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Robust Multi-view Clustering with Incomplete
Information

Mouxing Yang, Yunfan Li, Peng Hu, Jinfeng Bai, Jiancheng Lv, Xi Peng

Abstract—The success of existing multi-view clustering methods heavily relies on the assumption of view consistency and instance
completeness, referred to as the complete information. However, these two assumptions would be inevitably violated in data collection
and transmission, thus leading to the so-called Partially View-unaligned Problem (PVP) and Partially Sample-missing Problem (PSP).
To overcome such incomplete information challenges, we propose a novel method, termed robuSt mUlti-view clusteRing with
incomplEte information (SURE), which solves PVP and PSP under a unified framework. In brief, SURE is a novel contrastive learning
paradigm which uses the available pairs as positives and randomly chooses some cross-view samples as negatives. To reduce the
influence of the false negatives caused by random sampling, SURE is with a noise-robust contrastive loss that theoretically and
empirically mitigates or even eliminates the influence of the false negatives. To the best of our knowledge, this could be the first
successful attempt that simultaneously handles PVP and PSP using a unified solution. In addition, this could be one of the first studies
on the noisy correspondence problem (i.e., the false negatives) which is a novel paradigm of noisy labels. Extensive experiments
demonstrate the effectiveness and efficiency of SURE comparing with 10 state-of-the-art approaches on the multi-view clustering task.

Index Terms—Unsupervised Multi-view Representation Learning, Multi-view Clustering, Partially View-unaligned Problem, Partially
Sample-missing Problem, False Negatives.
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1 INTRODUCTION

M ULTI-VIEW clustering (MvC) [1]–[4] aims at learning a
common representation for multi-view data and then em-

ploying clustering on the representation. The success of MvC
relies on the assumption of information completeness (Fig. 1(a))
which is two-fold: i) view consistency: it assumes that samples
of the same instance are well-aligned. Taking two view matrices
X(1) and X(2) as a showcase, it refers to that X(1) and X(2)

have the corrected correspondence in row-wise, where each row
denotes a sample; ii) instance completeness: it assumes that all
instances are existing in all views, namely, X(1) and X(2) are with
the same number of rows. In practice, however, either of the two
assumptions would be violated in data collection and transmission,
thus leading to the so-called Partially View-unaligned Problem
(PVP, see Fig. 1(b)) and Partially Sample-missing Problem (PSP,
see Fig. 1(c)).

During past years, some efforts have been devoted to solving
PSP by imputing the missing samples with various data recovery
methods [5]–[7]. In other words, these methods recover the miss-
ing samples by utilizing the information contained in the existing
cross-view counterparts. Different from PSP, PVP is a less-touched
problem revealed in very recent [8]. A feasible solution to PVP is
first realigning the data using the Hungarian algorithm [9] and
then achieving MvC based on the realigned data. However, such
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Fig. 1. Our basic idea. Taking a bi-view data as a showcase, we use
two oval panels to denote two views, polygons with different colors
and shapes to indicate different instances and categories. The grey
dotted lines indicate that the cross-view correspondences are available.
(a) Complete Information; (b) PVP: some of the cross-view correspon-
dences are unavailable. (c) PSP: some samples are missing (denoted
by hollow polygons); (d) Category-level Identification: establish the
cross-view correspondences at category level by identifying cross-view
and within-category counterparts for each sample, where the desirable
correspondences are denoted by colored dotted lines; (e) Category-
level Alignment (CA): solve PVP by realigning each sample x

(1)
i with

its counterpart x(2)
j ; (f) Category-level Imputation (CI): recovers each

missing sample x̂
(1)
i by using k counterparts of x(2)

i . One could observe
that both CA and CI aim at identifying the within-category samples from
different views. The only difference between them is that CA aims to
identify one counterpart while CI aims to seek multiple ones. In other
words, PVP and PSP could be solved by CA and CI which are unified
into the same category-level identification framework.

a two-stage approach cannot lead to encouraging performance
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as pointed out in [8]. Hence, [8] reformulates the Hungarian
algorithm as a neural module so that instance-level data alignment
and representation learning could be simultaneously performed.
Although some promising results have been achieved by these
studies, almost all of them can only solve either PSP or PVP, and
it is unknown how to simultaneously conquer them using a unified
framework.

In this paper, we observe that the solutions to PVP and PSP
could be unified into a category-level identification framework.
As shown in Fig. 1(d), for each sample, the framework aims
at identifying its cross-view counterparts of the same category,
i.e., establishing the cross-view correspondences at category level.
Clearly, it is natural to solve PVP in such a process, and PSP
could also be solved by further exploiting the correspondence. For
clarity, we refer to these two solutions as Category-level Alignment
(CA) and Category-level Imputation (CI). The only difference
between them is that CA aims at identifying one counterpart
whereas CI aims at identifying multiple ones. With the established
correspondence, CA solves PVP by directly realigning the sample
x
(1)
i to its counterpart x(2)

j as shown in Fig. 1(e); Likewise, CI

conquers PSP by recovering the missing sample x̂
(1)
i using k

counterparts of x(2)
i as shown in Fig. 1(f).

Based on the above observations, we propose a novel method
which implements category-level identification to conquer PVP
and PSP. In brief, the proposed robuSt mUlti-view clusteRing with
incomplEte information (SURE) aims to learn categorical similar-
ities and establish correspondences across views by resorting to a
novel noise-robust contrastive learning paradigm. In detail, SURE
treats the samples with complete information, i.e., the aligned and
observed samples, as positive pairs. As the category annotation is
unavailable, we construct negative pairs by randomly choosing
some samples across views. Clearly, such a pair construction
approach would wrongly treat some within-cateogory samples as
negatives, which results in false-negative pairs (FNPs). If such
an issue is neglected, models will converge to the sub-optimal
even wrong solutions. To mitigate or even eliminate the influence
of FNPs, we propose a novel noise-robust contrastive loss which
theoretically and experimentally enjoys the property of reversed
and slow optimization (see Theorem 2 and 3 in Section 3.2). The
contributions and novelties of this work could be summarized as
follows:

• We propose treating MvC with incomplete information
as a category-level identification task. To the best of
our knowledge, although some developments have been
achieved in either PVP or PSP, there is no a unified
framework to simultaneously conquer both of them.

• To implement the category-level identification, we propose
a novel noise-robust contrastive loss that could mitigate or
even eliminate the influence of FNPs introduced during
the pair construction.

• As far as we know, this could be one of the first attempts
which enable contrastive learning robust against noisy
correspondence, i.e., FNPs. Notably, the standard noisy
labels refer to as incorrect class annotation of a given sam-
ple, whereas our noisy correspondence denotes incorrect
correspondence between two samples. Hence, this work
might also provide some novel insights to the community
of learning with noisy labels.

2 RELATED WORKS

In this section, we briefly review three topics related to this work,
i.e., multi-view clustering, contrastive learning, and learning with
noisy labels. Besides, we elaborate on the differences between our
prior work [10] and this study.

2.1 Multi-view Clustering
Almost all existing MvC methods implicitly or explicitly take the
complete information assumption. However, once the assumption
is violated, the view correspondence and instance completeness
will be destroyed, thus leading to PVP and PSP. Based on the
robustness against PVP and PSP, most of existing works could be
roughly classified into the following three categories, namely, i)
the vanilla MvC methods [1], [2], [4], [11]–[14], which strive to
learn discriminative representations by utilizing the consistent and
complementary information from different views; ii) PVP-oriented
MvC methods [8], which aim at establishing the cross-view
correspondence at the instance level in a unsupervised manner; and
iii) PSP-oriented MvC methods [5]–[7], [15]–[17], which utilize
the existing views to recover the missing ones.

The differences between existing approaches and our SURE
are two-fold. On the one hand, SURE could simultaneously
handle PVP and PSP whereas the existing works could only cope
with one or neither of them. On the other hand, SURE aims to
achieve view alignment and data recovery at category- instead
of instance-level. The category-level alignment enables SURE to
enjoy higher accessibility and scalability for clustering as verified
in the experiments. More specifically, for two cross-view samples,
the alignment probabilities at the instance and category levels are
1/N and 1/K respectively, where N and K denote the number
of instances and categories, and K � N in general.

2.2 Contrastive Learning
Recently, the contrastive learning methods [18]–[24] have shown
unprecedented power in unsupervised representation learning. The
major differences of most existing studies mainly lie in the choice
of data augmentation strategy and contrastive loss. To be specific,
most contrastive learning methods first construct sample pairs at
the instance level by employing a series of augmentations on
the raw data. The augmented samples of the same instance are
defined as positive, while the others are considered as negative.
With the augmented data, a variety of losses [21]–[23], [25], [26]
have been proposed to learn the representations by maximizing
the similarities of positives while minimizing those of negatives.

The major differences between this work and the existing
contrastive learning methods are given below. First, our SURE
is equipped with a novel contrastive loss which is robust against
false negatives, whereas most of these methods cannot handle this
issue. Second, these methods cannot be applied to multi-view data
with PVP and PSP, whereas SURE is specifically proposed for
handling such an incomplete information case. Third, we construct
data pairs using the available complete information, whereas these
methods resort to various data augmentations.

2.3 Learning with Noisy Labels
In recent years, a series of works [27]–[31] have been conducted
to endow neural networks with the robustness against noisy
labels. Based on the way of achieving robustness, the existing
works could be roughly grouped into four categories, namely,
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i) robust loss based methods [30], [32], which design a loss
function which is tolerant to noisy labels; ii) robust architecture
based methods [33], [34], which modify the network architecture
to simulate the label transition matrix; iii) sample re-weighting
methods [35], [36], which iteratively compute the confidences of
samples as clean and reweigh their importances to guide the net-
work optimization; and iv) semi-supervised learning methods [27],
[37], which first identify the clean samples from the noisy ones and
then optimize the network by treating the clean samples as labeled
and the noisy ones as unlabeled.

Different from the above studies, we consider a novel noisy
label paradigm, i.e., the correspondence rather than the category
annotation is incorrect. In addition, SURE is proposed to cluster
multi-view data, whereas almost all of these methods are proposed
for classification.

2.4 Differences from the Preliminary Version

This study is a journal extension of the conference paper (Mv-
CLN) [10] with the following differences and improvements. To
be specific,

• The motivations are different. In detail, MvCLN takes PVP
into consideration and proposes solving this problem by
establishing category-level correspondeces with the help
of the noise-robust contrastive loss. In contrast, SURE,
which solves two incomplete information challenges in-
cluding PVP and PSP, is more general than MvCLN. Note
that, SURE is the first unified framework which could
simultaneously handle PVP and PSP.

• The loss functions are different. To solve the PVP chal-
lenge, MvCLN proposes a noise-robust contrastive loss
by enforcing the consistency across views. However, with
the loss, MvCLN might overemphasize the consistency
between views, thus leading to the insufficient view-
specific information preserved in the representations. Such
representations do not favor the data recovery, thus failing
in tackling PSP. In contrast, SURE takes the information
sufficiency into consideration by developing a sufficiency-
preserving versatile learning loss. The addition loss not
only endows SURE with the data recovering ability for
solving PSP but also boosts the performance of handling
PVP, as verified in our experiments.

• The model architectures are different. In brief, Mv-
CLN adopts contrastive learning like feedforward net-
work structure, whereas SURE adopts an auto-encoder-
like structure.

3 METHOD

In this section, we introduce SURE, a robust multi-view clustering
method that simultaneously solves PVP and PSP under a category-
level identification framework. In Section 3.1, we first present
the related formal formulations. In Section 3.2, we introduce the
proposed noise-robust contrastive objective which could imple-
ment the category-level identification. In Section 3.3, we introduce
another objective which is designed to preserve the sufficiency of
the learned representations. Finally, Section 3.4 elaborates on the
implementation details of SURE.

3.1 Problem Formulation
In this work, we aim to explore how to achieve robust multi-
view clustering with incomplete information. Formally, we have
the following formal definitions.

Definition 1. Incomplete Information. For a multi-view
dataset {X(v)}Vv=1 = {x(v)

1 ,x
(v)
2 , . . . ,x

(v)
Nx
}Vv=1, it consists

of {S(v)}Vv=1 = {s(v)1 , s
(v)
2 , . . . , s

(v)
Ns
}Vv=1 and {W(v)}Vv=1 =

{w(v)
1 ,w

(v)
2 , . . . ,w

(v)
Nw
}Vv=1, where v ∈ [1, V ] denotes the view

index, V is the view number, Nx = Ns + Nw represents the
number of instances, and {S(v)}Vv=1/{W(v)}Vv=1 denotes the
data without/with either or both of PVP and PSP.

Definition 2. Partially View-unaligned Problem (PVP). The
dataset {X(v)}Vv=1 is partially view-unaligned when

V∑
v1

V∑
v2 6=v1

I(w
(v1)
i ,w

(v2)
i )<V (V − 1), ∀i ∈ [1, Nw], (1)

where I(a, b) is an indicator function evaluating to 1 i.f.f. samples
a and b belong to the same instance.

Definition 3. Partially Sample-missing Problem (PSP). The
dataset {X(v)}Vv=1 is partially sample-missing when

1 ≤ |{w(v)
i }

V
v=1| < V, ∀i ∈ [1, Nw], (2)

where | · | refers to the number of non-missing samples.

To explore the unified solution to PVP and PSP, we propose a
category-level identification framework by establishing the cross-
view correspondences. Formally,

Definition 4. Category-level Identification. For each sample
x
(v1)
i , it aims at identifying its with-category counterparts x

(v2)
j

from another views so that
V∑
v1

V∑
v2 6=v1

C(x
(v1)
i ,x

(v2)
j ) = KV (V − 1), (3)

where C(a, b) is an indicator function evaluating to 1 i.f.f. a and
b belong to the same category, and K denotes the number of
instances for each category.

With the established category-level correspondences, the sam-
ple x

(v1)
i could be realigned with their counterparts x

(v2)
j . Sim-

ilarly, the missing sample x
(v1)
i could be recovered by their k

peers x
(v1)
k in the same view which are identified through x

(v2)
j

by resorting the established correspondences. Therefore, both
PVP and PSP could be solved through performing category-level
identification. The details are presented in Section 3.4.

To establish the cross-view correspondences, one feasible
solution is the supervised contrastive learning [38] which aims
at maximizing similarities of within-category samples (positives)
while minimizes those of between-category samples (negatives).
However, such a paradigm relies on the category annotations for
pair construction, which is infeasible under the clustering setting.
To get rid of the dilemma, we propose SURE which is com-
posed of three modules, namely, pair construction, noise-robust
optimization, and versatile learning. For ease of representation,
we take V = 2 in the following without loss of generality. As
shown in Fig. 2, the pair construction module uses (s

(1)
i , s

(2)
i )

as positive pairs, and stochastically selects cross-view samples to
form negative pairs (s

(1)
i , s

(2)
j ). As the random sampling would
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Fig. 2. The pipeline of the proposed SURE. It consists of three modules, i.e., pair construction, noise-robust optimization, and versatile learning.
For pair construction, SURE constructs positive pairs using the known correspondences, and forms negative pairs by random sampling on the fully-
aligned and complete data {S(v)}2v=1. Such a random sampling strategy would inevitably introduce some false-negative pairs (FNPs) which should
be treated as positive. To prevent these FNPs from dominating the network update, SURE adopts a two-stage optimization scheme. Specifically, (a)
contrastive learning: the network is first warmed up with the vanilla contrastive loss until the mean distance of negatives is larger than the adaptive
margin m. Then, SURE switches to (b) noise-robust contrastive learning: it will mitigate or even eliminate the influences of FNPs by reducing (see
point B) or even reversing their gradient (see point A). In (a) and (b), the direction and length of the arrows refer to the direction and magnitude of
the gradients, respectively. Moreover, to preserve the view-specific information, SURE imposes the versatile learning by reconstructing inputs using
the common representation.

inevitably introduce noisy labels (i.e., false-negative pairs), to
mitigate or even eliminate the influence of these special noisy
labels, we design a noise-robust optimization module which is
equiped with a novel noise-robust contrastive loss Lncl. To main-
tain the sufficiency of the representations, SURE further adopts
the versatile learning module with the versatile loss Lver to
reconstruct the input samples from the common representations.
The overall loss function of SURE is

L = Lncl + λLver, (4)

where λ is a trade-off parameter which is fixed to 0.5 in our
implementation.

3.2 Noise-robust Contrastive Learning

To mitigate or even eliminate the influence of false-negative pairs,
we propose the following noise-robust contrastive loss, i.e.,

Lncl =
1

2N

N∑
i=1

(Y Lpos
i + (1− Y )Lneg

i ) , (5)

where N denotes the number of contrastive pairs, and Y = 1/0
for positive/negative pairs. Clearly, Lpos

i and Lneg
i contribute to

positive and negative pairs, respectively.
Given a positive pair (s

(1)
i , s

(2)
i ), SURE aims at minimizing

its distance in the latent space by minimizing

Lpos
i = d2

(
s
(1)
i , s

(2)
i

)
, (6)

d
(
s
(1)
i , s

(2)
i

)
=
∥∥∥f1 (s(1)i

)
− f2

(
s
(2)
i

)∥∥∥
2
, (7)

where f1 and f2 represent two view-specific neural networks for
feature extraction.

As simply minimizing Eq. 6 would lead to a trivial solution
(i.e., all samples will collapse into a single point), the following
contrastive term is often used to prevent model collapsion, namely,

Lctr
i = max

(
m− d

(
s
(1)
i , s

(2)
j

)
, 0
)2
, (8)

where m is a margin which enforces the distance of negatives to
be moderately large. Integrating Eq. 6 and Eq. 8, we obtain the
vanilla loss of SIAMESE network [18], i.e.,

Lvan = d2
(
s
(1)
i , s

(2)
i

)
+ max

(
m− d

(
s
(1)
i , s

(2)
j

)
, 0
)2
. (9)

As demonstrated in Fig. 3(a) and 3(b), the above vanilla loss
fails to handle noisy labels since it would confuse the true- and
false-negative pairs (i.e., TNPs and FNPs), which ends up with the
performance degradation. Therefore, to embrace the robustness
against FNPs, we propose the following noise-robust contrastive
term, namely,

Lneg
i =

1

m
max

(
md

1
2

(
s
(1)
i , s

(2)
j

)
− d 3

2

(
s
(1)
i , s

(2)
j

)
, 0
)2
.

(10)
Considering the diverse data distribution, the optimal m may

differ in different datasets. To avoid laboriously parameter selec-
tion, we propose adaptively computing m for each dataset at the
initial state. Mathematically,

m =
1

Np

∑
d
(
s
(1)
i , s

(2)
i

)
+

1

Nn

∑
d
(
s
(1)
i , s

(2)
j

)
, (11)

where Np and Nn denote the number of positive and negative
pairs, respectively. Notably, m is only computed once after the
network initialization and will be fixed in the later training process.

In the following, we mathematically and empirically explain
why the proposed noise-robust contrastive term (Eq. 10) could
prevent the network from fitting FNPs or even revise the wrong
optimization direction. To begin with, we plot the loss surface of
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Fig. 3. Empirical and mathematical analysis of the vanilla contrastive term (i.e., Eq. 8) and the proposed noise-robust contrastive term (i.e., Eq. 10).
(a–b) The ratio of the average distance to margin w.r.t. training epochs on NoisyMNIST and Reuters, where NP, FNP vanilla, and FNP robust
denote negative pairs, false-negative pairs optimized by Eq. 8, and false-negative pairs optimized by Eq. 10, respectively. The colored regions
denote the standard variances under five different initializations. It shows that our loss could prevent the distance of false negatives from wrongly
increasing or even reverse the optimization direction to correctly treat them as positive pairs as desired. (c–d) The loss surface of Eq. 8 and Eq. 10.
We take points in all three possible cases (A, B, C) as showcases to manifest the robustness of our noise-robust term compared to the vanilla term.
Specifically, A, B, and C refer to the false-negative pairs (FNPs) with the distance of d1 < m/3 and m/3 < d2 < m, and true negative pairs (TNPs)
with the distance of d3 > m, respectively. In panel (c), the vanilla loss in Eq. 8 monotonously increases the distance for all negative pairs A, B, C
and holds no robustness against noisy labels. In contrast, panel (d) illustrates that our robust term in Eq. 10 could decrease the distance of point A
while slowly increasing that of B, thus embracing the robustness against noisy labels.

Eq. 8 and Eq. 10 w.r.t. the distance of negative pairs in Fig. 3(c) and
3(d), respectively. One could observe that optimizing our noise-
robust term (i.e., Eq. 10) would not monotonically increase the
distance of negative pairs, in contrast to the vanilla term (i.e.,
Eq. 8). This observation could also be theoretically supported by
the following theorem.

Theorem 1. The gradient of our noise-robust term (i.e., Eq. 10)
is nonmonotonic.

Proof. Let the distance of negative pairs be d, as Eq. 10 produces
no gradient when m > d, we only need to consider the case when
m ≤ d. The gradient of Lneg w.r.t. d is in the form of

∂Lneg

∂d
=
∂
(

1
md

3 − 2d2 +md
)

∂d

=
3

m
d2 − 4d+m

=

(
3d

m
− 1

)
(d−m) , (12)

which equals to zero iff d = m/3 or d = m.

Based on Theorem 1, the loss surface of Eq. 10 could be
divided into two areas, namely, the hole area (0 < d < m/3)
and the deceleration area (m/3 < d < m) as shown in Fig. 3(d).
Accordingly, we could further derive the following two theorems.

Theorem 2 (Reversed Optimization). The gradient direction of
our noise-robust term (i.e., Eq. 10) is reversed compared with the
vanilla term in (i.e., Eq. 8) when 0 < d < m/3.

Proof. The product of the gradients of Lneg and Lctr w.r.t. d is

∂Lneg

∂d

∂Lctr

∂d
=

(
3d

m
− 1

)
(d−m) (2(d−m))

< 0, ∀d ∈ (0,m/3) . (13)

Based on Theorem 2, one could observe that the gradient of
Eq. 10 is contrary to the one of Eq. 8. In other words, for the
pairs locating into the hole area (such as point A in Fig. 3(d)), the
gradient of Eq. 10 will be reversed compared to that of Eq. 8.

Theorem 3 (Slow Optimization). The optimization of our noise-
robust term (i.e., Eq. 10) is decelerated compared to the vanilla
term in (i.e., Eq. 8) when m/3 < d < m.

Proof. Let ∆d be the numerical difference between gradients of
Lneg and Lctr w.r.t. d, it could proved that ∆d < 0 when m/3 <
d < m by

∆d =

∣∣∣∣∂Lneg
i

∂d

∣∣∣∣− ∣∣∣∣∂Lctr
i

∂d

∣∣∣∣
=

∣∣∣∣(3d

m
− 1

)
(d−m)

∣∣∣∣− |2 (d−m)|

= − 3

m
(d−m)2 < 0. (14)

Note that, since ∂Lneg
i /∂d < 0, ∂Lctr

i /∂d < 0 ∀d ∈
(m/3,m), Eq. (14) uses their absolute value in calculation. It
shows that for the pairs in the deceleration area (such as point B
in Fig. 3(d)), their gradients will be reduced by Eq. 10 compared
with Eq. 8.

According to Theorem 2 and 3, for any FNPs in (0,m/3),
the proposed SURE could correctly decrease their distance by
reversing their gradient. As for any FNPs in (m/3,m), SURE
could decrease the unwanted distance increment, thus preventing
the network from fitting FNPs.

Notably, although our noise-robust term (i.e., Eq. 10) endows
SURE with the robustness to FNPs, it may hinder the network
from fitting TNPs as well. To reconcile the contradiction between
the robustness to FNPs and the optimization of TNPs, we adopt
a two-stage optimization scheme motivated by [39]. Specifically,
Bengio et al. [39] empirically observes that the neural networks
apt to fit simple patterns first, which inspires us to design a warm-
up stage by regarding FNPs and TNPs as hard and easy patterns,
respectively.

In the warm-up stage, our SURE first optimizes the network
with Eq. 9 until the average distance of negative pairs is larger
than m, thus leading to faster fitting of TNPs comparing with
FNPs (see Fig. 3(a) and 3(b)). In consequence, masses of TNPs
will have a distance of d > m while most FNPs will fall into
the area of d < m. This promises that our noise-robust loss
mainly affects FNPs instead of TNPs. After that, the proposed
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noise-robust contrastive loss (i.e., Eq. 5) is used in the second
optimization stage. In this stage, as most FNPs locate in the area
of either 0 < d < m/3 or m/3 < d < m, their distances will
either decrease (see FNP robust in Fig. 3(b)) or slowly increase
(see FNP robust in Fig. 3(a)). As a result, the influence of noisy
labels is eliminated or mitigated. Notably, the second stage only
imposes negligible effects on TNPs as most of their distance is
larger than m after the warm-up stage.

3.3 Sufficiency-preserving Versatile Learning

As the contrastive learning paradigm might overemphasize the
consistency between views, we further propose a versatile learning
module to encourage the common representation to keep suffi-
ciency information as well. The definition of sufficiency in multi-
view representation learning is given below.

Definition 5. Sufficiency of multi-view representation. Let h(v)
i

be the view-specific representation of the i-th sample s
(v)
i , and hi

be the common representation. hi is of sufficiency if ∀v ∈ [1, V ],
s
(v)
i could be reconstructed from hi via a mapping φv(·).

Accordingly, the following versatile loss is proposed to pre-
serve the sufficiency of the learned representation, i.e.,

Lver =
1

2N

N∑
i=1

2∑
v=1

∥∥∥s(v)i − gv
([

h(1)
i , h(2)

i

])∥∥∥2
2
, (15)

where gv is the decoder for the v-th view, and [·, ·] denotes the
concatenation operation.

3.4 Category-level Alignment and Imputation

With the established cross-view correspondences, we design two
strategies to handle PVP and PSP in the inference stage. In brief,
the category-level alignment strategy is developed to realign the
cross-view samples, and the imputation strategy is used to recover
the missing samples. Formally,

Definition 6. Category-level Alignment (CA). For each sample
x
(v1)
i from view v1, CA realigns it with its counterparts x

(v2)
j in

each view v2 so that

V∑
v1

V∑
v2 6=v1

C(x
(v1)
i ,x

(v2)
j ) = V (V − 1), (16)

Definition 7. Category-level Imputation (CI). CI imputes the
missing sample x̂

(v1)
i by the weighted sum of its peers x̂

(v1)
j in

the same view,i.e.,

x̂
(v1)
i =

∑
j∈Ev1i

pijx
(v1)
j , (17)

where pij are the weight parameters which sum up to 1, and Ev1
i

is the set of the indices for k cross-view and within-category coun-
terparts of the observable counterpart x(v2)

i which is identified by

∑
j

V∑
v1

V∑
v2 6=v1

C(x
(v2)
i ,x

(v1)
j ) = kV (V − 1), (18)

The implementation details of SURE is presented in Algo-
rithm 1.

Algorithm 1 SURE for PVP and PSP

Input: dataset {X(v)}2v=1 of size Nx; the indefective portion
{S(v)}2v=1 of size Ns; networks {fv, gv}2v=1; ratio of
negatives to positives M ; batch size B; training epoch E.

Output: cluster assignments.
// Pair Construction
for i = 1 to Ns do

From {S(v)}2v=1, construct positives {(s(1)i , s
(2)
i )}.

for cnt = 1 to M do
From {S(v)}2v=1, construct negatives {(s(1)i , s

(2)
j ); i 6= j}

by randomly sampling.
end

end
// Training (Category-level Identification)
Compute margin m using Eq. 11.
Warmup the network using Eq. 9 as introduced in Section 3.2.
for epoch = 1 to E do

for b = 1 to num batch do
Construct a mini-batch of size B from the constructed
positive and negative pairs.
Compute the overall loss L in Eq. 4.
Update {fv, gv}2v=1 through gradient descent to minimize
L.

end
end
// Inference (Solutions to PSP and PVP)
for b = 1 to num batch do

Extract features from the current batch X of size B via
f1(x

(1)
i ) and f2(x

(2)
i ).

Compute the cross-view Euclidean distance matrix D ∈
RB×B of the learned features.
// Category-level Imputation
if {X(v)}2v=1 is of PSP (Eq. 2) then

for the missing samples x(1)
i in X do

Compute the indices E1i of k cross-view counterparts
f1(x

(1)
j ) of the existing representation f2(x

(2)
i ) with

smallest distances Dij(j 6= i).
Recover the feature h

(1)
i using Eq. 17 where pij =

1/k for simplicity.
end

end
// Category-level Alignment
if {X(v)}2v=1 is of PVP (Eq. 1) then

for x
(1)
i in X do

Realign it with its category-level counterpart x
(2)
j

through j = argminj 6=iDij .
end

end
end
Perform clustering on the realigned and recovered features of
{X(v)}2v=1.

4 EXPERIMENTS

In this section, we evaluate the proposed SURE on the clustering
task under the setting of PVP, PSP, and the hybrid of them,
respectively. The structure of this section is as follows. First,
we present the details about the network architectures and ex-
perimental configurations in Section 4.1. Then, we carry out a
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Fig. 4. Performance analysis on NoisyMNIST under the PVP setting with unaligned rates vary from 0.0 t0 0.9 with an interval of 0.1.

TABLE 1
Partially view-unaligned clustering comparisons on four widely-used multi-view datasets including three handcraft-feature-based and the

NoisyMNIST datasets, where the first and second best results are in bold and underline, respectively. “–” indicates that the method is impractical
due to the over-high time or memory consumption.

Aligned Methods Scene-15 Caltech-101 Reuters NoisyMNIST
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

Partially

CCA (NeurIPS’03) 32.73 34.24 18.80 20.06 41.56 16.62 40.87 15.82 12.68 34.46 29.83 17.89
KCCA (JMLR’02) 33.09 31.43 16.35 12.57 31.36 7.65 40.08 11.80 11.27 26.57 18.19 10.55
DCCA (ICML’13) 34.27 36.55 18.83 12.52 32.13 7.63 39.71 13.83 14.38 29.22 20.24 11.08
DCCAE (ICML’15) 33.62 36.56 18.54 11.75 30.54 6.60 41.42 12.82 13.61 27.61 19.45 10.00
LMSC (CVPR’17) 26.27 20.45 10.93 21.54 40.26 15.51 32.17 11.34 7.19 – – –
MvC-DMF (AAAI’17) 28.49 24.31 11.22 9.54 23.41 3.84 32.58 12.36 11.08 27.34 22.96 6.85
SwMC (IJCAI’17) 31.03 30.39 12.94 19.03 22.75 3.73 31.92 11.03 5.40 – – –
BMVC (TPAMI’18) 36.81 36.55 20.20 12.13 31.33 7.11 38.15 11.57 12.07 28.47 24.69 14.19
AE2-Nets (CVPR’19) 28.56 26.58 12.96 10.45 29.51 7.90 35.49 10.61 8.07 38.25 34.32 22.02
PVC (NeurIPS’20) 37.88 39.12 20.63 22.11 47.82 17.98 42.07 20.43 16.95 81.84 82.29 82.03
MvCLN (CVPR’21) 38.53 39.90 24.26 30.09 43.07 38.34 50.16 30.65 24.90 91.05 84.15 83.56
SURE (ours) 40.32 40.33 23.08 30.87 44.25 39.89 49.99 29.46 24.60 95.17 88.24 89.72

Fully

CCA (NeurIPS’03) 36.37 36.91 19.82 20.25 45.41 16.34 44.31 20.34 14.52 71.31 52.60 48.46
KCCA (JMLR’02) 37.93 37.42 21.38 21.45 45.58 17.62 50.87 22.34 20.61 96.85 92.10 93.23
DCCA (ICML’13) 36.61 39.20 21.03 27.60 47.84 30.86 47.95 26.57 12.71 89.64 88.33 83.95
DCCAE (ICML’15) 34.58 39.01 19.65 19.84 45.05 14.57 41.98 20.30 8.51 78.00 81.24 68.15
LMSC (CVPR’17) 38.46 35.50 20.54 26.87 48.80 18.06 38.56 20.12 15.48 – – –
MvC-DMF (AAAI’17) 30.99 31.35 15.68 24.35 44.98 14.82 33.83 14.89 12.59 74.39 63.22 49.79
SwMC (IJCAI’17) 33.89 32.98 11.78 30.74 36.07 7.75 33.65 16.02 5.90 – – –
BMVC (TPAMI’18) 40.74 41.67 24.19 27.59 46.43 21.28 42.39 21.86 15.14 88.31 77.01 76.58
AE2-Nets (CVPR’19) 37.17 40.47 22.24 20.79 45.01 15.89 42.39 19.76 14.87 42.11 43.38 30.42
PVC (NeurIPS’20) 38.01 39.82 21.06 21.74 49.31 18.48 38.03 20.30 10.05 87.1 92.84 93.14
MvCLN (CVPR’21) 37.90 42.31 25.58 30.41 46.90 42.99 50.60 29.63 25.7 97.30 94.16 95.31
SURE (ours) 42.75 42.48 24.57 34.16 48.04 51.45 48.35 28.53 23.71 98.39 95.41 96.50

series of quantitative analyses and ablation studies to verify the
effectiveness of the proposed SURE on handling PVP and PSP
in Section 4.2 and 4.3, respectively. Moreover, we investigate the
robustness of SURE under a more challenging situation, where
the data simultaneously suffers from PVP and PSP in Section 4.4.
Besides, we further conduct experiments on different types of
datasets to verify the generalization of SURE in Section 4.5.
Finally, we qualitatively analyze the proposed noise-robust con-
trastive loss to give further understandings in Section 4.6.

4.1 Architectures and Configurations
The encoders and decoders are all of the fully-connected ar-
chitectures. Specifically, the two encoders f1 and f2 have the
same structure of D-1024-1024-1024-10, where D denotes the
dimension of inputs. The two independent decoders are with a
dimensionality of 20-1024-1024-1024-D.

The proposed SURE is implemented in PyTorch 1.5.0 [40] and
all the evaluations are carried out on NVIDIA 2080Ti GPUs on the
Ubuntu 16.04 platform. To optimize SURE, we adopt the standard

Adam optimizer [41] with an initial learning rate of 0.001 without
scheduler and weight decay. We train the model for 80 epochs
on all datasets, with a batch size of 1024. Besides, the trade-off
parameter λ, the number of neighbors k for sample recovering
and the negative/positive ratio M are set to 0.5, 3 and 30 on all
datasets, respectively.

Seven multi-view datasets (three handcraft-feature-based, two
deep-feature-based and two raw) are used in the experiments
including

• Scene15 [42]: The dataset is composed of 4,485 images
associated with 15 indoor and outdoor scene categories.
Similar to [43], 20-dim GIST feature and 59-dim PHOG
feature, are used as two different views;

• Caltech101 [44]: The dataset consists of 9,144 images dis-
tributed over 102 categories. Following [14], two features,
i.e., 1,984-dim HOG feature and 512-dim GIST feature,
are extracted as two views;

• Reuters [45]: The used subset contains 18,758 samples
from six classes. Similar to [46], the first two languages
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(English and French) are projected into a 10-dim space by
a standard autoencoder and used as two views;

• Deep features of Caltech-101: Following [47], we use
two types of 4096-dim features extracted by DECAF [48]
and VGG19 [49] networks as two views.

• Deep features of Animal: The raw dataset consists of
10,158 images from 50 classes. Following [5], two types
of 4096-dim features extracted by DECAF and VGG19
networks are used as two views.

• NoisyMNIST [2]: The whole dataset consists of 70,000
instances of 10 classes. As some baselines cannot deal
with such a large-scale dataset, we randomly select 30,000
instances for evaluation.

• MNIST-USPS: Following [50], the USPS and MNIST
datasets are used as two views. For each dataset, 5,000
samples distributed over 10 digits are randomly selected
to constitute this dataset. The MNIST image is of 784-dim
and the USPS image is of 256-dim.

If not stated otherwise, the dataset {X(v)}2v=1 will be randomly
divided into two equal-sized subsets to simulate the fully-aligned
and complete data {S(v)}2v=1 and data {W(v)}2v=1 plagued with
PVP or PSP, respectively. In the experiment, after CI and CA,
we simply concatenate the view-specific representations as the
common representation which is further fed into k-means to obtain
the clustering results like the traditional fashion [1], [8], [16], [51]

4.2 Partially View-unaligned Clustering
In this section, we apply SURE on the partially view-unaligned
clustering task and compare it with 11 multi-view clustering
methods, followed by the time cost and visualization analyses.

4.2.1 Comparisons with State of the Arts
We compare SURE with 11 multi-view clustering baselines
including CCA [12], KCCA [11], DCCA [1], DCCAE [2],
LMSC [52], MvC-DMF [53], SwMC [54], BMVC [14], AE2-
Nets [4], PVC [8], and MvCLN [10]. For all baselines, we tune
their parameters as suggested in the referred works. As most
baselines except PVC [8] and MvCLN [10] cannot handle PVP
directly, we adopt the following two settings for a fair comparison:

• Partially view-unaligned: In this setting, we shuffle
{W(v)}2v=1 to construct the unaligned views {W(v)}2v=1

which is then combined with the aligned data {S(v)}2v=1

to obtain the partially view-unaligned data {X(v)}2v=1.
PCA is used to project {X(v)}2v=1 into a latent space with
the same dimension of SURE and then the Hungarian algo-
rithm is used to establish the cross-view correspondences.
After that, the baselines are conducted on the realigned
data. Note that for SURE, MvCLN and PVC, we directly
evaluate them on {X(v)}2v=1.

• Fully view-aligned: In this setting, all baselines excepted
PVC and MVCLN are directly conducted on the original
data which is fully-aligned. Notably, PVC, MvCNL and
SURE still realign views after training because the ground
truth correspondences are unavailable to them.

After learning the representations for different views, follow-
ing [8], [10], [55], [56], we simply concatenate them and conduct
k-means to achieve clustering except for Mvc-DMF, SwMC, and
BMVC since they could directly obtain the clustering results. The
clustering performance on three handcraft-feature-based and the

raw NoisyMNIST datasets is reported in Table 1 from which one
could observe that:

• In the first setting, our SURE significantly outperforms
nearly all the baselines on all four datasets. Specifically,
SURE surpasses the best baseline by 4.52%, 4.65% in
terms of ACC on NoisyMNIST and Scene-15, respec-
tively. This verifies the effectiveness of SURE on handling
PVP.

• In the second setting, our SURE again almost achieves the
state-of-the-art performance even though most baselines
are with the ground-truth correspondences. In some cases,
PVC, MvCLN and SURE give inferior results compared
to the former setting as they realign all the data.

4.2.2 Time Cost Comparison

The running time comparison between the Hungarian algo-
rithm [9], PVC [8] and SURE are summarized in Table 2.
The Hungarian algorithm is implemented with the package in
Scipy [57]. As shown in Table 2, our method is remarkably
efficient than the Hungarian algorithm and PVC on all datasets,
which verifies the higher accessibility of our category-level align-
ment strategy compared to the instance-level one. Particularly,
the increasing data size highlights the superiority of SURE. Note
that PVC and SURE runs on the GPU, whereas the Hungarian
algorithm run on the CPU.

TABLE 2
Time cost comparisons (in seconds). “()” indicates the time speedup

and “–” means the method does not need that stage.

Dataset Method Training Time Inference Time

Scene-15
Hungarian [9] – 3 (1×)
PVC [8] 10907 (1×) 2 (1.5×)
SURE 174 (62.7×) 1 (3.0×)

Caltech-101
Hungarian [9] – 49 (1×)
PVC [8] 11840 (1×) 7 (7.0×)
SURE 408 (29.0×) 2 (24.5×)

Reuters
Hungarian [9] – 290 (1×)
PVC [8] 18715 (1×) 30 (9.7×)
SURE 773 (24.2×) 3 (96.7×)

NoisyMNIST
Hungarian [9] – 3778 (1×)
PVC [8] 53071 (1×) 34 (111.1×)
SURE 1333 (39.8×) 6 (629.7×)

TABLE 3
Effectiveness of two losses on PVP. “3” and “5” represent SURE with

and without the corresponding loss, respectively.

Lncl Lver ACC NMI ARI CAR

5 5 76.48 65.83 62.08 81.15
5 3 81.12 69.98 67.58 82.05
3 5 91.05 84.15 83.56 87.36
3 3 95.17 88.24 89.72 87.62

4.2.3 Ablation Studies

In this section, we carry out the following ablation studies on
NoisyMNIST to investigate the effectiveness of each module. To
help understand the performance of our realignment, we introduce
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Fig. 5. Visualization of cross-view correspondences on NoisyMNIST.
From top to bottom, the rows correspond to the anchor view, the view
with the ground truth correspondence, the category-level view realigned
by SURE, and the unaligned view, respectively.

TABLE 4
Effectiveness of two losses on PSP. “3” and “5” denote SURE with and

without the corresponding loss, respecitively.

Lncl Lver ACC NMI ARI

5 5 82.50 70.62 68.07
5 3 83.19 72.51 70.45
3 5 92.30 84.77 84.61
3 3 93.01 85.40 85.92

a new metric termed Category-level Alignment Rate (CAR).
Mathematically,

CAR =
1

N

N∑
i=1

δ
(
C
(
x
(1)
i ,x

(2)
i

))
, (19)

where δ is the Dirichlet function, and N is the number of data
pairs.

Effectiveness of Two Losses: To evaluate the indispensability
of each loss in SURE, we conduct the following experiments by
only using one of the noise-robust contrastive loss Lncl and the
versatile loss Lver. The results are reported in Table 3. Note that
the vanilla loss Lvan is used as an alternative of Lncl when
the latter is not used. As shown in Table 3, Lncl and Lver

play critic roles in SURE. Particularly, Lncl remarkably improves
the performance as it could help SURE learning view-consistent
representations while preventing the FNPs from dominating the
network optimization. Besides, one could observe that Lver

contributes more to the improvement on clustering performance
compared to the CAR. This phenomenon verifies our claim that
the versatile loss could help the common representation retain the
sufficiency to boost the clustering performance.

Influence of Different Unaligned Rates: To evaluate the per-
formance of SURE on partially view-unaligned data w.r.t. different
unaligned rates, we compare SURE with PVC [8] by increasing
the unaligned rate from 0% to 90% with an interval of 10% on
NoisyMNIST. The results are summarized in Fig. 4, from which
one could have the following observations. First, 50% aligned
data (i.e., 50% unaligned rate) is adequate for SURE to learn the
latent alignment patterns. Second, SURE outperforms PVC under
different unaligned rates in most cases, which demonstrates the
effectiveness and robustness of SURE in handling PVP.

4.2.4 Visualization
To further understand the effect of the realignment solution, we
visualize some realigned samples on NoisyMNIST in Fig. 5. The
results show that SURE establishes the correct correspondence for

the anchors, which illustrates the powerful alignment ability of
SURE.

4.3 Partially Sample-missing Clustering
In this section, we evaluate SURE on the task of partially sample-
missing clustering comparing with 10 multi-view clustering meth-
ods to verify the effectiveness of SURE on handling PSP.

4.3.1 Comparisons with State of the Arts
We compare SURE with 10 multi-view clustering baselines
including CCA [12], KCCA [11], DCCA [1], DCCAE [2],
BMVC [14], AE2-Nets [4], PMVC [51], UEAF [58], DAIMC [16]
and EERIMC [17]. To evaluate their performance on the partially
sample-missing clustering task, we randomly discard some sam-
ples of several instances in an arbitrary view, resulting in the
incomplete dataset. The missing rate is defined as γ = m/n,
where n is the size of dataset and m is the number of instances
with missing samples. For fair comparisons, we conduct SURE
and baselines under two settings, i.e., γ = 0.5 (denoted by Incom-
plete) and γ = 0 (denoted by Complete). As the first six baselines
cannot handle the incomplete data directly, we preprocess them by
filling the missing samples with the mean of the entire view.

According to Table 5, SURE is remarkably superior to other
baselines in both two settings on three handcraft-feature-based
and the raw NoisyMNIST datasets. Particularly, in the Incomplete
setting, SURE achieves an NMI improvement of 33.7% and 35.8%
on the Scene and NoisyMNIST dataset, respectively. Besides, in
the Complete setting, SURE still gains an ARI improvement of
14.9% and 58.1% on the NoisyMNIST and Caltech-101 dataset,
respectively. The promising performance improvement indicates
the robustness of SURE against sample missing.

4.3.2 Ablation Studies
In this section, we conduct the following ablation studies to
evaluate the influence of two losses of SURE, the missing rate
γ, the peer numbers on partially sample-missing clustering.

Effectiveness of Two Losses: Similar to the ablation study
on the PVP task, we investigate the importance of Lncl and
Lver for the PSP task. As shown in Table 4, both two losses
are indispensable to conquer PSP.

Performance under Different Missing Rate: We investigate
the performance of SURE by conducting experiments on the
NoisyMNIST dataset with missing rates varying from 0 to 0.9
with an interval of 0.1. As depicted in Fig. 6, SURE significantly
outperforms all baselines under different missing rates, which
demonstrates the effectiveness of SURE in handling PSP.

Influence of Different Peer Numbers: As elaborated in
Section 3.1 and 3.4, SURE recovers the missing samples using
the combination of their k peers. To evaluate the influence of k,
we investigate its value in the range of {1, 3, 5, 7, 9}. Fig. 8 shows
that our SURE is quite robust to the number of peers. Notably, in
our implementation, we set k = 3 for all datasets for simplicity.

4.3.3 Visualization
In this section, we show the powerful recovering ability of SURE
by visualizing the imputed samples in Fig 7. From the results, one
could see that SURE successfully recovers the missing samples. It
is interesting to note that the recovered samples rarely contain the
interfering information (e.g., noises) comparing with the original
samples, which could boost the downstream discrimination task
such as clustering.
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TABLE 5
Partially sample-missing clustering comparisons on four widely-used multi-view datasets, where the first and second best results are in bold and

underline, respectively.

Missing Methods Scene-15 Caltech-101 Reuters NoisyMNIST
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

Incomplete

CCA (NeurIPS’03) 27.11 25.78 10.49 16.07 35.60 3.54 36.82 10.96 6.63 50.44 36.57 19.59
KCCA (JMLR’02) 27.15 26.24 10.56 12.38 29.02 6.55 46.13 17.44 15.26 53.79 48.15 28.84
DCCA (ICML’13) 28.78 28.35 13.24 15.39 38.38 13.13 45.84 26.08 18.00 65.75 61.72 41.17
DCCAE (ICML’15) 29.01 29.13 12.86 15.34 38.11 12.76 47.04 28.00 14.48 65.42 62.87 38.32
BMVC (TPAMI’18) 32.45 30.87 11.56 18.92 34.16 4.3 32.1 6.98 2.89 30.71 19.16 10.6
AE2-Nets (CVPR’19) 22.44 23.43 9.56 6.93 20.29 3.95 29.08 7.55 4.84 29.88 23.78 11.81
PMVC (AAAI’14) 25.47 25.37 11.31 21.79 44.74 19.05 29.32 7.42 4.42 33.13 25.49 14.62
UEAF (AAAI’19) 28.95 26.92 8.37 21.50 42.19 13.78 33.32 20.06 12.19 37.45 34.42 25.71
DAIMC (IJCAI’18) 27.00 23.47 10.62 23.57 44.11 17.2 40.94 18.66 15.04 33.81 26.42 15.96
EERIMVC (TPAMI’20) 31.50 31.11 14.82 27.06 45.08 19.98 29.77 12.01 4.21 55.62 45.92 36.76
SURE (ours) 39.60 41.58 23.49 32.19 45.60 43.26 47.18 30.89 23.32 93.01 85.40 85.92

Complete

CCA (NeurIPS’03) 36.37 36.91 19.82 20.25 45.41 16.34 44.31 20.34 14.52 71.31 52.60 48.46
KCCA (JMLR’02) 37.93 37.42 21.38 21.45 45.58 17.62 50.87 22.34 20.61 85.54 86.51 82.58
DCCA (ICML’13) 36.61 39.20 21.03 27.60 47.84 30.86 47.95 26.57 12.71 89.64 88.33 83.95
DCCAE (ICML’15) 34.58 39.01 19.65 19.84 45.05 14.57 41.98 20.30 8.51 78.00 81.24 68.15
BMVC (TPAMI’18) 40.50 41.20 24.11 27.59 46.43 21.28 42.39 21.86 15.14 88.31 77.01 76.58
AE2-Nets (CVPR’19) 37.17 40.47 22.24 20.79 45.01 15.89 42.39 19.76 14.87 52.83 51.24 39.52
PMVC (AAAI’14) 30.83 31.05 14.98 26.92 50.5 26.00 32.5 11.11 7.48 41.09 36.36 24.47
UEAF (AAAI’19) 34.37 36.69 18.52 25.30 46.02 18.46 40.19 24.34 15.94 66.22 64.34 54.83
DAIMC (IJCAI’18) 32.09 33.55 17.42 26.4 49.18 19.00 40.78 21.15 15.98 38.40 34.66 22.98
EERIMVC (TPAMI’20) 39.60 38.99 22.06 23.98 45.61 17.19 33.21 14.28 3.9 65.66 57.60 51.34
SURE (ours) 40.95 43.19 25.01 34.59 48.30 48.79 49.06 29.91 23.56 98.36 95.38 96.43

Fig. 6. Performance analysis on NoisyMNIST with different missing rates.
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Fig. 7. Samples imputed by SURE on NoisyMNIST. The first and second
row corresponds to the complete view and missing view, respectively.
The last row are the samples recovered by our SURE.

4.4 Robust Multi-view Clustering
In this section, we investigate the effectiveness of SURE on the
clustering task under a more challenging setting where PSP and
PVP simultaneously occur.

4.4.1 Comparisons with State of the Arts
As there is no solution for handling the case where PSP and PVP
simultaneously occur, we choose the best baselines for PVP and
PSP, namely, PVC [8], MvCLN [10], CCA [12], KCCA [11],
DCCA [1], DCCAE [2], BMVC [14], PMVC [51], DAIMC [16]
and EERIMC [17] as comparative methods in this setting. To

Fig. 8. Performance on NoisyMNIST with different of peer numbers.

simulate the setting, we randomly remove some samples with a
missing rate of γ = 0.5 in the previously constructed unaligned
portion {W(v)}2v=1. Again, since the former six baselines cannot
directly handle PSP, we first impute the missing samples by using
the mean of their corresponding view and conduct these baselines
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(a) Scene-15 (b) Caltech-101

(c) Reuters (d) NoisyMNIST

Fig. 9. Clustering comparisons on four widely-used multi-view datasets under the setting where PSP and PVP simultaneously occur. The numbers
and bars denote the average performances and standard deviations.

Fig. 10. Performance on NoisyMNIST with different unaligned rates and missing rates. The Heights of the bar denote the performance.

on the preprocessed dataset. For the other three baselines, we
directly apply them on the constructed datasets.

As depicted in Fig. 9, SURE still achieves state-of-the-art per-
formance on three handcraft-feature-based and the raw NoisyM-
NIST datasets, which proves the robustness of our method even
under such a challenging case. Notbly, PVC might achieve trivial
solutions, and the possible reason is the severely damaged view
consistence caused by the wrong realignments on naively imputed
data.

4.4.2 Ablation Studies

To further investigate the robustness of SURE on simultaneously
handling PVP and PSP, following [59], we carry out experiments
on the cases where both unaligned rate and missing rate vary

from 0.1 to 0.9 with an interval of 0.2. As shown in Fig. 10,
SURE achieves stable results with different missing rates. Besides,
as the unaligned rate decreases, SURE gradually achieves better
performances, which demonstrates that SURE benefits from more
training data.

4.5 Generalization among Different Types of Dataset
The quantitative results and qualitative analyses have well val-
idated the effectiveness of SURE on four widely used datasets
including three handcraft-feature-based and one raw-data-based.
In this section, to further verify the generalization of SURE
among different types of datasets, we further conduct experiments
on deep features and end-to-end learning. For the evaluation on
deep features, Caltech-101 [47] and Animal [5] were used. For
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TABLE 6
Clustering performance on different types of datasets under the setting of PVP, PSP and both of them respectively, where the first and second best

results of each setting are in bold and underline

Type Methods Deep Caltech-101 Deep Animal MNIST-USPS
ACC NMI ARI ACC NMI ARI ACC NMI ARI

Partially Aligned
PVC (NeurIPS’20) 18.59 48.89 14.60 3.83 0.00 0.00 86.54 78.08 74.60
MvCLN (CVPR’21) 35.55 60.99 40.90 26.24 40.24 19.74 89.96 81.36 80.40
SURE (ours) 46.18 70.68 32.98 27.65 40.76 19.85 92.14 82.83 83.47

Fully Aligned
PVC (NeurIPS’20) 20.54 51.40 15.66 3.83 0.00 0.00 95.28 90.36 90.05
MvCLN (CVPR’21) 39.55 65.29 32.81 35.28 54.19 29.37 98.76 96.47 97.27
SURE (ours) 43.77 70.05 29.46 35.76 53.62 29.51 99.12 97.49 98.05

Incomplete
DCCA (ICML’13) 27.33 57.60 20.70 26.64 41.54 15.74 78.29 75.69 68.33
DCCAE (ICML’15) 29.08 58.79 23.38 22.95 37.60 12.61 79.52 79.19 68.40
SURE (ours) 34.55 57.77 19.87 30.34 48.92 24.80 92.34 84.99 84.31

Complete
DCCA (ICML’13) 45.13 67.07 33.95 33.67 47.86 22.38 87.19 91.65 86.73
DCCAE (ICML’15) 45.81 68.56 37.65 30.00 43.82 17.97 96.80 97.73 96.58
SURE (ours) 42.03 69.01 28.89 36.80 55.00 30.74 99.31 98.06 98.47

PSP+PVP
DCCA (ICML’13) 24.35 43.26 17.56 21.87 28.92 10.14 69.02 46.47 44.22
MvCLN (CVPR’21) 33.94 56.01 32.29 24.99 36.56 14.95 81.02 69.81 59.44
SURE (ours) 38.87 61.37 23.40 25.18 33.92 15.97 83.02 65.30 66.07

the evaluation on end-to-end learning, the MNIST-USPS raw
dataset [50] was used. For each test, we compared SURE with
two most competitive methods. Note that the experiments on the
NoisyMNIST (Section 4.2-4.4) and MNIST-USPS raw dataset are
both conducted in an end-to-end manner. The difference is that
the two views of NoisyMNIST are constructed from the MNIST
dataset while the ones of MNIST-USPS are from different datasets
which is more general. In the new experiments, we still used the
same backbone and fixed the hyper-parameters for all the datasets.
For the baselines, we have tuned their parameters as suggested in
the referred works. As shown in Table 6, SURE achieves the best
performance on three new datasets under three different settings
in most case. Noticed, SURE performs remarkably better on
deep features than handcrafted ones w.r.t. Caltech-101. This result
proves that the performance of SURE could be further improved
if more powerful deep features are used.

4.6 Effectiveness of the Noise-robust Contrastive Loss
In this section, we conduct a series of qualitative and parameter
analyses on the NoisyMNIST and Reuters dataset to verify the
reversed and slow optimization properties of the proposed noise-
robust loss.

4.6.1 Pairwise Distance Distribution
To show that our noise-robust loss could mitigate or even eliminate
the influence of FNPs, we plot the distribution of four kinds of
pairs after training with our noise-robust loss and vanilla loss,
respectively. As shown in Fig 11(a), after training with our noise-
robust loss, FNPs are enforced to decrease their distance just as the
positive pairs, which verifies its “reversed optimization” property
once. In Fig. 11(b), after training with our noise-robust loss, the
distance of FNPs is smaller than that trained with the vanilla loss,
which verifies its “slow optimization” property.

4.6.2 Influence of the Positive/Negative Pairs Ratio
Our SURE uses the fully-aligned and complete data as positives
and randomly selects cross-view samples as negatives. In other
words, it is feasible to obtain more negative pairs. However,
an exorbitant negatives/positive ratio M could contribute to the

(a) NoisyMNIST (b) Reuters

Fig. 11. The distribution of four kinds of pairs on NoisyMNIST and
Reuters after training, where PP, TNP, FNP robust, and FNP vanilla
denote positive pairs, true negative pairs, false-negative pairs optimized
by our loss in Eq. 5, and false-negative pairs optimized by the vanilla
loss in Eq. 9. For a clear illustration, we randomly sample 500 pairs of
each kind and let them obey the normal distribution on the y-axis. The
x-axis denotes the ratio of the average distance to the margin m.

unbalanced data distribution. To explore the influence of M , we
investigate the performance of SURE by increasing M from 1 to
50 with an interval of 5. As depicted in Fig. 12(a), a moderately
large M boosts the performance. Notably, SURE achieves stable
performances for M ∈ [20, 40], which demonstrates that SURE
is insensitive to this parameter.

4.6.3 Influence of the Switching Time between Two Opti-
mization Stages
As elaborated in Section 3.2, the optimization of SURE is com-
posed of two stages which are automatically switched in a data-
driven way. In this section, we carry out experiments to evaluate
the performance of SURE with the following seven switching
criteria, i.e., we switch to the second optimization stage when
the mean distance of negative pairs reaches 0.0m, 0.2m, 0.4m,
0.6m, 0.8m, 1.0m, or 1.2m, where the marginm is calculated by
Eq. 11. As depicted in Fig. 12(b), SURE performs stably within
the range of [0.2m, 1.0m]. On the one hand, without the warm-
up stage (i.e., the 0.0m case), SURE will achieve an inferior
result because TNPs and FNPs are not separated well as discussed
before. On the other hand, when the switching time is too late
(1.2m), the distance of most FNPs may approach or even surpass
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(a) (b) (c)

Fig. 12. Clustering performance w.r.t. (a) negatives/positives ratio M ; (b) different switching times of two optimization stages; and (c) reconstruction
coefficient λ on the NoisyMNIST dataset.

m, and thus degrading the effect of our noise-robust contrastive
loss.

4.6.4 Parameter Analysis
To investigate the influence of the trade-off parameter λ
in Eq. 4, we try different values within the range of
{0.05, 0.5, 5.0, 50.0, 500.0} on NoisyMNIST. As shown in
Fig 12(c), an over-high value of λ is harmful to SURE as our
noise-robust contrastive loss would be almost neglected.

5 CONCLUSION

In this paper, we propose a robust multi-view clustering method
which could be the first unified framework for handling PVP and
PSP. Different from most existing works that resort to instance-
level alignment or imputation, we treat PVP and PSP as a unified
category-level identification task which is achieved using a novel
noise-robust contrastive loss. We theoretically and experimentally
show that our loss could mitigate or even eliminate the influence
of the false-negative pairs introduced during the pair construction.
Extensive experiments verify the effectiveness and efficiency of
the proposed method. In the future, we would like to investigate
how to endow our method with the ability to cope with fully
instead of partially view-unaligned and sample-missing data. Be-
sides, although our method could be easily extended to handle the
data with a larger number of views by focusing on two of them
at a time, it is worth exploring how to reduce its computational
complexity for handling such a case.
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