)

where N denotes the total number of testing images, yi and ỹi
are the ground truth and the estimated value for the i-th image,
respectively. The averaged results of our methods are reported
over five runs with different random projection vectors in LADP.

The Mall Dataset The Mall dataset [44] contains 2000 images

collected from a shopping mall. Each image is with a fixed
resolution of 640× 480. We follow the predefined settings to use
the first 800 frames as the training set and the rest 1200 frames for
testing. The validation set contains 100 images randomly selected
from the training set. The evaluation results are exhibited in Table
1.

From the results, we observe that LA-Batch is able to beat
most of state-of-the-art methods even though only a very simple
architecture is used. Note that, our method performs the best
even though it neither uses the ensemble scheme employed by
the “MoCNN” and “Boosting CNN” methods, nor couples with
detection networks like [11].

TABLE 1
Crowd Counting Performance Comparison on the Mall dataset.

Method MAE RMSE
Count Forest [45] 4.40 2.40
Exemplary Density [46] 1.82 2.74
Boosting CNN [33] 2.01 -
MoCNN [32] 2.75 13.40
Weighted VLAD [47] 2.41 9.12
DecideNet [11] 1.52 1.90
Base Model 1.87 2.85
Base +LA-Batch 1.60± 0.4 1.95± 0.5
CSRNet [23] 1.70 2.03
CSRNet +LA-Batch 1.34± 0.2 1.60± 0.3

The Shanghaitech Dataset The Shanghaitech dataset [9] is a
large-scale crowd counting dataset which consists of two parts.
To be exact, Part A includes 482 images which are randomly
captured from the Internet, and Part B includes 716 images that are
taken from the busy streets in Shanghai. Each part is divided into
training and testing subset. The crowd density significantly varies
among the subsets, making difficulty in estimating the number
of pedestrians. We compare our method with five latest deep
regression methods on this dataset. All the detailed results for
the methods are illustrated in Table 2. In the same way, one could
see that our proposed method is superior to all the baselines. Note
that compared to Part B, our performance improvement on part A
is much smaller since the simple base model may be insufficient
to model the complex and diverse images in part A. Nevertheless,
our proposed method with a simple base architecture is still able
to deliver better results compared to those state of the arts.

TABLE 2
Crowd Counting Performance Comparison on the ShanghaiTech

dataset.

Part A Part B
Method MAE RMSE MAE RMSE
Zhang et al.. [8] 181.8 277.7 32.0 49.8
MCNN [9] 110.2 173.2 26.4 41.3
Switch-CNN [48] 90.4 135.0 21.6 33.4
D-ConvNet [16] 73.5 112.3 18.7 26.0
DecideNet [11] - - 21.53 31.98
ACSCP [31] 75.7 102.7 17.2 27.4
SANet [25] 67.0 104.5 8.4 13.6
IG-CNN [29] 72.5 118.2 13.6 21.1
Base Model 105.4 140.5 22.7 37.8
Base + LA-Batch 74.2± 1.2 114.0± 4.0 14.8± 0.4 22.5± 1.4
CSRNet [23] 68.2 115.0 10.6 16.0
CSRNet + LA-Batch 65.8± 0.9 103.6± 2.7 8.6± 0.4 14.0± 0.6

The WorldExpo dataset The WorldExpo’10 dataset [8] includes
1132 annotated video sequences collected from the World Expo
2010 event. The training set consists of 3380 frames and the
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rests are used for testing. Since the Region Of Interest (ROI) are
provided for five test scenes (S1–S5), we follow the evaluation
protocol used in [8] which only counts the persons within the
ROI area. We also employ the MAE as suggested by [8] for
evaluation. The results of our proposed approach on all tested
scenes and the comparisons to other methods are summarized in
Table 3. From the results, one could find that the proposed method
is competitive with the evaluated well-established baselines even
though our method does not utilize the perspective information.
Furthermore, another advantage of our method over them is that
our method performs more stable.

The UCF CC 50 Dataset The UCF CC 50 dataset [49] contains
50 images that are randomly collected from the Internet. Different
from the above datasets, this dataset consists of many extremely
dense crowd images with the average of 1280 heads per image.
The dataset is challenging due to large variations in head number
among different images from a small number of training images.
The results of state-of-the-art performances are summarized in
Table 4. One could observe that introducing switch mechanism
and ensemble learning into CNNs is able to significantly reduce
estimation error for such dense situations. Note that this dataset
only consists of 50 images, which is much smaller than other used
benchmark datasets. Nevertheless, with our data augmentation, our
method is able to advance a new state-of-the-art performance with
a simple architecture.

The UCF-QNRF Dataset The UCF-QNRF dataset [17] consists
of 1,535 jpeg images with 1,251,642 people in them. The training
set is made of 1,201 of these images. Unlike in ShanghaiTech,
there are dramatic variations both in crowd density and image res-
olution. We summarize the results of various methods in Table 5.
In this dataset, our proposed method shows inferior results com-
pared to Bayesian+ [28] and SFCN+ [37]. Nevertheless, we want
to point out that the backbones used in their methods are much
better than ours. For example, CSRNet only achieves MAE of
148, while backbone models in Bayesian+ and SFCN+ can achieve
MAE of 106.8 and 114.8, respectively. In addition, SFCN+ utilizes
additional simulation dataset to boost up performance.

5 ABLATION STUDY AND ANALYSIS

In this section, we conduct ablation study to further under stand
the merits of LA-Batch from various aspects. We choose Shang-
haiTech B dataset as our default studying dataset for analysis.

Comparing with Other Optimization Alternatives Indeed we
are not the first to study the data imbalance problem and existing
solutions can be found in several other tasks such as object
recognition, object detection, semantic segmentation and so on.
Most existing learning algorithms produce inductive bias (learning
bias) towards the frequent (majority) classes if training data
are not balanced, resulting in poor minority class recognition
performance. A simple approach to alleviating data imbalance in
model learning is to re-sample the training data (a pre-process),
e.g. by offline data augmentation [52], balanced sampling [52].
To further demonstrate the effectiveness of LA-Batch, we further
compared our proposed method with more batch construction
strategies proposed for other tasks: 1) Random sampling (all the
data is randomly sampled to construct the training batches.) 2)
Offline data augmentation (we offline build an uniform distributed
training set from scaled image patches and then apply random
sampling to train a model.) 3) Balanced Sampling (We group the

training data based on the output value y). 4) Adaptive samplingwe
adaptively sample the data samples in each bash according to
their loss without zoom-in and zoom-out strategy. To our best
knowledge, the fourth baseline has not been systematically studied
in existing literature. We also include the proposed LADA and
LADP strategy for comparison. The averaged results over five
runs on the ShanghaiTech B are summarized in Table 6.

From the results, we observe that the following phenomenon:
(1) All the strategies could improve the performance over random
sampling. (2) Offline data augmentation, which is similar to
LADA in an offline manner, performs worse than LADA. (3)
Balanced sampling, which resembles LADP without hashing in an
online manner, is outperformed by LADP. (4) Adaptive sampling,
which is similar to LADA without online adaptive augmentation,
leads to inferior results than LADA. (4) LA-Batch, which inte-
grates LADA and LADP, performs the best. (5) Our proposed
methods is generic and could be readily pluggable into different
CNN backbones.
The Effect of Locality-Aware Data Partition In this experiment,
we further show how the Locality-Aware Data Partition (LADP)
affects the deep regression optimization in terms of MAE. The
performance is evaluated by averaging MAE of training patches
in each iteration. We report the comparison of training with and
without LADP on the training data in Figure 5(a). From the result,
we observe that by deploying LADP, the model training process is
more stable than the fully random batch construction. In addition,
training with LADP is able to achieve lower MAE for training
patches.

In LADP, Locality-sensitive hashing (LSH) is used which
considers the original geometric property when conduct the data
partition. Lemma 2 also proves that LSH is able to distribute the
similar data in the same bin and dissimilar data in different bins
with high possibility. To further reveal this locality-aware benefits
in optimization, we show experimental results in Figure 5(b) by
comparing LSH with random hashing regarding the number of
samples (indicated by the bars) and mean pairwise log distance
(represented by the curves) for each bin. We observe that 1)
In contrast with LSH, random hashing almost evenly distributes
the data; 2) The average pairwise distance in each group is
much smaller for LSH than that of the random hashing which
means LSH is able to group similar patches together. All these
experimental findings could support the claims in Lemma 2.

To further understanding how LADP works, we give examples
of training batch from ShanghaiTech B in Figure 6. The first
row and second row show the patches in a training batch with
LADP and without LADP respectively. We observe that the batch
constructed with LADP are in better diversity than that without
LADP. Specifically, the second row demonstrates that most of
patches are from floor background regions without help of LADP.
In contrast, LADP is able to create training batches consisting
of more diverse patches of different local regions and people
densities.
The Effect of Locality-Aware Data Augmentation In this exper-
iment, we further analyze the Locality-Aware Data Augmentation
(LADA) from the perspective of training patch distribution. From
Figure 7, one could observe that LADA makes the distribution
more focus on regions with larger errors (e.g., patches with less
than 20 and more than 70 people 2) by generating more image
patches on the training data. Note that LADA is a loss-driven

2. See Fig. 2 in introduction.
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TABLE 3
Crowd Counting Performance Comparison on the Expo dataset.

Method S1 S2 S3 S4 S5 Ave MAE
Zhang et al.. [8] 2.00 29.50 9.70 9.30 3.10 12.90
MCNN [9] 3.40 20.60 12.90 13.00 8.10 11.60
Switch-CNN [48] 4.40 15.70 10.00 11.00 5.90 9.40
D-ConvNet [16] 1.9 12.1 20.7 8.3 2.6 9.1
DecideNet [11] 2.00 13.14 8.90 17.40 4.75 9.23
ACSCP [31] 2.8 14.05 9.6 8.1 2.9 7.5
SANet [25] 2.6 13.2 9.0 13.3 3.0 8.2
ic-CNN [27] 17.0 12.3 9.2 8.1 4.7 10.3
DRSAN [26] 2.6 11.8 10.3 10.4 3.7 7.76
Base Model 3.8 15.6 18.2 14.3 6.9 11.8
Base+ LA-Batch 3.1± 0.2 12.0± 0.5 16.1± 0.7 10.8± 0.4 2.4± 0.1 8.9± 0.4
CSRNet [23] 2.9 11.5 8.6 16.6 3.4 8.6
CSRNet+LA-Batch 2.4± 0.1 11.0± 0.3 8.1± 0.5 13.5± 0.2 2.7± 0.2 7.5± 0.3
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Fig. 5. Analysis of Locality-Aware Data Partition. Figure 5(a) shows
training curve comparison between with and without LADP. The bars
in Figure 5(b) shows the statistics of the bin partition and the curve
represents the mean pairwise log distance in each bin of LSH and
random hashing.

Fig. 6. Examples of patches in a training batch: The first row and second
row show the patches in a training batch with LADP and without LADP
respectively. With LADP, the image patches are more diverse in both the
number of people and background.

TABLE 4
Crowd Counting Performance Comparison on the UCF CC 50

dataset.

Method MAE RMSE
Density learning [1] 493.4 487.1
FHSc+MRF [49] 419.5 487.1
Zhang et al.. [8] 467.0 498.5
CrowdNet [13] 452.5 -
Hydra2s [14] 333.73 425.3
MCNN [9] 377.6 509.1
D-ConvNet [16] 288.4 404.7
Switch-CNN [48] 318.1 439.2
ACSCP [31] 291.0 404.6
IG-CNN [29] 291.4 349.4
DRSAN [26] 219.2 250.2
ic-CNN [27] 260.9 365.5
SANet [25] 258.4 334.9
Bayesian+ [28] 229.3 308.2
SFCN+ [37] 214.2 318.2
Base Model 330.2 460.3
Base +LA-Batch [23] 270.5± 3.2 410.2± 8.5
CSRNet [23] 221.6 304.9
CSRNet+LA-Batch 203.0± 2.0 230.6± 6.4

TABLE 5
Crowd Counting Performance Comparison on the UCF-QNRF dataset.

Method MAE RMSE
MCNN [9] 227 462
Switch-CNN [48] 228 445
CMTL [50] 252 514
CL [51] 132 191
Bayesian+ [28] 88.7 154.8
SFCN+ [37] 102.0 171.4
Base Model 163 328
Base +LA-Batch 137± 1.8 230± 6.2
CSRNet [23] 148 313
CSRNet +LA-Batch 113± 1.9 210± 7.5

data augmentation approach and it does not force the training data
distribution to be an exactly uniform distribution. In addition, it
could smartly alleviate the distribution bias in the training process.

Parameter Analysis The proposed method has four tunable
parameters : the number of groupsG and binsB in LADP, and two
parameters in the zooming function to control scale of zooming,
i.e., λ and γ in LADA. In this section, we conduct a series
of experiments to study the sensitivity issues of the parameters.
The default setting for parameters is G = 6, B = 10, λ =
2/3, γ = 10 and we study the sensitivity of LA-Batch with G ∈
[1, 4, 6, 12], B ∈ [1, 5, 10, 20], λ ∈ [1/10, 1/3, 2/3, 4/3], γ ∈
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TABLE 6
Compare LA-Batch with Other Optimization Alternatives on Different

Backbones.

Base Model CSRNet
Method MAE RMSE MAE RMSE
Random Sampling 22.7 37.8 10.6 16.0
Offline Data Augmentation 18.4 26.5 10.1 15.2
Balanced Sampling 19.5 29.2 10.3 15.8
Adaptive Sampling 17.5 25.1 9.7 14.9
LADA 16.8 25.3 9.4 14.5
LADP 18.0± 0.9 27.2± 1.8 10.2± 0.7 15.3± 0.8
LA-Batch 14.8± 0.4 22.5 ± 1.4 8.6± 0.4 14.0± 0.6
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Fig. 7. Training Distribution Comparison between w/o. and w. LADA.

[1, 5, 10, 20]. Results are summarized in Table 7 . We empirical
find that the performance is less sensitive for B, λ, γ than G.

TABLE 7
Parameter Analysis on ShanghaiTech B data.

G MAE/RMSE B MAE/RMSE
1 14.26/17.57 1 9.97/18.67
4 10.35/16.25 5 10.02/21.23
6 8.92/13.71 10 8.92/13.71
12 9.19/14.91 20 9.68/17.92

λ MAE/RMSE γ MAE/RMSE
1/10 9.78/17.77 1 9.59/15.52
1/3 9.96/18.01 5 9.50/15.05
2/3 8.92/13.71 10 8.92/13.71
4/3 9.70/16.55 20 9.85/19.97

Effect of Batch Size and Patch Size. In this experiment, we
analyze the effect of batch size and patch size on the ShanghaiTech
Part B dataset. The default setting of batch size is 60 and the batch
size varies in the range of {6, 30, 60, 90, 120}. The experiment
results is shown in Figure 5. The default patch size is 180× 296.
In the experiment of the patch size analysis, we treat the default
width as the baseline marked by 1.0 and only vary width in the
range of {1/2, 2/3, 1, 4/3, 3/2} by keeping the original aspect
ratio of images. The experiment results are shown in Figure 5. We
empirically found that the proposed methods are not very sensitive
to those hyper-parameter settings. Interestingly, we could also see
that the proposed methods show better robustness to the batch size
when compared with the patch size.

Time Efficiency. The proposed methods usually yield improved
performance with negligible computational over-heads. To demon-
strate this, we report the training time per epoch for different
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Fig. 8. Effect of Batch and Patch size.

methods in Table 8. From the results, we observe that the proposed
method only brings 6% extra training time.

TABLE 8
Training Time of Different Methods per Epoch.

Methods CSRNet [23] +LADP +LADA +LA-Batch
Time 237.92s 242.42s 247.66s 252.85s

6 APPLICATION TO ADVERSARIAL DEFENSE

Data imbalance problem arises in many machine learning tasks
where the proposed LA-Batch could be valuable. To show its
versatility, we apply LA-Batch to adversarial defense. Neural
networks have been shown to be vulnerable to adversarial pertur-
bations. Specifically, adversarial perturbations are imperceptible
and can cause a significant drop in the classification accuracy. The
level of distortion is measured by the margin between the original
and the perturbed input. Formally, the margin of a data point is de-
fined as the minimum distance that a data point has to be perturbed
to change the classifier’s prediction. Thus, the larger the margin
is, the more robust the classifier is w.r.t. this input. Adversarial
training, which essentially minimizes the maximum loss within a
fixed perturbation ε on the training data using projected gradient
descent (PGD)/Fast Gradient Sign Method (FGSM) [53], is one of
the most popular methods for adversarial defense. Unfortunately,
a fixed perturbations only cater the majority of training samples
by sacrificing the contribution of minorities. From Figure 9, we
observe that margin distribution of samples is highly imbalanced,
which indicates that adversarial training [53] with the commonly-
used setting of fixed margins yields small margins for the the
majority of data points after convergence. This is not optimal as
in practice those data with small margins could be easily attacked
by existing adversarial attack methods.

To address the same data imbalance challenge, we adopt
the same locality-aware concept and propose a locality-aware
adversarial training (adversarial training + LA-Batch) based on
the adversarial training[53]. The algorithm is summarized in the
appendix. It first calculates the margin εi for data point (xi, yi)
with given classification model FΘ(·) that is parametrized by Θ.
Then we apply LADP to group and hash training data {(xi, yi)}
according to εi3. After constructing the training batch with LADP,
we follow [53] and use PGD to generate the the corresponding
adversarial examples {xadvi }. Then one step gradient update on

3. Note that here LADP is applied based on the value of εi rather than yi,
which is different from that usage of LADP in crowd counting.
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Fig. 9. Highly Imbalanced Margins in Training Data for Adversarial
Training on Cifar10: The majority of samples congest on the decision
boundary with small margins after adversarial training.

Θ is performed with training set (xi, yi) and (xadvi , yi). With
updated Θ, we conduct LADA to generate new adaptive margin
εi for each datapoint.

More specifically, we first define the confidence vector of K-
class classifier, i.e, z = (z1, z2, · · · , zK) = FΘ(x). Then the
predicted label of x is given by ŷ = arg maxj zj . The scale factor
α is by α = zy − maxj 6=y(zj) − δ, where zy is the confidence
score of label y and δ is the predefined confidence threshold 4.
The zoom function remains as the same in crowd counting, r =
g(α) = 1 + λ( 1

1+exp γα − 0.5). Finally, the margin is adjusted
with the zoom rate, i.e., ε∗ = rε. With new margin ε∗, we are able
to generate new adversarial examples xadv . Detailed procedures
are summarized in the Algorithm 2.

We follow the same experimental protocol in [53] and use
the ResNet as the backbone classifier. We compare locality-aware
adversarial training with different adversarial training algorithms
on the STL10 [54] and Cifar10 datasets which are commonly used
in existing works.

As for the evaluation metric on the robustness, we also adopt
the widely used accuracy over the adversarial examples generated
by certain attack methods [55]. For a certain attack methodAε(x)
with the perturbation budget ε, the robustness is evaluated as

R(FΘ, Aε) =
1

M

M∑
i=1

1 [FΘ(Aε(xi)) = yi] . (9)

The above equation calculates the accuracy of a given model
FΘ(x) on the adversarial examples crafted by a given adversarial
attack method Aε(x) with perturbation budget ε. The robustness
are evaluated under FGSM attack with ε = 8/255, and PGD
attack with ε = 16/255 [53].

We first report the results of the proposed method on STL10
dataset in Table 9. We compare our proposed method with three
recent popular defense baselines, Pixel Deflection [56], Random
Padding Resizing [57], Adversarial Training [53]. Among these
baselines, adversarial training performs the best in terms of robust-
ness Our results clearly show the superiority of the locality-aware
strategy for this task. In order to further understand the merits of
the proposed method, we investigate the individual contribution
of LADP and LADA in Table 9. From the results, we observe
that both LADA and LADP are effective in improving the final
performance and those improvement are complementary.

After exploring the LA-Batch on the STL10 dataset and estab-
lishing the effectiveness of both LADA and LADP, we summarize

4. Different from α defined in crowd counting where a zero threshold is
implicitly used, here we used a predefined threshold to further penalize those
datapoints that commit mistakes or near the decision boundary.

Algorithm 2 Locality-Aware Adversarial Training
Require: Training set {(xi, yi)}; a model FΘ(·) with loss func-

tion ∇x`(FΘ(x), y).
1: Randomly initialize the parameter Θ of model FΘ(·).
2: εi = CALCULATE MARGIN(xi, yi, FΘ(·))
3: Apply LADP to group and Hash {(xi, yi)} according to εi.
4: repeat
5: xadvi = PGD(xi, yi, εi, FΘ(·))
6: Perform one step gradient update on Θ with training set

(xi, yi) and (xadvi , yi).
7: εi = LADA(xadvi , yi, εi, FΘ(·))
8: until meet training stopping criterion

Ensure: The trained model C(Θ, x).

9: function CALCULATE MARGIN(x, y, FΘ(·))
10: ε = 0
11: ĝ = sign(∇x`(FΘ(x), y))
12: repeat
13: increase ε
14: until C(Θ, x+ εĝ) 6= y return ε∗
15: end function
16: function PGD(x, y, ε, FΘ(·))
17: Given Iterations T , step size β
18: xadv0 = x
19: for t = 1 to T − 1 do
20: xadvt = xadvt−1 + βsign(∇x`(FΘ(xadvt−1), y))
21: xadvt = clamp(xadvt , ε)
22: end for
23: return xadvT−1

24: end function
25: function LADA(xadv, y, ε, FΘ(·))
26: Given λ, γ, and confidence threshold δ
27: Confidence z = FΘ(xadv)
28: α = zy −maxj 6=y(zj)− δ
29: r = 1 + λ( 1

1+exp γα − 0.5)
30: ε∗ = rε return ε∗
31: end function

TABLE 9
Robustness Evaluation under white-box attacks on STL10 dataset. The

white-box attacks are end-to-end FGSM attack with ε = 8/255 and
PGD attack with ε = 16/255

Accuracy Robustness
Defense Method Clean Image FGSM-8/255 PGD-16/255
Pixel Deflection [56] 0.656 0.211 0.052
Random Padding Resizing [57] 0.706 0.410 0.075
Adversarial Training [53] 0.631 0.445 0.515
Adversarial Training + LADA 0.650 0.452 0.535
Adversarial Training + LADP 0.633 ± 0.004 0.455± 0.017 0.520± 0.003
Adversarial Training + LA-Batch 0.661 ± 0.003 0.466± 0.007 0.549± 0.001

the results obtained by our method and compare it with existing
methods on Cifar10 dataset in Table 10. Results show that LA-
Batch improves adversarial training, as expected.

To further understand the effectiveness of LA-Batch to ad-
versarial training, we also show the margin distribution before
and after training on STL10 in Figure 10. Our proposed method
enlarges margins of all training points, while original adversarial
training might fail to enlarge margins for points with initial
margins smaller than the predefined margin ε. The similar obser-
vations could also be found in the testing data, which leads better
performances of locality-aware adversarial training.
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TABLE 10
Robustness Evaluation under white-box attacks on Cifar10 dataset.

The white-box attacks are end-to-end FGSM attack with ε = 8/255 and
PGD attack with ε = 16/255

Accuracy Robustness
Defense Method Clean Image FGSM-8/255 PGD-16/255
Pixel Deflection [56] 0.789 0.340 0.320
Random Padding Resizing [57] 0.894 0.479 0.379
Adversarial Training [53] 0.767 0.566 0.506
Adversarial Training + LA-Batch 0.780± 0.002 0.614± 0.010 0.537± 0.005
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Fig. 10. Margin Distribution Comparison between w/o. and w. LA-Batch
after training. Larger margins indicate more robustness.

7 CONCLUSION

In this paper, we investigated the problem of under-estimation
and over-estimation in crowd counting. To the end, a simple
but effective batch construction method, called Locality-Aware
Batch (LA-Batch), was proposed to achieve generalizable features.
Thanks to the independence of the proposed method with the
backbone network architectures, our method could be plugged
into most existing deep crowd counting methods to boost their
performance in an end-to-end manner. Extensive experiments
indicate the superiority of our method over several state-of-the-
art baselines. The proposed LA-Batch is generic and could be
valuable in other data imbalance applications and we demonstrate
the versatility of LA-Batch in adversarial defense.
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