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Abstract—Artificial intelligence shows promising efforts in
collaborating the language models with the artificial intelligence
of things (AIoT), promoting the edging intelligence on natural
language understanding. To adapt to the limited computational
resources in AIoT, the large language models (e.g., transformer)
are compressed into light-weight models, which always results
in poor feature representation and unsatisfactory performance
on downstream tasks, especially on those low-resource language
understanding tasks. To address the above issues, we propose a
method named memory-assistant multi-task learning (MAMT),
where an auxiliary memory module is introduced to promote
multi-task learning, which serves as a surrogate of target domain
representation and performs instance-level weighted multi-task
learning. More importantly, our MAMT module is in a plug-
and-play fashion. Thus, researchers can plug in it to conduct
collaborative training and plug it out for AIoT model inference
without extra computation burdens. Experiments demonstrate
that MAMT significantly improves the performance of light-
weight transformer models and show its superiority over the
state-of-the-arts on eight GLUE sub-tasks.

Index Terms—AIoT, natural language understanding, neural
networks, auxiliary memory, multi-task learning.

I. INTRODUCTION

BENEFITING from the large corpora and millions of pa-
rameters, large transformer-based language models have

achieves lots of success in various natural language under-
standing (NLU) tasks [1]. However, the tremendous param-
eters and high computation cost of the transformer model
greatly hinder its application to the low-resourced artificial in-
telligence of things (AIoT), which mainly equipped low clock
frequency computing (i.e., megahertz) and limited memory
space (i.e., kilobytes or megabytes) [2], [3]. Fortunately, the
model compression for transformer models provides a feasible
solution for the resource-constrained edging devices such as
model distillation, pruning, and quantization [4]. Although
these compression methods is able to obtain light-weight
transformer models (i.e., MobileBERT [5], SqueezeBERT [6])
through discarding unimportant features and neural structures,
they cannot achieve desirable performance in complex real-
world scenarios. This issue is propagated and exaggerated
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Fig. 1. The block diagram of memory-assistant multi-task learning (MAMT).
The auxiliary memory and auxiliary task training modules can be plugged in
for discriminative multi-task learning in the training stage and plugged out
for inference without extra computing cost.

in downstream language understanding tasks. Thus, how to
improve the performance of light-weight transformers on
language understanding tasks is crucial in AIoT landing.
Multi-task learning [7] is one of the popular approaches
to improve the performance of a light-weight transformer
through leveraging similar auxiliary tasks to learn a task-
agnostic feature representation. However, directly combining
all tasks to conduct multi-task learning is not an optimal
solution as it will lead to a biased representation for the
data-rich domains and ignore the target domain with sparse
data. Especially for the low-resource tasks of natural language
understanding, e.g., RTE task of GLUE benchmark [8], this
issue will become more serious with limited data than the rich
data task. Therefore, it is important to conduct a discriminative
learning on different source tasks rather than treat all the tasks
equally.

In this paper, we propose a novel method, named memory-
assistant multi-task learning (MAMT), to collaborate among
NLU tasks for AIoT. Our MAMT follows a plug-and-play
fashion that auxiliary-task module and auxiliary memory mod-
ule can be unplugged in model deployment for the AIoT
scenarios (Fig. 1). Different from the traditional multi-task
learning paradigm that directly combines and randomly mixes
all training tasks and feeds into the transformer model, our
MAMT employs an auxiliary memory to enhance the multi-
task learning and conducts instance-level discriminative multi-
task learning from the auxiliary task samples. Specifically, the
auxiliary memory module of MAMT is a surrogate of feature
distribution for the target task, which stores the target domain
features and updates stored features in model training. Then,
the auxiliary memory computes the similarity between the
auxiliary task features to its stored target features. Finally,
MAMT adopts the similarity score as the weight of the
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Fig. 2. The overview of memory-assistant multi-task learning (MAMT). AIoT light-weight transformer is an optimized transformer model for collaborative
language understanding in AIoTs. The gray auxiliary memory module serves as a surrogate of feature distribution for target task. All the grey background
modules can be unplugged in model reference.

auxiliary task in multi-task learning, and collaborates with
light-weight transformer model training for learning a target-
task-oriented feature. Moreover, our MAMT is independent of
backbone models. Its performance improves with an advance
of light-weight backbone. Fig. 2 shows an overview of our
proposed method in AIoT scenarios. Here we conclude our
contributions as follows:
• MAMT augments the multi-task learning with discrimi-

native learning on source tasks, which helps light-weight
transformer models conduct a discriminative learning for
source tasks on instance-level.

• MAMT introduces an auxiliary memory module to com-
pute the similarity between different source tasks to
the target task on feature space. The auxiliary memory
module is in a plug-and-play fashion without incurring
extra computing budgets in the inference stage.

• MAMT significantly improves the performance of light-
weight transformers in diverse natural language under-
standing tasks, and shows its superior performance on
eight GLUE sub-tasks.

The rest of this paper is organized as follows. In Section
II, we review related works in artificial intelligent of things,
multi-task learning, and natural language understanding. Then,
we present the methodology in Section III, and experiment
results in Section IV, respectively. We also give a ablation
study, parameter analysis in Section V, then conclude the work
in Section VI.

II. RELATED WORKS

A. Artificial Intelligent of Things

Artificial intelligence of things (AIoT) incorporates the
internet of things with artificial intelligence, which enhances
machine intelligence capability on data processing and anal-
ysis [9]. Nowadays, edge devices spring up into our liv-
ing world with volume data, which far exceeds the general
computing capability of traditional cloud-based artificial in-
telligence. AIoT is a new IoT era by sinking the artificial
intelligent analysis from cloud to edge [10], [11]. [2] provides
a successful application for AIoT, which employs machine

learning to conserve position confidentiality of roaming PBSs
users. LACC greatly improves the traditional greedy approach,
incorporated with linear integer programming module, which
provides a high-through communication solution for intelligent
transportation system [12]. According to the infrastructure,
AIoT works can be divided into hardware-based methods
and algorithm-based methods. In the hardware-based methods,
some researchers optimize memory migration schemes, which
improve IO energy consumption and memory footprint usage
to collaborate artificial neural networks with IoTs [13]. In
algorithm-based methods, GRTT presents an efficient rout-
ing solution for workforce monitoring which greatly saved
the energy consuming [14]. But, few research works apply
the light-weight transformer model to collaborative language
understanding in AIoT.

B. Multi-task Learning

Multi-task learning is a learning paradigm that aims to learn
a general feature representation for performance boosting [7].
Depending on the model parameter sharing paradigms, multi-
task learning can be categorized into hard-parameter shar-
ing and soft-parameter sharing. The hard-parameter paradigm
shares backbones, which learns the generic feature with the
mixed tasks [15]. For example, MT-DNN employs a trans-
former model that performs multi-task learning by the joint
classification and regression tasks [16]. Similarly, MMM [17]
collaborates transformer model with multi-task learning on
question answering task. In contrast, the soft-parameter
paradigm conducts discriminate learning with individual back-
bones. MMoE [18] performs the soft regularization by a
gate function that controls the multi-task features pass-through
to output classifier. Overall, the hard-parameter paradigm
shares backbones, which learns the generic feature with the
mixed tasks. The soft-parameter paradigm conducts discrimi-
nate learning with individual backbones. However, few works
combine those two learning paradigms into one framework
that conducts generic feature learning with a shared backbone
and conducts discriminative learning to avoid shifting. This
combination learning paradigm is urgent for AIoT, which
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employs a shared light-weight transformer model saving com-
puting resources and employs discriminative learning to avoid
learning issues on low-resource training data.

C. Natural Language Understanding

Natural language understanding (NLU) is a sub-task of
natural language processing researches on the capability of
language understanding in a machine [19]. To evaluate the
machine language understanding capability, a general language
evaluation benchmark (GLUE) is proposed with various NLU
tasks: sentiment analysis, textual similarity, recognizing textual
entailment, and natural language inference [8]. Recently, the
transformer-based language model made a breakthrough in
GLUE tasks with a large superiority over previous meth-
ods [1], [20]. The language models, with larger training corpus
and parameters, are benefited with more knowledge and higher
learning capability. Consequently, later research works pushed
the language model sizes sharply increased from million-level
to trillion-level in the short two years, and the training corpus
as well as increased from GBs to TBs [21]. Those huge
parameters greatly hinder its applications to source-limited
AIoT scenarios. Some light-weight transformer works aim to
optimize the model size and reduce resource reliance [4],
[5]. However, those light-weight transformers mainly focus
on model squeezing in the inference stage, which neglects
improving performance in the training stage.

III. METHODOLOGY

First, we show the overall pipeline of MAMT in Fig. 3.
Our proposed memory-assistant multi-task (MAMT) learning
method mainly contains three parts: the light-weight trans-
former backbone, auxiliary memory module, and multi-task
loss.
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Fig. 3. Overall Pipeline of MAMT. The orange color modules are related to
the target task, and the gray color modules are related to the source task.

To fit into the AIoT devices with limited computing re-
sources, we choose the compressed language model as the
backbone (MobileBERT [5]), which can help our model gain
general knowledge from the universal corpus. The auxiliary
memory is proposed to measure the similarity between the
auxiliary task to the target task. The similarity score is used
to construct weights for different tasks to promote those
relevant tasks that brings in the improvement and avoid the
undesirable impact from irrelevant auxiliary tasks. The weights

are finally used to construct the following multi-task learning
loss function.

`(Xi, Yi) =

{
`t(Xi, Yi), if Xi from target tasks,

τi`a(Xi, Yi), if Xi from auxiliary tasks,
(1)

where, `t is the target loss, `a is the auxiliary task loss, and
τi is the weight of auxiliary task loss. Different from the
traditional multi-task learning that treats all tasks equally, our
MAMT conducts discriminative learning among the auxiliary
tasks by assigning task-related weights. Next, we are going to
show how to get τi in Equation 1.

A. Auxiliary Memory
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argMin( F!) Max( F!)

Loss

Auxiliary Memory

Heads

F"(Z, Aux)

τ!

Auxiliary Memory

Target Data Flow Auxiliary Data Flow

Update

 Target task 
Auxiliary task

Fig. 4. Auxiliary Memory. The auxiliary memory updates features from target
task, and computes similarity scores for auxiliary tasks.

Fig. 4 summarizes the auxiliary memory module in MAMT.
The auxiliary memory is first initialized randomly, and then the
feature with the lowest similarity score is updated with a new
target feature. Here, we define the similarity score between
the input feature to auxiliary memory feature in Equation 2:

Fs(Zi, Auxj) =
Z>i Auxj

max(||Zi||2, ||Auxj ||2)
, (2)

where Zi denotes the feature of ith input example, and Auxj
denotes the jth feature in auxiliary memory.

Note that different strategies are applied in updating features
for target and auxiliary tasks. For the target tasks, we first
determine which feature should be updated based on the
following equation,

j∗ = argmin
j

(Fs(Zi, Auxj)), j ∈ J , (3)

where j∗ denotes the index of selected feature in auxiliary
memory from the whole index set J . Then, we replace the
selected feature Auxj∗ with a target task feature Zi. In this
way, auxiliary memory continuously updates its features along
with model training to align with the target domain. Thus,
the auxiliary memory can function as a surrogate of target
feature distribution with a cheap storage cost. To increase
the representation capability of auxiliary memory, we also
introduce a random feature replacement to avoid the auxiliary
memory converge to local minimum optimization.

Authorized licensed use limited to: SICHUAN UNIVERSITY. Downloaded on November 26,2021 at 04:04:17 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3100397, IEEE
Transactions on Industrial Informatics

4

Different from target tasks update, there has no feature
updating in auxiliary task learning. The first step is to con-
struct the similarity score between auxiliary task features to
auxiliary memory. To avoid the instability in optimizing the
auxiliary task, we further introduce a minimal threshold φ.
The similarity score is defined as follows,

Sj = meanj(Fs(Zi, Auxj)), j ∈ J , (4)

Then, the weight on auxiliary task loss τi is computed as
follows,

τi = min {φ, Sj} . (5)

Our MAMT augments the vanilla multi-task learning with
these weights and promotes the features learned through multi-
task learning close to the target domain. In addition, the
auxiliary memory is a plug-and-play module in MAMT, and
it is removable in AIoT deployment. Thus the target task
inference computing cost and latency will remain the same.

B. Optimization

In this section, we summarize all the optimization steps in
Algorithm 1. For model deployment, MAMT only conducts
the feedforward parts (i.e., lines 6-7) with an appropriate
downstream head. In other words, all auxiliary memory up-
dating (lines 8-16) and backpropagation (lines 17-33) can be
removed in the AIoT model inference stage. The target task
training and auxiliary task training are presented in lines 4-14
and lines 16-21, respectively. In MAMT, we first initialize our
backbone model with the light-weight transformer model (i.e.,
MobileBERT), and randomly initialize the auxiliary memory
module as well as the memory updating rate ψ. Our memory
module is initialized with the features of target domain. Lastly,
we initialize the data sampling policy with the sampling ratio
Pd to be a ratio between auxiliary data size and target data
size.

Next, we introduce the training procedure of MAMT. The
first step is to sample the training data from the initialized
task distribution Pmt, and then the data batch is fed into
the transformer model for feature encoding. The following
learning procedure is separated for the target task and the
auxiliary task.

In the target task learning part, MAMT contains target
task learning and auxiliary memory updating. As the MAMT
learning (lines 4-14) is a dynamic system that the feature
representation as well as changes with the training iteration
(more details in discussion subsection V-C). An intuitive
updating strategy that keeping the auxiliary memory module
consistent with the target domain and replace the feature with
the lowest similarity score with a new target feature. However,
this updating strategy may result in the auxiliary memory
module only keeping the most similar target domain features.
To address this issue, a random updating policy (lines 7-12)
is introduced to prevent the auxiliary memory module from
being stuck in the local minimum.

In the auxiliary task learning part, a weighted back-
propagation with the similarity score is adopted. Thus, our
MAMT conducts the weighted multi-task learning (line 24) at

Algorithm 1: Memory-assistant Multi-task Learning

Initialize: Backbone M with pretrained weights ;
Memory module random updating rate ψ ;
Auxiliary memory module Aux randomly ;
Data sampling policy Pd(Xt, Yt;Xa, Ya) ;

input : Target domain samples (Xt, Yt);
Source domain samples (Xa, Ya);

output : Fine-tuned model M .
1 while sample training batch (xi, yi) based on the

sampling ratio Pd do
2 encode inputs Xi with backbone M ;
3 Zi = f(Wm, xi) ;
4 if xi ∈ Xt then
5 select target domain feature ;
6 j∗ = argminj(Fs(Zi, Auxj));
7 if random() ≤ ψ then
8 update auxiliary memory ;
9 Auxj∗ ← Zi;

10 else
11 randomly update Auxj with Zi ;
12 end
13 compute loss `t;
14 `t(Xi, Yi), ;
15 else
16 compute similarity score ;
17 Sj = meanj(Fs(Zi, Auxj)) ;
18 compute weight ;
19 τi = min {φ, Sj} ;
20 compute auxiliary loss ;
21 τi`a(Xi, Yi) ;
22 end
23 if do target finetuning then
24 update data sampling policy Pd ;
25 end
26 total loss ;
27 ` = `t(Xi, Yi) + τi`a(Xi, Yi) ;
28 update gradient ;
29 Wm ←Wm + ∂`

∂Wm
.

30 end

instance-level rather than domain-level. Different from tradi-
tional multi-task learning that puts the whole target domain in
fine-tuning step at one time, our MAMT conducts target fine-
tuning by gradually increasing the sampling ratio Pd of target
domain tasks. The sampling ratio Pd is defined as follows,

Pd =


N(Xd)

N(Xt +Xa)
, if Xd from auxiliary tasks,

N(Xd) + υN(Xa)

N(Xt +Xa)
, if Xd from target task,

(6)
where N(X) denotes the number of data points in X , and υ is
a ratio between the current epoch index to the total epoch size.
From Equation 6, the sampling ratio Pd of auxiliary task has
no change, and the target task sampling ratio increases with
the model training process. More in-depth analysis please refer
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to our ablation study in subsection V-A.

IV. EXPERIMENTS

We conduct extensive experiments to evaluate the perfor-
mance of our memory-assistant multi-task (MAMT) on nine
tasks of GLUE benchmark [8]. We compare MAMT with
different light-weight transformer methods including Tiny-
BERT [4], DistillBERT [22], BERT-of-Theseus [23] and Mo-
bileBERT [5], as well as the BERT [1] on base-size version.

A. Dataset

This section gives a brief introduction of our dataset: general
language evaluation benchmark (GLUE). As the inputs of
out model are tokens, we evaluate different sub-tasks under
different token lengths. An overview of GLUE token length
distribution is provided in Fig. 5.

Fig. 5. Token length distributions of GLUE.

From the token length distributions, we can observe that
RTE, MNLI, QNLI, and QQP have a longer token length than
the rest tasks. Moreover, the tasks with shorter token length
have a similar distribution, while the longer token length task
has a diverse distribution. In general, most sample length of
GLUE tasks is 128 that makes the default token length set to
128 in our experiments.

B. Experiment Setting

For demonstrating the versatility of MAMT, we apply the
memory-assistant multi-task learning to light-weight trans-
former (MobileBERT [5]) and none compressed transformer
(BERT [1]) as the backbones to be MAMT (MobileBERT)
and MAMT (BERT-Base). For light-weight transformer mod-
els, we compare our MAMT with several recent proposed
edging/AIoT optimized transformer models: MobileBERT [5],
TinyBERT [4], DistillBERT [22], and BERT-of-Theseus [23].
Besides, we also compare with two GLUE baselines: OpenAI
GPT [5] and BiLSTM+ELMo+Attn [24]. To further verify the
generalization of our MAMT, we evaluate our MAMT with the
backbone BERT [1] on the base-size version.

The learning rates are set between 3E− 5 to 5E− 5 in our
nine evaluation tasks. Concretely, we set the learning rate to
5E−5 for the small-size CoLA (8.5K) and 3E−5 for the large-
size MNLI (393K) and QNLI (108K). The training iteration
and batch size are also variable depending on the data size.
Following the work of MobileBERT [5] and TinyBERT [4],
we evaluate our MAMT on nine GLUE datasets with de-
fault GLUE metrics (Accuracy, F1, Pearson correlation, and
Mathew correlation) [8]. Specifically, we employ the accuracy

for classification tasks (SST-2, MNLI-m, MNLI-mm, QNLI,
RTE), and Mathew correlation for CoLA, Person Correlation
for STS-B, and the F1 for MRPC, QQP. All the experiments
are evaluated by the official GLUE [8] evaluation server.

C. Results

Experimental results are summarized in Table I. From
the results, we can observe that our MAMT (BERT-Base)
achieves the best performances over eight benchmark tasks
with 1.8% than backbone BERT-Base. Meanwhile, our MAMT
(MobileBERT) outperforms all light-weight transformer base-
lines that are optimized mainly for edge computing. The
main reason is that our MAMT is a discriminative multi-task
learning method, which helps the light-weight transformer to
learn a generalized feature from auxiliary tasks. Moreover,
compared to the distillation-based light-weight transformers
(DistillBERT, BERT-of-Theseus, and TinyBERT) with a high-
resource-consuming teacher model in their training stage, our
MAMT is in a plug-and-play manner that only introduces an
auxiliary memory module. From the comparison of average
scores, we can find that most SOTA light-weight transformer
models have comparable performance on the GLUE bench-
mark, and our MAMT still boosts the vanilla MobileBERT
with 1.3% improvement.

Overall, our MAMT works better on small training sample
tasks than the large ones. For example, the small training
sample RTE improves 8.5% than the backbone MobileBERT.
In contrast, the large training sample tasks QQP and QNLI
only improved 0.4% and 0.1% on MobileBERT, and the
MAMT (BERT) even have no improvements on MNLI-m. We
think that the large auxiliary task helps MAMT to learn better
features and improve the performance as well. Nevertheless,
the model performance improvement is limited on the large
size tasks. Besides, we also observe our MAMT boost 8.5%
and 10.2% on the RTE than the vanilla backbones with
auxiliary task MNLI. The results show the similar tasks in
MAMT can boost the performance on small-size dataset. This
similarity reflects the training labels that MNLI (entailment,
contradiction) overlap with RTE(entailment and not entail-
ment). In contrast, less similar tasks go contrary to small-size
MPRC collaborates trained on large MNLI only got 0.2%
improvement on MAMT (BERT), and its performance even
declines 0.6% than backbone MobileBERT. One hypothesis
is dissimilar between RTE (sentence similar classification) to
MNLI (entailment task). More discussion about the auxiliary
task and target task is provided in subsection V-B.

V. DISCUSSIONS

A. Ablation Study

In this section, we conduct the ablation study on vanilla
multi-task, auxiliary memory module, and finetuning ratio.
To explore the effect of different components, we perform
sequential multiple task learning (transfer learning, TL) and
parallel multiple task learning (multi-task learning, MT) on
GLUE tasks. Here, we want to point out that vanilla multi-task
learning (MT) is a simplified version of MAMT without the
auxiliary memory module. At last, we study the effectiveness
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TABLE I
THE GLUE SCORES ON TEST SET USING GLUE EVALUATION SERVER.

Names Params CoLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm QNLI RTE AVG8.5k 67K 3.7K 5.7K 364K 393K 393K 108K 2.5K
BiLSTM+ELMo+Attn[5] - 33.6 90.4 84.4 72.3 63.1 74.1 74.5 78.8 58.9 70.0

DistillBERT[22] 66M 49.0 92.5 86.9 81.3 70.1 82.6 81.3 88.9 58.4 76.8
OpenAI GPT[24] 109M 47.2 93.1 87.7 84.8 70.1 80.7 80.6 87.2 69.1 77.8

BERT-of-Theseus [23] 66M 47.8 92.2 87.6 85.6 71.6 82.4 82.1 89.6 66.2 78.3
TinyBERT-6 [4] 15M 51.1 93.1 87.3 83.7 71.6 84.6 83.2 90.4 70.0 79.4

SqueezeBERT[6] 51M 46.5 91.4 87.8 86.7 80.3 82.0 81.1 90.1 73.2 79.9
MobileBERT [5] 25M 50.5 92.8 88.8 84.4 70.2 83.3 82.6 90.6 66.2 78.8

MAMT(MobileBERT) 25M 51.0 93.5 88.2 85.2 70.6 84.0 83.1 90.7 74.7 80.1
BERT-Base [1] 110M 52.1 93.5 88.9 85.8 71.2 84.6 83.4 90.5 66.4 79.6

MAMT(BERT-Base) 110M 54.6 93.6 89.1 86.4 71.9 84.6 84.3 91.4 76.8 81.4

of finetuning for MAMT by increasing the sampling ratio on
the target task. The backbone is MobileBERT, and the exper-
iment results are summarized in Table II. The task in bracket
is the auxiliary task. “w/o-AF” denotes MAMT(MNLI) with-
out adjustable task ratio in finetuning, and “w-AF” denotes
MAMT with adjustable task ratio in finetuning.

TABLE II
ABLATION STUDY OF MAMT.

Names CoLA SST-2 MRPC+ QQP+

TL(QQP) 53.16 91.05 90.28/86.02 -
TL(MNLI) 53.13 92.08 91.42/87.5 83.45/87.08
TL(QNLI) 52.86 90.94 89.96/85.78 83.43/87.03

MT(MNLI) 30.46 90.94 83.71/75.49 82.94/83.12
MAMT(w/o-AF) 52.07 90.82 89.69/85.29 82.65/82.86

MAMT(w-AF) 57.11 91.62 91.29/87.75 83.69/83.59
“−” denotes not available for the setting. “+” denotes F1/Accuracy.

From the results shown in Table II, we can observe that
transfer learning-based methods (TL) achieves better perfor-
mance than vanilla multi-task learning (MT). In tasks of SST-
2, QQP, MT has 1 − 2% decline than TL models. The worst
performance of MT appears in CoLA, which declines more
than 20%. We guess the reason is the domain gap, MNLI
is a two sentences entailment task, and CoLA is a single-
sentence linguistic acceptability task, which caused the MT
performance decline. Similarly, the domain gaps also reflect
on the TL models. For example, CoLA got better performance
on the auxiliary task of QQP, while the SST-2 got its better
performance with auxiliary task MNLI.

To make a fair comparison, we unify the MNLI as the auxil-
iary task in MT and MAMT. More auxiliary task comparisons
on MAMT will discuss in the following subsection. From the
results of Table II we can see that MAMT with auxiliary
memory can effectively improve the performance of vanilla
multi-task learning. These results indicate that simply mixing
more data in multi-task learning not always a good solution.
Moreover, our MAMT (w-AF) with adjustable target sampling
further improved the MAMT performance on all datasets.
The CoLA task achieves the best improvement with 5% than
MAMT(w/o-AF). So, we can conclude the adjustable target
sampling plays an important role in MAMT. Compared to
TL’s learning paradigm, our MAMT finetuning works similar
to TL finetuning by feeding target data samples. Moreover, our
MAMT finetuning exists in multi-task learning, which adjusts
higher sampling possibilities on the target task.

B. Parameter Sensitivity Study

In this section, we study the parameter sensitivity of MAMT
from three aspects: auxiliary tasks, feature extraction, and
feature size of the auxiliary memory module.

1) Auxiliary Tasks: To promote the performance of light-
weight transform in AIoT scenarios, we study the auxiliary
task selection in MAMT and conduct evaluations on the
development set of GLUE tasks: MNLI-m, MNLI-mm, STS-
B, and QQP. All the results are reported in Table III.

TABLE III
DIFFERENT AUXILIARY TASKS.

Target(Auxiliary) MNLI-m/mm STS-B+ QQP+

MAMT(QQP) 82.56/83.17 88.62/88.41 -
MAMT(SNLI) 83.69/83.59 87.77/87.71 86.67/87.75
MAMT(QNLI) 83.15/83.60 87.45/87.15 86.93/90.03
MAMT(SST-2) 83.36 /83.29 87.74/87.51 87.73/90.67

“−” denotes not available for the setting. “+” denotes F1/Accuracy.

From the result shown in Table III, we can observe MAMT
achieves the best performance among different auxiliary tasks,
and the similar auxiliary task helps more for the target task.
For example, the MNLI-m and MNLI-mm both achieved their
best performance (83.69 and 83.59) on the auxiliary task
SNLI. The reason is that SNLI and MNLI are both entailment
tasks even with the same labels (entailment, neutral, and
contradiction). Although the QNLI is the entailment task, its
performance slightly inferior to SNLI. The reason is that QNLI
has a different data distribution from SNLI with only two
labels (entailment and not entailment). Furthermore, similar
results also appear in STS-B (sentence similarity comparison)
to QQP (question pair), in which performance achieves almost
1% promotion than training with other auxiliary tasks. So, we
can conclude that similar auxiliary tasks make more contribu-
tions for MAMT in collaborative language understanding.

2) Feature Size in Auxiliary Memory: The auxiliary mem-
ory is a core module of MAMT, a surrogate representation of
target domain feature distribution. In detail, the auxiliary mem-
ory module consists of extracted features from the encoder
layers of a transformer. The intuitive idea is that the auxiliary
memory with more target features will get a better represen-
tation capability. To verify this idea, we study the impact of
feature size experiments in the auxiliary memory module by
varying feature size in the range {Nb, 3Nb, 5Nb, 7Nb}, where
Nb is the batch size.
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TABLE IV
DIFFERENT FEATURE SIZES OF AUXILIARY MEMORY.

Target(Auxiliary) Nb 3Nb 5Nb 7Nb

MRPC(STS-B) 88.24 90.97 91.04 88.24
RTE(MNLI) 72.92 73.65 73.65 74.74

SST-2(MNLI) 92.09 91.63 91.63 91.28
MNLI-m(SNLI) 82.80 82.66 82.90 82.76

MNLI-mm(SNLI) 82.88 83.03 82.95 82.67

“Nb” denotes batch size.

From the numeric results in Table IV, we observe that
more features stored in auxiliary memory do not always gain
more improvements in MAMT. The performance of RTE
grows with feature size raising. While the performance of
task SST-2 dramatically declines with feature size increasing.
We thought the probable reason for the differences is that the
target task RTE and its auxiliary task MNLI are all entailment
classification tasks. MAMT helps small dataset RTE achieve
progressive increments with feature sizes. In contrast, the
semantic classification task SST-2 has a domain gap with
auxiliary task MNLI, which gets a performance decline with
feature size increment. So, we conclude that the feature size
of auxiliary memory has a nonlinear relationship with MAMT
performance in GLUE tasks. In other words, the feature size
of the auxiliary memory in MAMT is a hyperparameter in
collaborative language understanding on AIoT.

3) Feature Extraction: MAMT conducts discriminative
multi-task learning on the auxiliary tasks, where the auxiliary
task weights are computed by the similarity between the
auxiliary task feature to the auxiliary memory. From the view
of feature representation, the different layer of our transformer
neural network has different semantic representation. In this
part, we make further exploration on feature selection in
MAMT.

TABLE V
FEATURE EXTRACTION FORM DIFFERENT LAYERS.

Target(Auxiliary) 1 Layer 4 Layers 8 Layers 12 Layers
RTE(MNLI) 74.01 74.01 73.29 72.20

SST-2(MNLI) 91.51 92.20 91.74 92.09
MRPC(STS-B) 90.56 91.52 90.62 91.67

MNLI-m(SNLI) 83.35 83.37 83.33 83.48
MNLI-mm(SNLI) 83.58 83.43 83.31 83.41

From the results of Table V, we can observe RTE and
MNLI-mm, features are extracted from the last transformer
layer, get better performance than feature extraction from
more layers. In contrast, MRPC and MNLI-m gain more pro-
motion with more layers feature extraction. Different feature
extraction policy does not play a crucial impact on large
size tasks, i.e., the performance of MNLI-m and MNLI-mm
have no signification affection. The feature extraction from
different layers impacts their performance to the small size
tasks (MRPC and RTE). These results indicate that the small-
size language understanding task needs more attention in
AIoT.

C. Task Similarity
To study the similarity between the target task to auxiliary

tasks, we compare different target tasks (RTE and SST-2)

with the same auxiliary task (MNLI). We also explore the
similarity changes with features extracted from different layers
on the same target task (MRPC) and auxiliary task (STS-
B). Fig. 6 shows the similarity comparison of MAMT on
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Fig. 6. Similarity comparison of MAMT on different target tasks. The task
name outside the bracket denotes the target task, and the task name in the
bracket denotes the auxiliary task. Take the “RTE(MNLI)” for example, our
MAMT is trained on MNLI (auxiliary task) and RTE (target task).

different target tasks. As the auxiliary task MNLI and target
task RTE are both entailment tasks, the similarity of two tasks
in RTE(MNLI) has high values around 0.9 at the training
start stage. However, with the training iteration, our MAMT
learns domain discrepancy between RTE to MNLI, reflecting
the curve is similarity decline. In contrast, the target task SST-
2 has a domain difference with auxiliary task MNLI, which
causes their feature similarity as low as 0.3. We think that
the backbone model, pretrained light-weight language model,
has no discriminate capability to target task and auxiliary
task. In the middle iterations, our MAMT mapping two tasks
to a generic feature representation, which reflects a growing
similarity. As the RTE and SST-2 are different target tasks,
our MAMT trends to learn domain-specific task features, and
its similarity goes down in the end iterations.
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Fig. 7. Similarity comparison of MAMT on different layers feature extraction.

Fig. 7 shows the similarity learning comparison of
MPRC(STS-B) on different layer extraction. The main differ-
ence exists in the beginning stage. The feature extracted from
the first layer holds less discriminative information than the
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feature extract from deeper layers, which shows MRPC(STS-
B)-01 has a higher similarity than other layers. With training
continue, the changing of similarity on MRPC(STS-B) per-
forming a similar way. Moreover, the similarity analysis can
help MAMT select the auxiliary tasks.

VI. CONCLUSION

In this paper, we propose a memory-assistant multi-task
(MAMT) method for collaborative language understanding
in AIoT scenarios. The MAMT is plug-and-play that can
be plugged into the model by multi-task training and be
plugged out for inference without extra computation burdens.
Moreover, our MAMT employs an auxiliary memory to con-
duct instance-level discriminative multi-task learning on the
source samples, promoting the performance of the light-weight
transformer models. The ablation study shows the auxiliary
memory is important to discriminative multi-task on auxiliary
tasks. We also discuss the hyper-meter sensitivity and visualize
the internal similarity changes in its training process.

Our work provides a promising solution to improve the
performance of light-weight transformers, especially for the
scenarios with low resources in both data and computation.
Our method improves the model generalization capability
for the low-resource in data through learning from data-rich
domains and simultaneously reduces computation cost. More-
over, we consider the discriminative information in multi-task
learning to avoid undesirable impacts from irrelevant tasks.
Experimental results on the GLUE benchmark demonstrate
the efficiency of our memory-assistant multi-task learning
method for diverse language understanding tasks. With the
more widespread applications of low-resource AIoT, language
intelligence to interact with the human is urgently required
for AIoTs. In our future work, we will explore how to
apply MAMT in other applications (e.g., question answering,
phone assistant, etc.). Meanwhile, more advanced light-weight
transformers in MAMT will be investigated.
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