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Abstract
This paper proposes to perform online clustering by conducting twin contrastive learning (TCL) at the instance and cluster
level. Specifically, we find thatwhen the data is projected into a feature spacewith a dimensionality of the target cluster number,
the rows and columns of its feature matrix correspond to the instance and cluster representation, respectively. Based on the
observation, for a given dataset, the proposed TCL first constructs positive and negative pairs through data augmentations.
Thereafter, in the row and column space of the feature matrix, instance- and cluster-level contrastive learning are respectively
conducted by pulling together positive pairs while pushing apart the negatives. To alleviate the influence of intrinsic false-
negative pairs and rectify cluster assignments, we adopt a confidence-based criterion to select pseudo-labels for boosting
both the instance- and cluster-level contrastive learning. As a result, the clustering performance is further improved. Besides
the elegant idea of twin contrastive learning, another advantage of TCL is that it could independently predict the cluster
assignment for each instance, thus effortlessly fitting online scenarios. Extensive experiments on six widely-used image and
text benchmarks demonstrate the effectiveness of TCL. The code is released on https://pengxi.me.

Keywords Deep clustering · Online clustering · Unsupervised learning · Contrastive learning

1 Introduction

Clustering is one of the most fundamental tasks in machine
learning and data mining. It aims to group data into different
clusters without label information, such that the within-
cluster data come from the same class or share similar
semantics. Besides facilitating general representation learn-
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ing (Caron et al., 2018, 2020), clustering is also helpful in
a variety of real-world applications, such as face recogni-
tion (Shen et al., 2021), medical analysis (Thanh et al., 2017),
and gene sequencing (Kiselev et al., 2019).

During past years, most clustering methods (Chen & Ler-
man, 2009; Nie et al., 2011; Zhang et al., 2012; Liu et al.,
2016, 2017; Nie et al., 2019; Tang et al., 2019) mainly focus
on developing different similarity metrics and clustering
strategies. Though grounded in theory, their performance is
limited by the adopted shallow models. Recently, deep clus-
tering (Ghasedi Dizaji et al., 2017; Li et al., 2020) has shown
promising results on various benchmarks by extracting rep-
resentative features to facilitate downstream clustering. Early
deep clustering methods (Peng et al., 2016; Yang et al.,
2016; Caron et al., 2018; Xie et al., 2016) iteratively per-
form representation learning and clustering to bootstrap each
other. However, this kind of method usually needs the entire
dataset to perform offline clustering, which is less attrac-
tive for large-scale data and even impractical for streaming
data. Luckily, the offline limitation could be solved by the
idea of “label as representation” (Peng et al., 2015, 2019).
By directly and independently predicting cluster assignment
for each instance, large-scale and online clustering could be
achieved (Hu et al., 2017; Ji et al., 2019; Huang et al., 2020).
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Very recently, the rapid growth of contrastive learning (Chen
et al., 2020a; Zbontar et al., 2021) significantly improves the
performance of unsupervised representation learning. Moti-
vated by their successes, some contrastive learning based
clustering methods (Han et al., 2020; Li et al., 2021b; Niu &
Wang, 2021; Van Gansbeke et al., 2020) are proposed, which
achieve state-of-the-art results.

In this work, we propose an end-to-end online deep clus-
teringmethod by conducting twin contrastive learning (TCL)
based on the observation shown in Fig. 1. In brief, the
rows and columns of the feature matrix correspond to the
instance and cluster representations, respectively. Under this
observation, TCL conducts contrastive learning in the row
and column space of the feature matrix to jointly learn
the instance and cluster representation. Specifically, TCL
first constructs contrastive pairs through data augmentations.
Different from most existing contrastive learning methods
that use weak augmentations proposed in SimCLR (Chen
et al., 2020a), we provide a new effective augmentation
strategy by mixing weak and strong transformations. With
the constructed pairs, TCL performs contrastive learning at
both the instance and cluster level. The instance-level con-

Fig. 1 Our key observation and basic idea. By projecting data into a
feature space with the dimensionality of cluster number, the element in
the i-th row and k-th column of the feature matrix represents the prob-
ability of instance i belonging to cluster k. Namely, rows correspond to
the cluster assignment probabilities, which are special representations
of instances. More interestingly, if we look at the feature matrix from
the column view, each column actually corresponds to the cluster dis-
tribution over the data, which could be seen as a special representation
of the cluster. As a result, the instance- and cluster-level representation
learning (e.g., contrastive learning) could be conducted in the row and
column space, respectively

trastive learning aims to pull within-class instances together
while pushing between-class instances apart.And the cluster-
level contrastive learning aims to distinguish distributions
of different clusters while attracting distributions of the
same cluster under different augmentations. To relieve the
influence of intrinsic false-negative pairs and rectify cluster
assignments, we progressively select the confident predic-
tions (i.e., those with cluster assignment probability close to
one-hot) to fine-tune the twin contrastive learning. Such a
fine-tuning strategy is based on the observation that the pre-
dictions with high confidence are more likely to be correct
and thus could be used as pseudo labels. Once the model
converges, it could independently make cluster assignments
for each instance in an end-to-end manner to achieve clus-
tering. The major contributions of this work are summarized
as follows:

– We reveal that the rows and columns of the feature
matrix intrinsically correspond to the instance and clus-
ter representations. On top of that, we propose TCL that
achieves clustering by simultaneously conducting con-
trastive learning at the instance and cluster level;

– We provide a new data augmentation strategy by mixing
weak and strong transformations, which naturally fits our
TCL framework and is proved to be effective for both
image and text data in our experiments;

– To alleviate the influence of intrinsic false negatives
and rectify cluster assignments, we adopt a confidence-
based criterion to generate pseudo-labels for fine-tuning
both the instance- and cluster-level contrastive learning.
Experiments show that such a fine-tuning strategy could
further boost the clustering performance;

– The proposed TCL clusters data in an end-to-end and
online manner, which only needs batch-wise optimiza-
tion and thus could handle large-scale datasets.Moreover,
TCL could handle streaming data since it could timely
make cluster assignments for new coming data without
accessing the whole dataset.

2 RelatedWork

In this section, we give a brief review on contrastive learning
and deep clustering, followed by a discussion on the connec-
tion between these two topics.

2.1 Contrastive Learning

Recently, the contrastive learning paradigm shows its power
in unsupervised representation learning (Caron et al., 2020;
Chen et al., 2020a; Chen & He, 2020; Grill et al., 2020; He
et al., 2020; Hu et al., 2020; Zbontar et al., 2021). It first con-
structs positive and negative pairs for each instance and then
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projects them into a subspace to maximize the similarities of
positive pairs andminimize those of the negatives (Hadsell et
al., 2006). The most straightforward solution is to use labels
to guide the pair construction (Khosla et al., 2020). How-
ever, in the unsupervised setting, other strategies are needed
to construct and utilize contrastive pairs. For example, Sim-
CLR (Chen et al., 2020a) constructs positive and negative
pairs through augmentations within mini-batch. MoCo (He
et al., 2020) recasts contrastive learning as a dictionary look-
up task by building a dynamic dictionary with a queue and
a moving-averaged encoder. To avoid the efforts in building
negative pairs, BYOL (Grill et al., 2020) and SimSiam (Chen
& He, 2020) replace negative pairs with an online predictor
that prevents the network from collapsing into trivial solu-
tions.As an alternative,AdCo (Hu et al., 2020) directly learns
negative samples in an adversarial manner. Lately, Barlow
Twins (Zbontar et al., 2021) performs contrastive learning
from a redundancy-reduction perspective and achieves com-
parable results.

There are two major differences between our work and
these contrastive learningmethods. First, ourmethod concur-
rently conducts row- and column-wise contrastive learning
at both the instance and cluster level while most existing
methods solely perform row-wise contrastive learning at the
instance level. Such an elegant idea is based on our observa-
tion that rows and columnsof the featurematrix correspond to
the instance and cluster representations respectively. Second,
the aforementioned methods adopt the weak augmentation
strategy proposed in SimCLR (Chen et al., 2020a) because
strong augmentations (RandAugment Cubuk et al. 2020 to be
specific) experimentally show inferior performance (Wang&
Qi, 2021). Though there are some works (Van Gansbeke et
al., 2020) that use strong augmentations to fine-tune the net-
work, it is still unclear how to directly facilitate contrastive
learning with strong augmentations. From this perspective,
this work could shed some light on how to effectively utilize
weak and strong transformations by using the proposed TCL
framework (more details in Table 6). The proposed augmen-
tation strategy is suitable for various types of data, such as
images and texts.

2.2 Deep Clustering

Both effective clustering strategies and discriminative fea-
tures are essential in achieving good clustering. Thanks to
the powerful representability of deep neural networks, deep
clustering methods have attracted more and more attention
in recent (Asano et al., 2019; Caron et al., 2018; Guo et al.,
2017; Li et al., 2020, 2021a; Peng et al., 2016; Xie et al.,
2016; Yang et al., 2016) . To name a few, JULE (Yang et
al., 2016) iteratively learns data representation and performs
hierarchical clustering.DeepCluster (Caron et al., 2018) clus-
ters data using the prior representation and uses the cluster

assignment of each sample as a classification target to learn
the new representation. Though representation learning and
clustering could bootstrap each other to some extent, this kind
of two-stage method might suffer from errors accumulated
during alternations. Another weakness of these methods is
that they could not be applied in the online scenario, where
data is presented in streams and only a batch of samples are
accessible at one time. Specifically, JULE needs the global
similarity to decide which sub-clusters should be merged,
while DeepCluster and SL (Asano et al., 2019) need to per-
form offline k-means or solve a global optimal transport
problem to acquire cluster assignments. To overcome the
offline limitation, some online deep clustering methods are
proposed (Dang et al., 2021; Huang et al., 2020; Ji et al.,
2019; Li et al., 2021b; Zhong et al., 2020). For example,
IIC (Ji et al., 2019) discovers clusters by maximizing mutual
information between the cluster assignments of data pairs.
PICA (Huang et al., 2020) learns the most semantically plau-
sible data separation by maximizing the partition confidence
of the clustering solution. Very recently, some studies (Niu&
Wang, 2021; Park et al., 2020; VanGansbeke et al., 2020) use
pseudo-labels generated by preliminary clustering, namely,
self-labeling, to further improve the clustering performance
in a multi-stage manner.

Unlike most of the above works that perform representa-
tion learning and clustering in multiple stages, our method
unifies these two tasks into the twin contrastive learning
framework. Such a one-stage learning paradigm helps the
model to learn more clustering-favorable representations
compared with previous works that solely conduct instance-
level contrastive learning (Niu&Wang, 2021; VanGansbeke
et al., 2020). In the boosting stage, despite rectifying the
cluster assignments based on the features extracted in the
early stage (Niu & Wang, 2021), we could also fine-tune
the instance-level contrastive learning to alleviate the influ-
ence of false-negative pairs thanks to our one-stage learning
paradigm.

2.3 Connection Between Contrastive Learning and
Deep Clustering

Both representation learning and deep clustering share a
common goal, namely, extracting discriminative features.
Recently, a variety of works have shown that contrastive
learning and deep clustering could bootstrap each other.
On the one hand, the performance of representation learn-
ing could be enhanced by integrating the clustering prop-
erty (Wang et al., 2021). For example, instead of constructing
pairs between samples, SwAV (Caron et al., 2020) first per-
forms clustering by solving an optimal transport problem and
then contrasts the instances and the learned cluster centers.
Similarly, PCL (Li et al., 2021a) pulls each sample to its cor-
responding cluster centerwith a prototypical contrastive loss.
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Fig. 2 The pipeline of Twin Contrastive Learning (TCL). First, it con-
structs data pairs through weak and strong augmentations. A shared
backbone is used to extract features from augmented samples. Then,
two independent MLPs (σ denotes the ReLU activation and ∼ denotes
the Softmax operation to produce soft labels) project the features into

the row and column space wherein the instance- and cluster-level con-
trastive learning are conducted, respectively. Finally, pseudo labels are
selected based on the confidence of cluster predictions to alleviate the
influence of false-negative pairs and rectify previous predictions, which
further boosts the clustering performance

In addition, Van Gansbeke et al. (2021) and Dwibedi et al.
(2021) show that leveraging the local neighborhood can be
effective for contrastive learning. On the other hand, recent
deep clustering methods such as SCAN (Van Gansbeke et
al., 2020), CC (Li et al., 2021b), and SPICE (Niu & Wang,
2021) have achieved state-of-the-art performance thanks to
the contrastive learning paradigm.

Though the combination of contrastive learning and deep
clustering has brought promising results,most existingworks
still treat these two tasks separately. Different from exist-
ing works, this study elegantly unifies contrastive learning
and deep clustering into the twin contrastive learning frame-
work, which might bring some insights to both communities.
Notably, this study is a significant extension of (Li et al.,
2021b) with the following improvements:

– In this paper, we propose a confidence-based boosting
strategy to fine-tune both the instance- and cluster-level
contrastive learning. Specifically, most confident pre-
dictions are selected as pseudo labels based on the
observation that they are more likely to be correct. Upon
that, we use the generated pseudo labels to alleviate the
influence of false-negative pairs (composed of within-
class samples) in instance-level contrastive learning, and
adopt cross-entropy loss to rectify cluster assignments
in cluster-level contrastive learning. Notably, such a
twin self-training paradigm is benefited from our TCL
framework since the cluster assignments (from CCH)
of instance features (from ICH) could be obtained in an
online manner.

– In this paper, we propose a data augmentation strategy by
mixing weak and strong transformations. Though such
an augmentation strategy is seemingly simple, its effec-
tiveness is closely correlated with the proposed TCL
framework. Previous works have shown that directly
introducing strong augmentation into the contrastive
learning framework could lead to sub-optimal perfor-
mance (Wang & Qi, 2021). Different from such a con-
clusion, we show that the mixed augmentation strategy
naturally fits the proposed TCL framework (see Table 6
for more details).

– To investigate the generalization ability of the proposed
method, we verify the effectiveness of our method in text
clustering despite the difference in data augmentation.
Experimental results demonstrate the superiority of the
proposed TCL framework, mixed augmentation strategy,
and confidence-based boosting strategy. A comparable
performance gain is achieved by this journal extension
compared with the previous conference paper (Li et al.,
2021b).

3 Method

The pipeline of the proposed TCL is illustrated in Fig. 2.
The model consists of three parts, namely, the contrastive
pair construction (CPC), the instance-level contrastive head
(ICH), and the cluster-level contrastive head (CCH), which
are jointly optimized through twin contrastive learning and
confidence-based boosting. Specifically, in the twin con-
trastive learning stage, CPC first constructs contrastive pairs
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through data augmentations and then projects the pairs into
a latent feature space. After that, ICH and CCH conduct
instance- and cluster-level contrastive learning at the row
and column space of the feature matrix respectively by
minimizing the proposed twin contrastive loss. To alleviate
the influence of intrinsic false-negative pairs in contrastive
learning and to rectify cluster assignments, we propose a
confidence-based boosting strategy (CB). In detail, some
confident predictions are selected as pseudo labels to fine-
tune the instance- and cluster-level contrastive learning with
the self-supervised contrastive loss and self-labeling loss,
which further improves the clustering performance.

Once the model converges, CCH could make cluster
assignments for each instance to achieve online clustering.
Notably, though the twin contrastive learning can be directly
conducted on the same contrastive head as indicated in our
basic idea, we experimentally find that decoupling it into two
independent subspaces improves the clustering performance
(see Sect. 4.6.4 for detailed discussion).

In this section, we first introduce the construction of con-
trastive pairs in CPC, then present the twin contrastive loss
for training, and finally elaborate on our confidence-based
boosting strategy.

3.1 Contrastive Pair Construction

Inspired by recent developments of contrastive learning
(Caron et al., 2020; Chen et al., 2020a), the proposed
TCL constructs contrastive pairs through data augmentation.
Specifically, for each instance xi , CPC stochastically sam-
ples and applies two groups of transformations t and t ′ from
two augmentations families T and T ′ respectively, result-
ing in two correlated samples (i.e., a data pair) denoted as
x̃2i−1 = t(xi ) and x̃2i = t ′(xi ).

Recent studies suggest that data augmentation is essential
in contrastive learning methods (Caron et al., 2020; Chen
et al., 2020a), and most of them adopt weak augmenta-
tions (Chen et al., 2020a; Grill et al., 2020; Zbontar et al.,
2021) since directly using strong augmentations experimen-
tally leads to inferior performance (Wang & Qi, 2021). In
this work, we provide a novel data augmentation strategy
by mixing weak and strong transformations, which achieves
superior performance on both image and text data. To be spe-
cific, for image data, we adopt the transformations proposed
by SimCLR (Chen et al., 2020a) and RandAugment (Cubuk
et al., 2020) as the weak T and strong T ′ augmentation,
respectively. For text data, we employ the synonym replace-
ment strategy (Zhang et al., 2021a) as theweak augmentation
T and use the sentence operations (Wei & Zou, 2019) as the
strong augmentation T ′.

Given the constructed pairs, a shared backbone f (·) is
used to extract features h from the augmented samples
through h2i−1 = f (x̃2i−1) and h2i = f (x̃2i ). Specific back-

bones are used to handle different types of data. In this work,
we adopt ResNet (He et al., 2016) and Sentence Trans-
former (Reimers & Gurevych, 2019) as the backbone for
image and text data, respectively.

3.2 Twin Contrastive Learning

In the training stage, the backbone, the instance-level con-
trastive head (ICH), and the cluster-level contrastive head
(CCH) are jointly optimized according to the following twin
contrastive loss, i.e.,

Ltrain = Lins + Lclu, (1)

where Lins is the instance-level contrastive loss which is
computed on ICH and Lclu denotes the cluster-level con-
trastive loss computed on CCH.

In general, one may add a dynamic weight parameter
to balance the two losses across the training process, but
explicitly tuning the weight could violate the unsupervised
constraint. In practice, we find a simple addition of the two
contrastive losses already works well.

3.2.1 Instance-Level Contrastive Loss

The instance-level contrastive learning aims to maximize the
similarities of positive pairs while minimizing those of neg-
ative ones. To achieve clustering, ideally, one could define
pairs of within-class instances to be positive and those of
between-class instances to be negative. However, since no
prior label information is given, we construct instance pairs
based on data augmentations as a compromise. To be spe-
cific, the positive pairs consist of samples augmented from
the same instance, and the negative pairs otherwise.

Formally, for a mini-batch of size N , TCL performs two
types of data augmentations on each instance xi , resulting in
2N augmented samples {x̃1, x̃2, . . . , x̃2i−1, x̃2i , . . . , x̃2N }.
Each sample x̃2i−1 forms 2N − 1 pairs with others, among
which we choose the pair with its corresponding augmented
sample {x̃2i−1, x̃2i } to be positive and define other 2N − 2
pairs to be negative.

As directly conducting contrastive learning on the feature
matrix may cause information loss (Chen et al., 2020a), we
stack a two-layer nonlinear MLP gI (·) to map the features
into a subspace via zi = gI (hi ), where the instance-level
contrastive learning is applied. The pair-wise similarity is
measured using cosine distance, namely,

s(zi , z j ) = zi z�j
‖zi‖‖z j‖ , i, j ∈ [1, 2N ]. (2)

The InfoNCE loss (Oord et al., 2018) is adopted to opti-
mize pair-wise similarities defined byEq. (2).Without loss of
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generality, the loss for a given augmented sample x̃i (suppose
it forms a positive pair with x̃ j ) is defined as

�i = − log
exp(s(zi , z j )/τI )

∑2N
k=1 1[k �=i] exp (s(zi , zk)/τI )

, (3)

where τI is the instance-level temperature parameter to con-
trol the softness, and1[k �=i] is an indicator function evaluating
to 1 iff k �= i . To identify the positive counterpart for each
augmented sample, the instance-level contrastive loss is com-
puted across all augmented samples, i.e.,

Lins = 1

2N

2N∑

k=1

�k . (4)

3.2.2 Cluster-Level Contrastive Loss

When a sample is projected into a subspace whose dimen-
sionality equals the cluster number, the i-th element of its
feature represents its probability of belonging to the i-th
cluster. In other words, the feature vector corresponds to its
cluster assignment probability.

Suppose the target cluster number is M , similar to the
instance-level contrastive head, we use another two-layer
MLP gC (·) to project the features into an M-dimensional
space via yi = gC (hi ). Here yi corresponds to the cluster
assignment probability of the augmented sample x̃i . For-
mally, let Y = [y1, . . . , y2i−1, . . . , y2N−1] ∈ RN×M be the
cluster assignment probabilities of the mini-batch under the
weak augmentation T (and Y ′ = [y2, . . . , y2i , . . . , y2N ] for
those under the strong augmentation T ′). Based on the obser-
vation shown in Fig. 1, the columns of Y and Y ′ correspond
to the cluster distributions over the mini-batch and could be
interpreted as special cluster representations. We would like
to point out that this observation still holds even when the
dimension is larger than the ground-truth cluster number. In
that case, a more fine-grained cluster structure is considered
and its effectiveness is verified in Barlow Twins (Zbontar et
al., 2021).

For clarity, we denote the i-the column of Y as ŷ2i−1 (and
ŷ2i for the i-the column of Y ′), namely, the representation of
cluster i under the weak (and strong) data augmentation. The
representations of the same cluster under two augmentations
form positive cluster pairs {ŷ2i−1, ŷ2i }, i ∈ [1, M], while
other pairs are defined to be negative. Again, we use cosine
distance to measure the similarity between cluster ŷi and ŷ j ,
that is

s(ŷi , ŷ j ) = ŷ�
i ŷ j

‖ŷi‖‖ŷ j‖ , i, j ∈ [1, 2M] (5)

Without loss of generality, the following loss function is
adopted to identify cluster ŷi from all other 2M − 2 clusters
except its counter part ŷ j , i.e.,

�̂i = − log
exp(s(ŷi , ŷ j )/τC )

∑2M
k=1 1[k �=i] exp

(
s(ŷi , ŷk)/τC

) , (6)

where τC is the cluster-level temperature parameter to control
the softness, and 1[k �=i] is an indicator function evaluating
to 1 iff k �= i . By traversing all clusters, the cluster-level
contrastive loss is computed through

L′
clu = 1

2M

M∑

k=1

�̂k . (7)

As simply optimizing the above cluster-level contrastive
loss might lead to trivial solution where most samples are
assigned to a few clusters, we add a cluster entropy to pre-
vent the model from collapsing and achieve more balanced
clustering (Ghasedi Dizaji et al., 2017; Huang et al., 2020).
Formally, let P(ŷ2i−1) = 1

N

∑N
k=1 Yki be the assignment

probability of cluster i within a mini-batch under the weak
augmentation and P(ŷ2i ) = 1

N

∑N
k=1 Y

′
ki be that under the

strong augmentation, then the cluster entropy is computed
by

Hclu = −
2M∑

i=1

[P(ŷi ) log P(ŷi )]. (8)

To sum up, the cluster-level contrastive loss is finally
defined as

Lclu = 1

2M

2M∑

k=1

�̂k − Hclu . (9)

3.3 Confidence-Based Boosting

As the train progresses, we notice that the model tends to
make more confident predictions (i.e., with cluster assign-
ment probability close to one-hot). Those confident predic-
tions are more likely to be correct (see Fig. 4). Based on this
observation, in the boosting stage, we progressively select
the most confident predictions as pseudo labels to fine-tune
both the instance- and cluster-level contrastive learning. The
pseudo labels are selected by the following criterion.Namely,
for a mini-batch of size N , we use the raw data x as input
to compute prediction pred with confidence con f for each
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Algorithm 1 Twin Contrastive Learning
Input: dataset X ; training iterations E1; boosting iterations E2; batch

size N ; cluster number M ; temperature parameter τI and τC ;
network f , gI , and gC ; augmentation strategies T , T ′.

Output: cluster assignments.
// Training
for epoch = 1 to E1 do

sample a mini-batch {xi }Ni=1 from X
sample two augmentations t ∼ T , t ′ ∼ T ′
compute instance and cluster representations
compute instance-level contrastive loss Lins through Eq. 2–4
compute cluster-level contrastive loss Lclu through Eq. 5–9
compute training loss Ltrain by Eq. 1
update f , gI , gC through gradient descent to minimize Ltrain

end
// Boosting
for epoch = 1 to E2 do

sample a mini-batch {xi }Ni=1 from X
sample two augmentations t ∼ T , t ′ ∼ T ′
update pseudo labels with Eq. 10–11 and Eq. 16
compute self-supervised contrastive loss Lscl by Eq. 14
compute self-labeling loss Lsl by Eq. 15
compute boosting loss Lboost by Eq. 12
update f , gI , gC through gradient descent to minimize Lboost

end
// Test
for x in X do

extract features by h = f (x)
compute cluster assignment by c = argmax gC (h)

end

instance by

yi = gC ( f (xi )),

conf i = max(yi ),

predi = argmax(yi ).

(10)

In every mini-batch, we select the top γ confident pre-
dictions from each cluster as pseudo labels, where γ is the
confident ratio andwe fix it to 0.5. To be specific, a prediction
predi will be selected as pseudo label if it meets the following
criteria, i.e.,

n = γ × N/M,

CONFk = sort({conf i | i ∈ [1, N ], predi = k})[n],
conf i ≥ CONFpredi ,

(11)

where CONFk is the n-th largest confidence of predictions
on cluster k ∈ [0, M − 1]. Notably, selecting most confident
predictions from each cluster leads to more class-balanced
pseudo labels compared with threshold-based criterion (Niu
&Wang, 2021; Park et al., 2020; Van Gansbeke et al., 2020).
We store the pseudo labels for all instances, denoted as P , in
the memory.

With the generated pseudo labels, we fine-tune the model
with the following loss to further boost the clustering perfor-
mance, namely,

Lboost = Lscl + Lsl , (12)

whereLscl is the self-supervised contrastive loss used to alle-
viate the influence of false negative pairs in instance-level
contrastive learning and Lsl is the self-labeling loss for rec-
tifying cluster assignments made by CCH.

Recall that in the instance-level contrastive learning, we
treat pairs of samples augmented from different instances to
be negative, since no label information is given. However,
for downstream tasks such as classification and clustering,
within-class samples should not be pushed apart. To this
end, with the help of pseudo labels, we remove within-
class samples from negatives pairs (i.e., the denominator in
Eq. 4) and adopt a self-supervised contrastive loss to fine-
tune the instance-level contrastive learning. Specifically, for
each augmented sample xi with pseudo label predi , the self-
supervised contrastive loss is defined as

l ′i = − log
exp

(
s(zi , z j )/τI

)

∑2N
k=1 1[predk �=predi ] · exp (s(zi , zk)/τI )

, (13)

where 1 is the indicator. Notably, inspired by the negative
learning paradigm (Kim et al., 2019), here we only remove
potential within-class pairs from negative ones without treat-
ing them as positive, considering that the latter strategy could
be too strong when the pseudo labels are of inferior qual-
ity. By traversing all augmented samples, the self-supervised
instance-level contrastive loss is computed through

Lscl = 1

2N

2N∑

i=1

l ′i . (14)

For the cluster-level contrastive head, the self-labeling
strategy is adopted to rectify previous predictions. Specif-
ically, we define the self-labeling loss as the weighted
cross-entropy on the strongly augmented samples x ′ = t ′(x),
i.e.,

y′
i = gC ( f (x ′

i )),

Lsl = − 1

Np

N∑

i=1,i∈P

wpredi log

(
exp(y′

i [predi ])
∑M−1

k=0 exp(y′
i [k])

)

,
(15)

where Np denotes the number of instances that have pseudo-
labels in the mini-batch, and wc ∝ 1/Nc is the weight
parameter for cluster c of size Nc. The weighted loss could
prevent large clusters from dominating the optimization.

Though the confident ratio is fixed to γ = 0.5, it does
not mean that at most 50% of predictions will be selected as
pseudo labels. As the boosting progresses and batch shuffles,
more pseudo labels would be selected progressively. Further-
more, considering that the model might make some mistakes
in selecting pseudo labels, we remove the pseudo labels from
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P once their confidences decrease to below a certain thresh-
old, namely,

conf i < α, (16)

where α is the lower confidence bound of pseudo labels and
is set to 0.99. This weeding out mechanism keeps the high
quality of pseudo labels and gives the model a chance of
rectifying previous predictions. The choice of α and γ is
fixed across all the experiments, and we provide parameter
analysis on them in Sect. 4.6.2.

The overall training, boosting, and test process of the pro-
posed TCL is summarized in Algorithm 1.

4 Experiments

In this section, the clustering performance of the proposed
TCL is evaluated on five image and two text datasets. A series
of qualitative analyses and ablation studies are carried out to
help comprehensively and intuitively understand themethod.

4.1 Datasets

A brief description of the used datasets is summarized
in Table 1. More specifically, the image datasets include
CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009), STL-
10 (Coates et al., 2011), ImageNet-10, and ImageNet-
Dogs (Chang et al., 2017a). For CIFAR-100, its 20 super-
classes rather than 100 fine-grained classes are taken as the
ground truth. The text datasets include StackOverflow (Xu et
al., 2017a) and Biomedical (Xu et al., 2017a). The former is
a subset of the challenge data published by Kaggle, and the
latter is a subset of the PubMed data distributed by BioASQ.

4.2 Experimental Settings

Different backbones could be used to handle different types
of data, including but not limited to images and texts. For a
fair comparison with previous works (Ji et al., 2019; Huang
et al., 2020; Zhang et al., 2021b), we adopt ResNet34 (He et

Table 1 A summary of datasets used for evaluation

Dataset Split Samples Classes

CIFAR-10 Train + Test 60,000 10

CIFAR-100 Train + Test 60,000 20

STL-10 Train + Test 13,000 10

ImageNet-10 Train 13,000 10

ImageNet-Dogs Train 19,500 15

StackOverflow – 20,000 20

Biomedical – 20,000 20

al., 2016) as the backbone for images and the distilbert-base-
nli-stsb-mean-tokens model from the Sentence Transformer
library (Reimers &Gurevych, 2019) for texts. For ResNet34,
its output dimension of the fully-connected classification
layer (i.e., the dimension of h) is set to 512. For STL-
10, its 100,000 unlabeled images are additionally used to
compute the instance-level contrastive loss in the training
stage. The ResNet34 is randomly initialized, while the Sen-
tence Transformer is pre-trained to producemeaningful word
embeddings to keep consistent with previous works (Xu et
al., 2017a; Zhang et al., 2021b). For simplicity, instead of
customizing the network to handle images of different sizes,
we simply resize all images to 224× 224, and no additional
modification is made on the standard ResNet34.

For images, we adopt data transformations proposed in
SimCLR (Chen et al., 2020a) as weak augmentation, includ-
ing ResizedCrop, ColorJitter, Grayscale, HorizontalFlip, and
GaussianBlur. Notably, as small images already become
blurred after up-scaling, we leave the GaussianBlur augmen-
tation out for CIFAR-10/100 in the weak augmentation T .
The strong augmentation T ′ is composed of four randomly
selected transformations from RandAugment (Cubuk et al.,
2020) with parameters listed in Table 2, followed by one
Cutout (DeVries & Taylor, 2017) operation with a size of
75 × 75.

For text data, we randomly substitute 20% words of each
text with their top-n suitable words found by the pre-trained
Roberta from the Contextual Augmenter Library (Ma, 2019)
asweak augmentation, following the setting in SCCL (Zhang
et al., 2021a). The four operations proposed by EDA (Wei
& Zou, 2019) with a probability of 0.2 each are adopted
as strong augmentations, including SynonymReplacement,
RandomInsertion, RandomSwap, and RandomDeletion.

For the two contrastive heads, the dimensionality of ICH
is set as 128 to keep more discriminative information (see
ablation study in Sect. 4.6.4), and the dimensionality of CCH

Table 2 List of strong augmentations for images

Transformations Parameter Range

AutoContrast – –

Equalize – –

Identity – –

Brightness B [0.05, 0.95]

Color C [0.05, 0.95]

Contrast C [0.05, 0.95]

Posterize B [4, 8]

Rotate θ [− 30, 30]

Sharpness S [0.05, 0.95]

Shear X, Y R [− 0.3, 0.3]

Solarize T [0, 256]

Translate X, Y λ [− 0.3, 0.3]
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is naturally set to the target cluster number. The temperature
parameters are empirically set as τI = 0.5, τC = 1.0 for all
datasets. The Adam optimizer with an initial learning rate
of 1e−4 and a weight decay of 1e−4 is adopted to jointly
optimize the two contrastive heads and the backbone network
on image datasets. Since the backbone is pre-trained for text
data, we set the learning rate of the optimizer as 5e−6 for the
backbone and 5e−4 for two contrastive heads. The model is
trained for 1000/500 epochs, followed by 200/100 boosting
epochs for the image/text dataset with a batch size of 256.
Experiments are carried out on Nvidia TITANRTX 24G and
RTX 3090 on the Ubuntu 18.04 platform with CUDA 11.0
and PyTorch 1.8.0 (Paszke et al., 2019).

4.3 ComparedMethods

The proposed TCL is evaluated on five image datasets
and two text datasets. For image clustering, we take 21
representative state-of-the-art approaches for comparisons,
including k-means (MacQueen, 1967), SC (Zelnik-Manor &
Perona, 2005), AC (Gowda & Krishna, 1978), NMF (Cai
et al., 2009), AE (Bengio et al., 2007), DAE (Vincent et al.,
2010), DCGAN (Radford et al., 2015), DeCNN (Zeiler et al.,
2010), VAE (Kingma & Welling, 2013), JULE (Yang et al.,
2016), DEC (Xie et al., 2016), DAC (Chang et al., 2017b),
ADC (Haeusser et al., 2018), DDC (Chang et al., 2019),
DCCM (Wu et al., 2019), IIC (Ji et al., 2019), PICA (Huang
et al., 2020), CC (Li et al., 2021b), SPICE (Niu & Wang,
2021), SCAN (Van Gansbeke et al., 2020), and PCL (Li et
al., 2021a). For those representation-based methods, namely
SC, NMF, AE, DAE, DCGAN, DeCNN, and VAE, clus-
tering is achieved by applying the vanilla k-means on the
learned features. To ensure the backbone is the same across
all recent deep clusteringmethods, we reproduce SCANwith
ResNet34 using its official released code. We would like to
point out that SPICE further boosts the clustering perfor-
mance under a semi-supervised framework, and it uses a
deeper and wider ResNet backbone (e.g., WRN37-2) which
enjoys a much better feature extraction ability (Chen et al.,
2020). Thus, for a fair comparison, here we compare it
with its self-trained results which are achieved on ResNet34.
Besides, SPICE uses the model pre-trained on ImageNet for
ImageNet-10/Dogs (denoted by “( )” in Table 3), while all
other methods including ours train the model from scratch.

For text clustering, we compare the proposed TCL with
11 benchmarks, including TF/TF-IDF (Jones, 1972), BagOf-
Words (BOW) (Harris, 1954), SkipVec (Kiros et al., 2015),
Para2Vec (Le & Mikolov, 2014), GSDPMM (Yin & Wang,
2016), RecNN (Socher et al., 2011), STCC (Xu et al., 2017b),
HAC-SD (Rakib et al., 2020), ECIC (Rakib et al., 2020), and
SCCL (Zhang et al., 2021a). Similarly, the vanilla k-means is
conducted on the extracted features to cluster data for those

representation-based methods, including BOW, TF/TF-IDF,
SkipVec, Para2Vec, and RecNN.

4.4 EvaluationMetrics

Three widely-used clustering metrics including Normalized
Mutual Information (NMI) (Strehl & Ghosh, 2002), Cluster-
ing Accuracy (ACC) (Li & Ding, 2006), and Adjusted Rand
Index (ARI) (Hubert & Arabie, 1985) are utilized to evaluate
our method. Higher scores indicate better clustering perfor-
mance.

4.5 Results

Both quantitative and qualitative studies are carried out to
evaluate the proposedmethod. Specifically,we compareTCL
with state-of-the-art baselines on image and text benchmarks,
and visualize the clustering results across the training pro-
cess.

4.5.1 Comparisons with State of the Arts

The clustering results on five image benchmarks shown in
Table 3 demonstrate the promising performance of TCL. It is
worth noting that our method even outperforms SPICE (Niu
& Wang, 2021) on the ImageNet-Dogs dataset without Ima-
geNet pre-training, which proves the effectiveness of TCL.

Table 4 shows the clustering results on two commonly-
used text datasets. Because existing works seldom use the
ARI to evaluate text clustering, here we just adopt NMI and
ACC for comparisons. The results show that TCL achieves
promising performance on both datasets. We would like to
point out that SCCL (Zhang et al., 2021a) is also a con-
trastive learning based method, which achieves clustering
by conducting DEC (Xie et al., 2016) on the representation
learned by the instance-level contrastive learning. The dom-
inance of TCL over SCCL (Zhang et al., 2021a) proves the
effectiveness of the proposed twin contrastive learning and
confidence-based boosting.

4.5.2 Evolution of Instance Features and Cluster
Assignments

The instance- and cluster-level contrastive learning ought
to help the model to learn discriminative representations
and predict accurate cluster assignments, respectively. To
experimentally study the convergence of TCL, we perform
t-SNE (Van der Maaten & Hinton, 2008) on representations
learned by ICH at four timestamps throughout the training
and boosting stage, where the cluster assignments predicted
by CCH are denoted in different colors. As shown in Fig. 3,
features are all mixed and most instances are assigned to a
few clusters at the beginning. As the training progresses, fea-
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Table 3 The clustering performance on five object image benchmarks

Dataset CIFAR-10 CIFAR-100 STL-10 ImageNet-10 ImageNet-Dogs
Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

k-means 0.087 0.229 0.049 0.084 0.130 0.028 0.125 0.192 0.061 0.119 0.241 0.057 0.055 0.105 0.020

SC 0.103 0.247 0.085 0.090 0.136 0.022 0.098 0.159 0.048 0.151 0.274 0.076 0.038 0.111 0.013

AC 0.105 0.228 0.065 0.098 0.138 0.034 0.239 0.332 0.140 0.138 0.242 0.067 0.037 0.139 0.021

NMF 0.081 0.190 0.034 0.079 0.118 0.026 0.096 0.180 0.046 0.132 0.230 0.065 0.044 0.118 0.016

AE 0.239 0.314 0.169 0.100 0.165 0.048 0.250 0.303 0.161 0.210 0.317 0.152 0.104 0.185 0.073

DAE 0.251 0.297 0.163 0.111 0.151 0.046 0.224 0.302 0.152 0.206 0.304 0.138 0.104 0.190 0.078

DCGAN 0.265 0.315 0.176 0.120 0.151 0.045 0.210 0.298 0.139 0.225 0.346 0.157 0.121 0.174 0.078

DeCNN 0.240 0.282 0.174 0.092 0.133 0.038 0.227 0.299 0.162 0.186 0.313 0.142 0.098 0.175 0.073

VAE 0.245 0.291 0.167 0.108 0.152 0.040 0.200 0.282 0.146 0.193 0.334 0.168 0.107 0.179 0.079

JULE 0.192 0.272 0.138 0.103 0.137 0.033 0.182 0.277 0.164 0.175 0.300 0.138 0.054 0.138 0.028

DEC 0.257 0.301 0.161 0.136 0.185 0.050 0.276 0.359 0.186 0.282 0.381 0.203 0.122 0.195 0.079

DAC 0.396 0.522 0.306 0.185 0.238 0.088 0.366 0.470 0.257 0.394 0.527 0.302 0.219 0.275 0.111

ADC – 0.325 – – 0.160 – – – – – – –

DDC 0.424 0.524 0.329 – – – 0.371 0.489 0.267 0.433 0.577 0.345 – – –

DCCM 0.496 0.623 0.408 0.285 0.327 0.173 0.376 0.482 0.262 0.608 0.710 0.555 0.321 0.383 0.182

IIC – 0.617 – – 0.257 – – 0.610 – – – – – – –

PICA 0.591 0.696 0.512 0.310 0.337 0.171 0.611 0.713 0.531 0.802 0.870 0.761 0.352 0.352 0.201

CC 0.705 0.790 0.637 0.431 0.429 0.266 0.746 0.850 0.726 0.859 0.893 0.822 0.445 0.429 0.274

SPICE 0.734 0.838 0.705 0.448 0.468 0.294 0.817 0.908 0.812 (0.927) (0.969) (0.933) (0.498) (0.546) (0.362)

SCAN 0.796 0.861 0.750 0.485 0.483 0.314 0.703 0.818 0.661 – – – – – –

PCL 0.802 0.874 0.766 0.528 0.526 0.363 0.410 0.718 0.670 0.841 0.907 0.822 0.440 0.412 0.299

TCL 0.819 0.887 0.780 0.529 0.531 0.357 0.799 0.868 0.757 0.875 0.895 0.837 0.623 0.644 0.516

TCLICH 0.792 0.867 0.737 0.522 0.517 0.337 0.732 0.792 0.564 0.869 0.891 0.823 0.624 0.639 0.503

The first and second best results are shown in bold and Italic, respectively. “( )” denotes that extra training data is used. “TCLICH” refers to clustering
results achieved by conducting k-means on the ICH features

Table 4 The clustering performance on two text datasets.

Dataset StackOverflow Biomedical
Metrics NMI ACC NMI ACC

TF 0.078 0.135 0.093 0.152

BOW 0.140 0.185 0.092 0.143

SkipVec 0.027 0.009 0.107 0.163

TF-IDF 0.156 0.203 0.254 0.280

Para2Vec 0.279 0.326 0.348 0.413

GSDPMM 0.306 0.294 0.320 0.281

RecNN 0.402 0.405 0.338 0.367

STCC 0.490 0.511 0.381 0.436

HAC-SD 0.595 0.648 0.335 0.401

ECIC 0.734 0.787 0.413 0.478

SCCL 0.745 0.755 0.415 0.462

TCL 0.786 0.882 0.429 0.498

TCLICH 0.788 0.807 0.423 0.470

The first and second best results are shown in bold and italic, respec-
tively. “TCLICH” refers to clustering results achieved by conducting
k-means on the ICH features

tures scatter more distinctly and cluster assignments become
more balanced. Finally, more compact and well-separated
clusters are achieved with the help of the confidence-based
boosting.

4.6 Ablation Study

Five ablation studies are carried out to further show the
importance of each component in the proposedmethod. To be
specific, the effectiveness of the boosting strategy, the decou-
pling strategy, and the two contrastive heads are studied. In
addition,we investigate the influence of the hyper-parameters
in the boosting stage. Besides, different combinations of
weak and strong augmentation are tried to verify the effec-
tiveness of the proposed mixed augmentation.

4.6.1 Effectiveness of the Boosting Strategy

To verify the effectiveness of fine-tuning at both the instance
and cluster level, we conduct ablation studies by removing
one and both of the boosting losses and report the results
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Fig. 3 The evolution of instance features and cluster assignments across the training and boosting stage on CIFAR-10. We perform t-SNE on the
features learned by ICH and use different colors to indicate the cluster assignment predicted by CCH

in Table 5. The self-labeling loss on CCH is essential in
performance boosting because it directly affects the cluster
assignments and thus cannot be removed. The results show
that both losses improve the clustering performance.

The success of fine-tuning relies on the quality of pseudo
labels. As shown in Fig. 4, the confident predictions are more

Table 5 Effectiveness of the boosting strategy

Dataset Boost NMI ACC ARI

CIFAR-10 None 0.790 0.865 0.752

SL 0.805 0.878 0.770

SL + SCL 0.819 0.887 0.780

ImageNet-Dogs None 0.518 0.549 0.381

SL 0.562 0.600 0.441

SL + SCL 0.623 0.644 0.516

StackOverflow None 0.751 0.860 0.731

SL 0.780 0.877 0.761

SL + SCL 0.786 0.882 0.771

Best results are in bold
“SL” refers to the self-labeling loss, and “SCL” refers to the self-
supervised contrastive loss

Fig. 4 Evolution of clustering performance and confident predictions
w.r.t. training epochs on CIFAR-10, where confident predictions are
those with CONF ≥ 0.99

likely to be correct after a period of training, and the model
makes more confident predictions as the training progresses.
The number of confident predictions significantly increases
at the boosting stage due to the self-labeling loss. However, it
does not mean that all the confident predictions are selected
as pseudo labels since the selection is based on rating instead
of an absolute threshold.

Note that as the following ablation studies only influence
the training stage, we report their clustering performances
without boosting for simplicity.

4.6.2 Hyper-Parameters for Pseudo Label Selection

Recall that in the boosting stage, we select most confident
cluster assignments as pseudo labels based on the thresh-
old α and the ratio γ . To investigate the influence of two
hyper-parameters, we evaluate different choices of them in
Fig. 5. From Fig. 5a and b, one could see that the boost-
ing performance is stable across a reasonable range of α and
γ , but degrades when one of the criteria is abandoned (i.e.,
α = 0.0 or γ = 1.0). Such a result indicates the robustness
and necessity of two pseudo label selection criteria. Besides,
since pseudo labels are selected in a batch-wise manner, we
also investigate the influence of batch size. To avoid the influ-
ence of batch size on contrastive learning, pseudo labels are
selected at the beginning of each epoch within mini-batch of
different sizes, and the batch size for optimization remains
the default (i.e., 256). Figure 5c shows that the boosting per-
formance is stable in general, but it slightly decreases for
large batch sizes. A possible explanation is that for fixed α

and γ , a larger N intrinsically tightens the pseudo label selec-
tion. In practice, a smaller γ is preferred when the batch size
is small and vice versa.

4.6.3 Different Combinations of Data Augmentation

As discussed above, we provide a new effective augmenta-
tion strategy by mixing weak and strong transformations. To
further show its superiority, we validate our model with dif-
ferent combinations of the weak and strong augmentation.
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Fig. 5 Ablation study of different choices of hyper-parameters during the boosting stage on STL-10. One of the hyper-parameters is ablated from
the default setting α = 0.99, γ = 0.5, N = 256 each time

Table 6 Clustering performance
gain on CIFAR-10 by
introducing the mixed
augmentation strategy

Method Augmentation NMI ACC ARI

SimCLR+k-means T + T 0.699 0.782 0.616

T + T ′ 0.734 (+ 0.035) 0.821 (+ 0.039) 0.675 (+ 0.059)

TCL T + T 0.705 0.790 0.637

T + T ′ 0.790 (+ 0.085) 0.865 (+ 0.075) 0.752 (+ 0.115)

Best results are in bold
T denotes the weak augmentation, and T ′ denotes the strong augmentation

Table 7 Importance of data augmentation

Dataset Augmentation NMI ACC ARI

CIFAR-10 T + T 0.712 0.805 0.648

T + T ′ 0.790 0.865 0.752

T ′ + T ′ 0.678 0.738 0.614

ImageNet-Dogs T + T 0.441 0.413 0.262

T + T ′ 0.518 0.549 0.381

T ′ + T ′ 0.071 0.147 0.027

StackOverflow T + T 0.546 0.580 0.420

T + T ′ 0.751 0.860 0.731

T ′ + T ′ 0.647 0.715 0.569

Best results are in bold
T denotes the weak augmentation, and T ′ denotes the strong augmen-
tation

The results shown in Table 7 suggest that for both image and
text data, such a mixed augmentation strategy results in the
best clustering performance.

Notably, though such an augmentation strategy is seem-
ingly simple, its effectiveness is closely correlated with
the proposed TCL framework. Previous works have shown
that directly introducing strong augmentation into the con-
trastive learning framework could lead to sub-optimal perfor-
mance (Wang&Qi, 2021). Different from such a conclusion,
we show that the mixed augmentation strategy naturally fits
the proposed TCL framework. To support the claim, we com-
pare the performance gain obtained by introducing mixed

augmentation to the “SimCLR+k-means” paradigm and our
TCL framework. Table 6 shows the clustering performance
on CIFAR-10, which demonstrates that our TCL benefits
more from the mixed augmentation strategy.

4.6.4 Effectiveness of the Decoupling Strategy

Although the instance- and cluster-level contrastive learning
could be directly conducted in the same subspace, in practice,
we find that decoupling them into two separate subspaces
leads to better clustering performance. Table 8 shows the
ablation results,where “Yes”denotes that the twin contrastive
learning is conducted in two separate subspaces and “No”
denotes that both contrastive losses are computed in CCH.

Though decoupling the twin contrastive learning into two
subspaces improves the performance, it does not contradict
our motivation. No matter the two contrastive losses are
computed jointly or separately, they act on the same rep-
resentation h, and jointly optimize the network. In fact, it
is consistent with the common contrastive learning frame-
work (Chen et al., 2020a; He et al., 2020) by stacking
projection heads on the representation to compute contrastive
loss. The inferior performance of computing two contrastive
losses in the same subspace could be attributed to two facts:
(i) the dimension of rows that equals the cluster number is
not high enough to contain much information for instance-
level contrastive learning (see ablation studies in Table 9);
and (ii) it would lead to a sub-optimal solution since the
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Table 8 Effectiveness of the decoupling strategy

Dataset Decoupling NMI ACC ARI

CIFAR-10 Yes 0.770 0.854 0.730

No 0.601 0.640 0.481

ImageNet-Dogs Yes 0.518 0.535 0.385

No 0.343 0.368 0.214

StackOverflow Yes 0.747 0.857 0.725

No 0.687 0.745 0.616

Best results are in bold

Table 9 Difference choices of the dimensionality of ICH

Dataset Dimension NMI ACC ARI

CIFAR-10 10 0.770 0.854 0.730

32 0.789 0.867 0.754

64 0.798 0.871 0.760

128 0.790 0.866 0.752

256 0.789 0.867 0.753

ImageNet-Dogs 15 0.518 0.535 0.385

32 0.535 0.557 0.400

64 0.529 0.551 0.389

128 0.518 0.549 0.381

256 0.541 0.562 0.411

StackOverflow 20 0.747 0.857 0.725

32 0.749 0.858 0.726

64 0.748 0.858 0.728

128 0.751 0.860 0.731

256 0.727 0.821 0.688

Best results are in bold

instance- and cluster-level contrast will influence each other
in the same subspace. In brief, the instance-level contrastive
learning aims at discriminating different instances instead of
clusters, whose optimal solution is thus inferior to the cluster-
level contrastive learning.

4.6.5 Importance of Twin Contrastive Heads

To investigate the effectiveness of the twin contrastive heads
(i.e., ICH and CCH), we conduct ablation studies by remov-
ing one of them. Since the cluster assignments can no longer
be obtained when CCH is removed, we perform k-means on
the features learned by ICH instead.

The results in Table 10 prove the effectiveness of two con-
trastive heads and show that superior performance is obtained
by jointly conducting instance- and cluster-level contrastive
learning. Despite the performance improvement brought by
CCH, we would like to emphasize that CCH is essential in
achieving online clustering as it could directly and indepen-
dently make cluster assignments for each instance.

Table 10 Effectiveness of two contrastive heads

Dataset Contrastive Head NMI ACC ARI

CIFAR-10 ICH + CCH 0.790 0.865 0.752

w/o ICH 0.633 0.658 0.522

w/o CCH 0.734 0.821 0.675

ImageNet-Dogs ICH + CCH 0.518 0.549 0.381

w/o ICH 0.376 0.366 0.221

w/o CCH 0.504 0.535 0.336

StackOverflow ICH + CCH 0.751 0.860 0.731

w/o ICH 0.735 0.842 0.706

w/o CCH 0.666 0.732 0.516

Best results are in bold

4.6.6 Over-Clustering Experiments

It is highly expected that the clustering methods could be
robust to different choices of the target cluster number. There-
fore, we conduct over-clustering experiments by doubling
the ground-truth cluster number (and even 100 classes for
CIFAR-100). In the experiments, all parameters except the
CCH dimension remain the same as the default. As the
Hungarian matching is not practical to find a many-to-one
mapping for over-clustering evaluation, we adopt the major-
ity voting mechanism as an alternative. Namely, we assign
all samples of one cluster to the majority ground-truth class
among the cluster, being consistent with the criterion used in
SCAN (Van Gansbeke et al., 2020). The results in Table 11
demonstrate that TCL is robust against different target cluster
numbers.

Essentially, the effect of over-clustering is to increase
the intra-class variance. Such behavior is more favorable
when the data is intrinsically fine-grained (i.e., composed of
several subclasses). Forcing the model to produce more fine-
grained partitions could break the cluster structure when the
data is intrinsically coarse-grained, which explains the per-
formance drop on CIFAR-10. On CIFAR-100 instead, the
over-clustering significantly improves the clustering perfor-
mance. However, one may note that over-clustering with 100
clusters is slightly worse than that with 40 clusters. Such a
performance drop could attribute to the insufficiently large

Table 11 The robustness of TCL against different choices of the target
cluster number

Dataset Target cluster number NMI ACC ARI

CIFAR-10 Standard (10) 0.790 0.865 0.752

Over-cluster (20) 0.759 0.846 0.718

CIFAR-100 Standard (20) 0.477 0.481 0.303

Over-cluster (40) 0.520 0.579 0.380

Over-cluster (100) 0.493 0.566 0.359

Best results are in bold
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batch size. To correctly represent clusters in CCH, it is nec-
essary to include a reasonable number of samples in each
cluster. With a batch size of 256, there are only two sam-
ples in each cluster on average. And some clusters might
even be empty in some mini-batches, which would harm the
cluster-level contrastive learning, leading to inferior cluster-
ing performance.

Note that in the proposed TCL framework, the target clus-
ter number needs to be manually set. In practice, when the
intrinsic cluster number is unknown, one could adopt some
cluster number searching or community detection methods
like X-means (Pelleg &Moore, 2000) and Louvain (Blondel
et al., 2008) on the ICH output to estimate the cluster num-
ber. Moreover, as our TCL is robust to different choices of
cluster numbers, the estimation does not necessarily need to
be very precise. And one could adjust the dimensionality of
CCH to cluster data under different resolutions depending on
the practical needs.

4.6.7 Scaling-up to ImageNet

To see how TCL scales to large datasets with much more
instances and clusters, we further conduct experiments on the
ImageNet dataset. The training split with 1,281,167 images
is used for both training and evaluation. As discussed above,
cluster-level contrastive learning requires a large batch size to
ensure a reasonable number of samples exist in each cluster.
Thus, we set the batch size to 4096 on ImageNet with 1000
classes. However, we encounter the “out of GPU memory”
problem even on eight RTX 3090 GPUs with such a large
batch size. As a solution, we inherit the ResNet50 model
learned by MoCo v2 Chen et al. (2020c) and freeze the first
two blocks. In other words, we only optimize the last two
blocks of ResNet50 and two contrastive heads. Due to the
heavy computational burden, we train and boost the model
for 100 and 20 epochs, respectively. We set τI = τC = 0.2
for training and use the default α = 0.99 and γ = 0.5 for
boosting. In the evaluation, we choose MoCo v2 (the model
we inherited) as a baseline by conducting k-means on the
extracted features. The clustering performance is shown in
Table 12, which proves the effectiveness of the twin con-
trastive learning framework, the boosting strategy, and the
scalability of our method.

Table 12 TCL scales up to ImageNet-1K with much more images and
clusters

Metrics NMI ACC ARI

MoCo (inherited model) 0.6186 0.3047 0.1428

TCL† 0.6332 0.3160 0.1901

TCL 0.6711 0.3789 0.2656

Best results are in bold
†Means without the boosting stage

Fig. 6 Ablation study of different choices of temperature τI and τC in
TCL, trained for 50 epochs on ImageNet. One of the hyper-parameters
is ablated from τI = τC = 0.2

Fig. 7 Ablation study of different choices of α and γ during the boost-
ing stage on ImageNet. One of the hyper-parameters is ablated from the
default setting α = 0.99 and γ = 0.5

As suggested in SimCLR (Chen et al., 2020a), a smaller
temperature τI in instance-level contrastive loss could speed
up convergence with a large batch size. To investigate the
influence of τI and τC in our TCL framework when scaling
up to large batch size and cluster number, we ablate these
two parameters in Fig. 6. As shown, a proper choice of τI
could slightly improve the performance. More importantly, a
smaller temperature τC is also preferred in cluster-level con-
trastive learning with a large cluster number, since it could
sharpen the cluster assignments to obtain a more discrim-
inative cluster representation. We further conduct ablation
studies on two boosting hyper-parameters α and γ . The
results in Fig. 7 show that the threshold α plays a more
important role on ImageNet compared with the ratio γ . This
is because all samples are likely to meet the ratio criterion
eventually, as there are only four samples in each cluster on
average.

5 Conclusion

Based on the observation that the rows and columns of the
feature matrix intrinsically correspond to the instance and
cluster representations, we propose an online deep cluster-
ing method termed Twin Contrastive Learning (TCL). By
dually conducting contrastive learning at the instance and
cluster level, TCL simultaneously learns representations and
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performs clustering. In addition, to alleviate the influence of
intrinsic false negative pairs in the instance-level contrastive
learning and to rectify cluster assignments, we propose a
confidence-based boosting strategy to further improve the
performance by selecting some pseudo labels to fine-tune
the twin contrastive learning. Extensive experiments demon-
strate the effectiveness of TCL on five image benchmarks
and two text datasets.

In the future, we plan to take a deeper look at the influence
of different augmentations on contrastive learning. Further-
more, it is worthwhile to explore how to better utilize pseudo
labels to identify false negative pairs for improving con-
trastive learning.
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