
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Dual Contrastive Prediction for Incomplete
Multi-view Representation Learning

Yijie Lin, Yuanbiao Gou, Xiaotian Liu, Jinfeng Bai, Jiancheng Lv, Xi Peng

Abstract—In this article, we propose a unified framework to solve the following two challenging problems in incomplete multi-view
representation learning: i) how to learn a consistent representation unifying different views, and ii) how to recover the missing views. To
address the challenges, we provide an information theoretical framework under which the consistency learning and data recovery are
treated as a whole. With the theoretical framework, we propose a novel objective function which jointly solves the aforementioned two
problems and achieves a provable sufficient and minimal representation. In detail, the consistency learning is performed by maximizing
the mutual information of different views through contrastive learning, and the missing views are recovered by minimizing the
conditional entropy through dual prediction. To the best of our knowledge, this is one of the first works to theoretically unify the
cross-view consistency learning and data recovery for representation learning. Extensive experimental results show that the proposed
method remarkably outperforms 20 competitive multi-view learning methods on six datasets in terms of clustering, classification, and
human action recognition. The code could be accessed from https://pengxi.me.

Index Terms—Multi-view Learning, Contrastive Prediction, View Missing, Multi-view Clustering, Multi-view Representation Learning.

F

1 INTRODUCTION

IN real-world applications, data is usually presented in multiple
views or modalities, which often exhibit a variety of hetero-

geneous properties. To narrow down such a heterogeneous gap,
multi-view representation learning (MvRL) [1], [2] aims to learn a
function f that maps the multi-view data into a lower-dimensional
space wherein a common representation is learned to facilitate the
downstream tasks like clustering [3]–[13], classification [14]–[17],
and human action recognition [18]. To achieve this goal, the key
to MvRL is learning the consistency across different views.

The success of the consistency learning relies on an implicit
data assumption, i.e., all views are available for every data point. In
practice, however, such an assumption is probably unsatisfactory
due to the complexity in data collection and transmission, and
therefore leads to the so-called incomplete multi-view problem
(IMP). To solve the IMP, numerous methods [19]–[24] have been
proposed in recent times, which aim to answer: i) how to learn
a consistent representation across different views? and ii) how to
recover the missing views for the incomplete data? Although the
existing works have achieved promising performance, almost all
of them treat the above two problems as two irrelevant tasks and
solve them separately, thus leading to a suboptimal solution.

Based on the observation shown in Fig. 1, we theoretically
show that the cross-view consistency learning and data recovery
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Fig. 1: Our key observation and basic idea. In the figure, X1 and
X2 denote two views of a given dataset, and the corresponding
representations are denoted by Z1 and Z2, respectively. The infor-
mation contained in X1 =A1 [ A2 [ A3 and X2 = A2 [ A3 [
A5 are represented by the solid and dotted rectangles, respectively.
The area under the red rectangular box (Y = A3 [ A4) indicates
the task-relevant information. Specifically, A1

�
H(X1|X2)

�
and

A5
�
H(X2|X1)

�
indicate the view-specific information of X1

and X2. A2
�
I(X1;X2|Y)

�
and A3

�
I(X1;X2;Y)

�
together

denote the mutual information of X1 and X2, where A3 con-
tains task-relevant information while A2 is task-agnostic. A4�
H(Y|X1

,X2)
�

indicates the task-relevant information that is
unavailable from the input data. From information theory, we
propose to quantify the cross-view consistency and cross-view
recoverability using the mutual information I(Z1;Z2) (red area)
and the conditional entropy H(Zi|Zj) (grey area), respectively.
To learn a consistent representation and recover the missing views,
we maximize the mutual information I(Z1;Z2) while minimizing
the conditional entropy H(Zi|Zj). Subtly, the two objectives
could mutually boost and jointly optimizing both could achieve
a sufficient (i.e., A3 2 Zi) and minimal (i.e., (A1[A5) /2 Zi and
A2 2 Zi) representation.

could be treated as two sides of one coin. With our theoretical
results, we propose a general objective function which jointly
solves these two challenging problems. We prove that the rep-

https://pengxi.me
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resentation learned by the objective function is sufficient and
minimal. A sufficient representation refers to that the adequate
information is learned for the downstream tasks, and a minimal
representation denotes that all task-irrelevant information is re-
moved with a fixed gap. To implement our idea, we propose
a novel incomplete multi-view representation learning method,
termed Dual Contrastive Prediction (DCP). To be specific, DCP
projects the high-dimensional data into a latent space wherein the
cross-view consistency and data recoverability are guaranteed by
three joint losses. In short, a within-view reconstruction loss is
used to learn the view-specific representations while preserving
the original information; a dual contrastive loss is designed to learn
the cross-view consistency by maximizing mutual information
I(Z1;Z2); and a dual prediction loss is proposed to recover
the missing views through minimizing the conditional entropy
H(Z1|Z2) and H(Z2|Z1). In summary, the contributions and
novelties are given as follows:

• We provide a novel insight to the community that the
cross-view consistency learning and data recovery are with
intrinsic connections in the framework of information the-
ory. Such a theoretical framework is remarkably different
from existing MvRL studies which treat the consistency
learning and data recovery as two separate problems.

• Under our information theoretical framework, we propose
DCP which achieves the information consistency and data
recoverability through a dual contrastive loss and a dual
prediction loss, respectively.

• To utilize available label information, DCP designs and
utilizes the instance- and category-level contrastive loss to
enhance the separability of representations.

• We theoretically and experimentally prove that DCP could
learn a sufficient and minimal representation for three
tasks, i.e., clustering, classification, and human action
recognition.

2 RELATED WORK

In this section, we briefly review three topics related to this work,
i.e., incomplete multi-view representation learning, contrastive
learning, and information theory in multi-view learning.

2.1 Incomplete Multi-view Representation Learning
Incomplete multi-view representation learning (IMvRL) aims to
learn a shared representation from the data with missing views.
Based on the way of utilizing the cross-view information, IMvRL
methods could be roughly divided into four categories, i.e.,
matrix factorization based methods [25]–[28], kernel learning
based methods [23], [29], spectral clusterinliuxinwangg based
methods [22], and deep learning based methods [14], [30]. In
brief, the matrix factorization based methods often project the
incomplete data into a low-dimensional common subspace which
satisfies the low-rankness constraint. For example, PVC [26]
utilizes `F -norm and `1-norm to reduce the influence of missing
data, and DAIMC [25] establishes a consensus representation
matrix with the help of `2,1-norm. As a typical kernel learning
based method, MKKM-IK [29] proposes a multi-kernel algorithm
through an iterative optimization manner. Through spectrum anal-
ysis, PIC [22] learns a common representation by constructing a
consistent Laplacian graph from the incomplete views. Recently,
some deep learning based methods [14], [18]–[20] utilize GAN to

generate the missing views and then learn the shared subspace for
all views.

This work is remarkably different from the existing approaches
in the given aspects. First, almost all these methods [19], [20],
[22], [23], [25]–[29] treat the consistency learning and data re-
covery as two separate problems. In contrast, our DCP unifies
the consistency learning and data recovery into the framework
of information theory [31]. Second, different from the works
like [22], [23], [29], our method attempts to directly recover the
missing data rather than the similarity relation, thus embracing
higher explainability. In addition, it should also be pointed out
that this paper is also different from [30] by the following three
aspects. First, most of the methods including [30] lack a theo-
retical understanding of the success of the learned representation,
whereas we prove that DCP could learn a sufficient and minimal
representation. Second, [30] is a clustering method, whereas our
method employs a novel loss function to learn the representation
for unsupervised and supervised tasks including but not limited to
clustering, classification, and human action recognition, as verified
in our experiments. Third, [30] is designed for bi-view data,
whereas DCP could solve the missing view problem with more
than two views.

2.2 Contrastive Learning
As one of the most effective unsupervised learning paradigms,
contrastive learning [32]–[39] has made huge developments in
the field of representation learning. The basic idea of contrastive
learning is to seek a latent space wherein the similarity between
positive pairs is maximized while the similarity between negative
pairs is minimized. Recently, some studies have shown that the
success of contrastive learning could be attributed to the max-
imization of mutual information [36]. To be more precise, the
widely-used InfoNCE loss is a lower bound of mutual information,
i.e., I

�
Z1;Z2

�
� log(N) � LNCE, where N is the number

of negative pairs. Hence, MoCo [40] and CPC [37] could be
interpreted as examples that maximizes the mutual information
with the InfoNCE loss.

The differences between the existing contrastive learning stud-
ies and our work are as below. First, most of the existing con-
trastive learning methods employ data augmentations to generate
different views, whereas our method directly handles the data
from multiple views. As a result, they will not face and cannot
handle the incomplete data problem. Second, unlike the existing
studies [30], [33], [40] only perform contrastive learning at the
instance level, our method simultaneously conducts instance- and
category-level contrastive learning to obtain more discriminative
representations. Although [36] also utilizes predictive learning to
enhance contrastive learning, it is remarkably different from our
work in the following aspects. On the one hand, the method
and the goal is different. In short, [36] aims to enhance the
performance of contrastive learning, whereas this work aims at
recovering the missing data through dual predictive learning. On
the other hand, our theoretical result is also different from [36].
In brief, we prove that the data recovery and consistency learn-
ing could mutually boost through contrastive learning and dual
prediction.

2.3 Information Theory in Multi-view Learning
In recent years, some efforts have been devoted to the prob-
lem of multi-view representation learning based on information
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theory [35], [36], [41]–[45]. Information bottleneck theory [46]
provides a unified theoretic explanation for these works. More
specifically, given the multi-view input X1 and X2, the qual-
ity of representation Z w.r.t. tasks Y could be characterized
by the shared information between the representation and in-
put I(Z;X1X2), and the shared task information between the
representation and tasks I(Z,Y). Ideally, a good representa-
tion is encouraged to maximize the task information I(Z,Y)
(sufficient) while minimizing the information from the raw data
I(Z;X1X2) (minimal). Since most methods have successfully
obtained sufficient task information, the major difference among
them is the optimization strategy of I(Z;X1X2). For exam-
ple, the supervised information bottleneck [43], [44] utilizes
label information to minimize the superfluous information that
I(Z;X1X2) = I(X1X2;Y). InfoMax [35], [41], [45], [47]
aims to maximize I(Z;X1X2) in an unsupervised manner, thus
preserving some superfluous information contained in raw data
I(Z;X1X2) � I(X1;X2) > I(X1X2;Y) accordingly.

Different from the aforementioned methods [35], [41], [43]–
[45], [47], DCP could be one of the first works that explicitly
discards the irrelevant information and theoretically proves that the
learned representation is sufficient I(Z;X1X2) = I(X1X2;Y)
and minimal I(Z;X1X2) = I(X1;X2). Moreover, we extend
the multi-view information theory into the view-missing scenarios
and reveal that the cross-view consistency learning and data
recovery are with intrinsic connections under the framework of
information theory.

3 THE PROPOSED METHOD

In this section, we first introduce our information theoretical
framework where the consistency learning and data recovery are
unified. In addition, we prove that the theoretical framework could
learn a sufficient and minimal representation. After that, we elab-
orate on the proposed Dual Contrastive Prediction method (DCP)
which could learn multi-view representation from incomplete data.

3.1 Theoretical Results
In this section, we show that the consistency learning and data
recovery could be regarded as a whole, and jointly optimizing
them could learn a sufficient and minimal representation. In the
following, we will first define the consistency learning and data
recovery from the view of information theory. Then, we will prove
that the consistency learning and data recovery could mutually
boost. After that, we will propose a general objective function
which is provable to learn a sufficient and minimal representation.

In the following, we denote X1 and X2 as two different views
of the same instance whose label is Y. The representation Zi

of view Xi is obtained through a deterministic mapping f
(i):

Zi = f
(i)(Xi), where i = 1, 2. We use H(A) to denote the

entropy, H(A|B) to denote the conditional entropy, I(A;B) to
denote mutual information, and I(A;B|C) to denote conditional
mutual information for the variable A,B, and C . Considering the
consistency learning and data recovery challenges, we have the
following definitions:

Definition 1 (Cross-view Consistency). Two view-specific repre-

sentations Zi
and Zj

are consistent if I(Zi;Zj) � I(Zi;Z0) and

I(Zi;Zj) � I(Z00;Zj) for any Z0 2 T (Xj) and Z00 2 T (Xi),
where T (Xv) is the set of possible latent representations of the

v-th view Xv
.

Notice the mutual information I(Zi;Zj) is represented by the
red area in Fig. 1. By definition, it is expected to learn cross-view
consistent representations by maximizing I(Zi;Zj).

Definition 2 (Cross-view Recoverability). A representation Zi
is

recoverable w.r.t. Zj
if H(Zi|Zj)  H(Zi|Z0) for any Z0 2

T (Xj). Zi
is fully recovered from Zj

i.i.f. H(Zi|Zj) = 0.

Similarly, the conditional entropy H(Zi|Zj) is represented by
the grey area in Fig. 1. The representation Zi is expected to be
recovered from Zj when H(Zi|Zj) is minimized.

It should be pointed out that the above multi-view recov-
erability is task-oriented instead of general purposed, i.e., only
the view-shared instead of all information would be recovered to
facilitate the downstream tasks, which include but not limited to
clustering and classification. As illustrated in Fig. 1, one could
easily see that our task-oriented recovery model will only restore
the view-consistent information. Based on previous definitions,
we then show that the cross-view consistency learning and data
recoverability are equivalent from the information-theoretic point
of view.

Theorem 1 (Equivalence of Consistency and Recoverability).
Representations Zi

and Zj
are cross-view consistent if and only

if Zi
is recoverable w.r.t. Zj

and Zj
is recoverable w.r.t. Zi

.

Proof. Let Zi
and Zj

be two consistent representations. Then we

have, I(Zi;Zj) � I(Zi;Z0), for Z0 2 T (Xj). By the property

of mutual information, I(Zi;Zj) = H(Zi)�H(Zi|Zj). Hence

we can rewrite the inequality as

H(Zi)�H(Zi|Zj) � H(Zi)�H(Zi|Z0), (1)

and consequently,

H(Zi|Zj)  H(Zi|Z0), (2)

for Z0 2 T (Xj). By definition, Zi
is recoverable w.r.t. Zj

.

Similarly, we can show Zj
is recoverable w.r.t. Zi

. Following the

argument backwards would trivially prove the other direction of

the statement.

Theorem 1 indicates that the cross-view consistency and data
recovery could be treated as two sides of one coin. On the one
hand, the data recoverability could be further improved because
maximizing I(Zi;Zj) could increase the view-shared informa-
tion. On the other hand, the view-inconsistent information will
be discarded through minimizing H(Zi|Zj), thus improving the
consistency.

Based on the theoretical observation, we propose a general
objective function which jointly optimizes the consistency learning
and data recovery. Formally,

max I
�
Z1;Z2�

s.t. minH
�
Z1|Z2�

, minH
�
Z2|Z1� (3)

The above objective could achieve a sufficient and minimal
multi-view representation based on the commonly used assump-
tion of multi-view data [42] as below:

Assumption 1 (Equal Sufficiency of Multi-view Data). The suf-

ficiency of each view is approximately equivalent for downstream

tasks, i.e., I(X1;Y) = I(X2;Y) = I(X1;X2;Y) is held.

According to the above sufficiency assumption, we could
derive the following multi-view property.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Proposition 1. I(X1;Y|X2) = I(X2;Y|X1) = 0.

Proof. Based on the chain rule of mutual information, we have

I(X1;X2;Y) = I(X1;Y)� I(X1;Y|X2), (4)
I(X1;X2;Y) = I(X2;Y)� I(X2;Y|X1). (5)

With Assumption 1, we have I(X1;X2;Y) = I(X1;Y) =
I(X2;Y). Then, I(X1;Y|X2) = I(X2;Y|X1) = 0 is ob-

tained.

Based on the above assumption and proposition, we are ready
to prove the sufficient and minimal property of the obtained
representation.

Definition 3 (Sufficient Representation). The representations Z1

and Z2
are sufficient if I(Z1;Y) = I(Z2;Y) = I(X1;X2;Y).

Sufficient representations guarantee adequate information of the

input for the downstream tasks, i.e., A3 2 Zi
in Fig. 1.

Definition 4 (Minimal Representation). The representations Z1

and Z2
are minimal if I(Z1;X1|Y) = I(Z2;X2|Y) =

I(X1;X2|Y). Minimal representations are expected to remove

task-irrelevant information (A1 [ A5 /2 Zi
in Fig. 1) and retain a

fixed gap I(X1;X2|Y), i.e., A2 2 Zi
in Fig. 1.

Theorem 2 (Sufficient and Minimal Multi-view Representations).
The optimizers Z1

sm and Z2
sm of Eq. (3) are sufficient and minimal

multi-view representations.

Proof. We first prove the representations Zi
sm are sufficient (A3 2

Zi
sm), where i = {1, 2}. As Zi = f

(i)(Xi), then the information

flow Xi ! Zi
[36] could be described by the Markov chains.

Without loss of generality, we consider the case of i = 1,

and i = 2 is with the similar proof. In detail, based on the

Markov chain and the Data Processing Inequality [48], I(Z1;Z2)
is maximized at I(X1;X2). As X1 ! Z1

and Z1
sm attempts to

maximize I(Z1;Z2), then I(Z1
sm;X2) = I(X1;X2). Hence we

have

I(Z1
sm;X2;Y) = I(X1;X2;Y), (6)

I(Z1
sm;X2|Y) = I(X1;X2|Y). (7)

Performing the chain rule of mutual information on Eq. (6)

gives:

I
�
Z1

sm;Y
�
= I(X1;Y)� I(X1;Y|X2) + I

�
Z1

sm;Y|X2�
.

(8)
Proposition 1 has shown that I(X1;Y|X2) = 0, and we

only need to prove I
�
Z1

sm;Y|X2
�
= 0. To be specific, with the

Markov chain X2 ! Z2
and the Data Processing Inequality, we

have

I
�
Z1

sm;Y|X2�  I
�
Z1

sm;Y|Z2�
. (9)

As H(Z1|Z2) is minimized at Z1
sm, then I(Z1

sm;Y|Z2) = 0.

Hence

I(Z1
sm;Y|X2)  I

�
Z1

sm;Y|Z2� = 0. (10)

Combining Assumption 1, Proposition 1, Eq. (8), and Eq. (10),

we have

I(Z1
sm;Y) = I(X1;Y) = I(X1;X2;Y), (11)

implying Z1
sm is a sufficient representation.

Following, we prove that {Zi
sm}2i=1 are minimal (A1 [ A5 /2

Zi
sm and A2 2 Zi

sm). By applying the chain rule of mutual

information, we have

I
�
Z1;X1 | Y

�
= I

�
Z1;X1;X2 | Y

�
+ I

�
Z1;X1 | X2

,Y
�
.

(12)
Based on the Markov chain X1 ! Z1

, we have

I(Z1;X1;X2|Y) = I(Z1;X2|Y). (13)

Then, Eq. (12) could be rewritten as

I
�
Z1;X1 | Y

�
= I

�
Z1;X2 | Y

�
+ I

�
Z1;X1 | X2

,Y
�
.

(14)
Based on the Markov chains X2 ! Z2

, we have

I(Z1
sm;X1|Z2

,Y) � I(Z1
sm;X1|X2

,Y). (15)

Since H(Z1|Z2) is minimized at Z1
sm, then

I(Z1
sm;X1|Z2

,Y) = 0. (16)

Combining Eq. (15) and Eq. (16) gives

I(Z1
sm;X1|X2

,Y) = 0. (17)

Substituting Eq. (14) with Eq. (7) and Eq. (17), and we end up

with

I
�
Z1

sm;X1 | Y
�
= I

�
Z1

sm;X2 | Y
�
= I

�
X1;X2 | Y

�
,

(18)
showing Z1

sm is a minimal representation.

3.2 The Loss Function
Eq. (3) is a general form of sufficient and minimal MvRL, and
there are a variety of implementations. In this paper, we propose
a novel loss function which employs dual contrastive learning
and dual prediction to achieve information consistency and data
recoverability, respectively. In brief, we first project the raw data
into a latent feature space through a within-view reconstruction.
Meanwhile, the consistent representation is obtained by maxi-
mizing the mutual information across different views through
contrastive learning, and the data recoverability is guaranteed by
minimizing the conditional entropy of different views through dual
prediction.

As illustrated in Fig. 2, our method consists of three joint
learning objectives, namely, a within-view reconstruction loss
Lrec, a cross-view dual contrastive loss Lcl, and a cross-view dual
prediction loss Lpre. To sum up, our loss function is as below:

L = Lcl + �1Lpre + �2Lrec, (19)

where the parameters �1 and �2 balance the importance of Lpre

and Lrec. In our experiments, these two balance factors are fixed
to 0.1.

3.2.1 Within-view Reconstruction Loss
Without loss of generality, we take bi-view data as an example.
For a given dataset X̄ = {X̄(1,2)

, X̄(1)
, X̄(2)} with n samples,

X̄(1,2), X̄(1), and X̄(2) denote the examples presented in both
views, the first view only, and the second view only, respectively.
In other words, X̄(1,2) represents the set of complete data with
m samples and Xv is the v-th view of complete samples, i.e.,
X̄(1,2) = {X1

,X2}. During the training stage, we optimize
our method in an end-to-end fashion on the complete samples



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

RGB subspace

View 2

Depth subspace

MaxInfo

Instance-level Contrastive Learning
Within-view 

Reconstruction 
Dual 

Prediction

Pull Positive

Negative

Anchor

Category-level Contrastive Learning

View 1

Push

Fig. 2: Overview of DCP. In the figure, we use RGB and depth data as a showcase. As shown, DCP consists of three joint losses,
i.e., within-view reconstruction, dual cross-view contrastive learning, and cross-view dual prediction. Specifically, the within-view
reconstruction loss projects each view into a view-specific subspace through an autoencoder. Dual contrastive learning objectives are
constituted by the instance-level and category-level contrastive learning. In short, the instance-level contrastive learning loss aims to
maximize the mutual information I(Z1;Z2) for enhancing the cross-view consistency. The category-level contrastive learning loss
aims to minimize the distance between an anchor (obtained by concatenating the view-specific representations) and a real within-class
positive, while maximizing the distance between the anchor and a negative from the misclassified class. The dual prediction loss aims
to recover one view from another view through the dual prediction G

(1) and G
(2).

X̄(1,2). In the testing stage, we feed the whole dataset including
the incomplete ones {X̄(1)

, X̄(2)} into the network and obtain the
representations for all views.

To model the correlation across different views, we first learn
a latent subspace for each view individually. To be specific, the
v-th view is passed through a view-specific autoencoder to obtain
the representation Zv by minimizing

Lrec =
2X

v=1

mX

t=1

���Xv
t � g

(v) (Zv
t )
���
2

2
, (20)

where Xv
t denotes the t-th sample of Xv , and g

(v) is the decoder
for the v-th view. The representation Zv

t is defined by

Zv
t = f

(v) (Xv
t ) , (21)

where f
(v) is the encoder for the view v. Thanks to Eq. (20),

our method could preserve as much as possible view information,
while avoiding trivial solutions.

3.2.2 Dual Contrastive Learning Loss
To overcome the consistency learning challenge in incomplete
multi-view representation learning, we utilize contrastive learning
to maximize the consistency of multi-view. The proposed dual
cross-view contrastive learning consists of instance- and category-
level contrast loss. Formally,

Lcl = Licl + Lccl, (22)

where the instance-level contrastive loss Licl tries to learn an in-
formative and consistent representation for different views without
the help of labels and the category-level contrastive loss Lccl aims
to enhance the separability using the label information. Next, we
will elaborate on these two objectives.

Instance-level Contrastive Learning: In the latent feature
space learned by the autoencoder, we conduct contrastive learning
to maximize the consistency across different views. Since most

existing contrastive learning studies [37], [40] have attributed
their success to maximize the lower bound of mutual information,
we propose to maximize the mutual information between the
representations of different views directly. Mathematically,

Licl = �
mX

t=1

�
I
�
Z1

t ;Z
2
t

�
+ ↵

�
H

�
Z1

t

�
+H

�
Z2

t

���
, (23)

where I and H denote the mutual information and entropy,
respectively. The balance parameter ↵ is fixed to 9 for regularizing
the entropy in our experiments.

We design this loss with the following goals. On the one hand,
a larger entropy H(Zi) denotes a more informative representation.
The reason could be explained by information theory [48], i.e., the
information entropy is the average amount of information of an
event. Since the representation Zi is conditioned on Xi, i.e., Zi =
f
(i)(Xi), a larger entropy could retain more desirable information

from X. On the other hand, the maximization of H(Zi) could
avoid the trivial solution which would assign all instances to the
same cluster.

To calculate the basic measures of information in Licl, we first
define the probability distribution. More specifically, each element
of {Zi}2i=1 is treated as a cluster assignment probability [47],
[49] by stacking a softmax activation function on the last layer
of the encoder. In other words, {Zi}2i=1 could be regarded as
the distribution of two discrete cluster assignment variables z and
z
0 over D classes, where D is the dimension of representations.

In practice, D could be larger than the real cluster number, i.e.,
so-called over-clustering. Therefore, we could define the joint
probability distribution P(z, z0) via P 2 RD⇥D, i.e.,

P =
1

m

mX

t=1

Z1
t

�
Z2

t

�>
. (24)

Further, the marginal probability distributions P(z = d) and
P(z0 = d

0) could be defined by Pd and P0
d, respectively. They
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can be obtained by summing over the d-th row and the d
0-th

column of the joint probability distribution matrix P. To sum up,
Eq. (23) could be calculated through

Licl = �
DX

d=1

DX

d0=1

Pdd0 ln
Pdd0

P↵+1
d ·P↵+1

d0
, (25)

where Pdd0 (i.e., P(z = d, z
0 = d

0)) is the d-th row and d
0-

th column of P, and ↵ is the same balance factor as defined in
Eq. (23).

Category-level Contrastive Learning: To further enhance
the separability of the representation, we propose a category-
level contrastive loss function Lccl that utilizes available label
information to guide the representation learning in the supervised
scenario. For the unsupervised settings, Lccl will be removed from
our loss function due to the unavailability of labels. To be specific,
we enforce Lccl on the common representations Zt =

⇥
Z1

t ;Z
2
t

⇤
,

where [; ] is the concatenation operation. Formally,

Lccl =
mX

t

⇥
EZ⇠T (y)S (Z,Zt)� EZ⇠T (gt)S (Z,Zt) + �

⇤
+
,

(26)
where gt denotes the ground truth of Zt, S (Z,Zt) = ZTZt is
the dot product similarity function, T (gt) is the set of common
representations from the ground truth label gt, and T (y) is the set
of representations from the prediction y. The predicted label y is
decided by

y = argmax
y2Y

EZ⇠T (y)S (Z,Zt) . (27)

Our basic idea is to penalize the misclassification. To be
specific, a misclassified instance should be close to the real instead
of predicted within-class instances. The non-negative constant
� in Eq. (26) is used as a margin to control these two cases.
Specifically, for a correctly predicted instance, � = 0, and
otherwise � = 1. In other words, the category-level contrastive
loss would not contribute to the training for the correctly predicted
instances.

Comparing to the traditional triple loss [50], Lccl is with
the following differences. First, for each anchor, we directly
choose the centroid of the true class and misclassified class as
positive pair and negative pair, respectively. In contrast, [50] has
to exhaustively choose the hard negative pairs for guaranteeing
performance. Second, we only construct negative pairs in the
misclassified class instead of all classes, thus leading to higher
efficiency. Moreover, to speed up convergence, we compute Lccl

in a mini-batch fashion.

3.2.3 Dual Prediction Loss
To overcome the data recovery challenge in incomplete multi-
view representation learning, we propose a dual prediction mech-
anism as shown in Fig. 2. To be specific, in the latent subspace
parametrized by the autoencoders, the view-specific representation
are mutually predicted by minimizing the conditional entropy
H(Zi|Zj) = �EPZi,Zj [logP(Zi|Zj)]. As it is intractable to
directly calculate such expectations, we use a common approxi-
mative approach by importing a variational distribution Q(Zi|Zj)
and then maximizing the lower bound of EPZi,Zj [logP(Zi|Zj)],
i.e., EPZi,Zj

⇥
logQ

�
Zi | Zj

�⇤
.

Such variational distributions Q can be Gaussian [51] or Cate-
gorical distribution [52]. For simplicity, we assume the distribution

Q as a Gaussian distribution N
⇣
Zi | G(j)

�
Zj

�
, �I

⌘
, where �I

is the variance matrix, and G
(j)(·) is a parametrized model which

recovers Zi from Zj as shown in Fig. 2. By ignoring the constants
derived from the Gaussian distribution, the maximization of the
expectation EPZi,Zj

⇥
logQ

�
Zi | Zj

�⇤
is equivalent to

min EPZi,Zj

���G(j) �Zj�� Zi
���
2

2
. (28)

Considering the bi-view data, the dual prediction loss is with
the following form:

Lpre =
���G(1)(Z1)� Z2

���
2

2
+

���G(2)(Z2)� Z1
���
2

2
. (29)

It should be pointed out that the dual prediction loss alone
may lead to trivial solutions that Z1 and Z2 converge to the same
constant. To avoid such case, the within-view reconstruction loss
is helpful as discussed above.

After the training stage, we feed the whole dataset including
the incomplete ones {X̄(1)

, X̄(2)} into the network and obtain the
representations for all views. More precisely, for the samples with
missing views (X̄(1)

, X̄(2)), we recover the missing representa-
tions Ẑ(i) from the existing representations Z̄(j) through the dual
prediction, i.e.,

Ẑ(i) = G
(j)

⇣
Z̄(j)

⌘
= G

(j)
⇣
f
(j)(X̄(j))

⌘
, (30)

where Z̄(j) is the representations of X̄(j). Afterwards, we de-
rive the common representation Z by simply concatenating all
view-specific representations. More specifically, for the com-
plete samples, Z =

⇥
Z1;Z2

⇤
; and for the incomplete samples,

Z =
h
Ẑ(1); Z̄(2)

i
or Z =

h
Z̄(1); Ẑ(2)

i
.

3.3 Contrastive Prediction for More than Two Views
In this section, we utilize dual contrastive prediction to solve the
incomplete multi-view problem with more than two views. As
shown in Fig. 3, there are two general formulations to solve this
problem through dual contrastive prediction, namely, the core view
based approach (DCP-CV) and the complete graph based approach
(DCP-CG).

Given a dataset {Xi}Vi=1 with V views, the DCP-CV selects
one important view (e.g., X1 as shown in Fig. 3(a)) as the centre,
and conduct dual contrastive prediction between X1 and other
views Xj as follows:

LDCP-CV =
VX

i=2

Lip

�
Z1

,Zi�+ �2

VX

i=1

Lrec(Z
i) + Lccl, (31)

where Lip = Licl + �1Lpre, �1 and �2 are scalars defined
in Eq. (19). Category-level contrastive loss Lccl is implemented
on the common representation

⇥
Z1; · · · ;ZV

⇤
where [; ] is the

concatenation operation.
Alternatively, the DCP-CG conducts instance-level contrastive

learning and dual prediction on all possible view pairs as shown
in Fig. 3(b). Formally,

LDCP-CG =
X

1i<jV

Lip

�
Zi

,Zj�+ �2

VX

i=1

Lrec(Z
i) + Lccl.

(32)
Although DCP-CV and DCP-CG are both capable of learning

sufficient and minimal representations, we recommend the latter
due to the following reasons. On the one hand, for consistency
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Training

step 1

step 2

Testing

(a) Core View (DCP-CV)

Training Testing

(b) Complete Graph (DCP-CG)

Fig. 3: Contrastive prediction for more than two views. The solid and dotted circles denote the available views and missing views,
respectively. The lines indicate training with Licl and Lpre, and the arrows indicate the recovery of missing view .

learning, DCP-CG will capture more information because all view
pairs are included and exploited in the learning phase. In detail, the
DCP-CG attempts to maximize the mutual information between
views for v(v � 1)/2 times, while the DCP-CV only maximizes
v � 1 times as shown in Fig. 3. On the other hand, the DCP-CG
shows more robustness in performing data recovery than the DCP-
CV, which is later verified in Section 4.5. Below are the theoretical
explanations for the robustness of the DCP-CG. First, as shown in
the middle column of Fig. 3(b), the DCP-CG could easily recover
the missing views by averaging the predictions of other available
views. Second, as shown in the right column of Fig. 3(a), the DCP-
CV may encounter an error accumulation problem. To be specific,
when both X1 and X3 are missing, one needs to first recover the
core view X1 and recover X3 afterward. Besides, DCP-CV needs
to choose an important view as the core view which is difficult
when the prior knowledge is unavailable. In our implementation,
we randomly select one view as the core view for simplicity.

4 EXPERIMENTS

In this section, we compare the proposed method with 20 methods
on six widely-used multi-view datasets in terms of three different
tasks include clustering, classification, and human action recogni-
tion.

4.1 Experimental Settings
We conduct experiments on the following widely-used dataset:

• LandUse-21 [53]: The dataset contains 2,100 satellite
images from 21 categories, and we use the PHOG and
LBP features as two views.

• Caltech101-20 [54]: The dataset consists of 2,386 images
of 20 subjects, and we use the HOG and GIST features as
two views.

• Scene-15 [55]: The dataset contains 4,485 images dis-
tributed over 15 scene categories. Similarly, we use the
PHOG and GIST features as two views.

• Noisy MNIST [56] The dataset is a multi-view version of
MNIST. It uses the original MNIST images as view 1 and
randomly selects within-class images with Gaussian noise
as view 2. We use a 20k subset of Noisy MNIST consisting
of 10k validation images and 10k testing images because
most of the baselines cannot handle such a large dataset.

• UWA (UWA3D Multi-view Activity) [57]: The dataset is
collected by Kinect sensors with RGB and depth features.
It contains 660 action sequences, i.e., 11 actions performed
by 12 subjects with five repetitions per action.

• DHA (Depth-included Human Action dataset) [58]: The
dataset contains 483 video clips of 23 categories with RGB
and depth features.

In the clustering and classification evaluations, we compare the
proposed method with the following 12 approaches: (1) DCCA

(Deep Canonically Correlated Analysis) [59] maps multiple fea-
tures into a common space by neural networks and concatenates
the low-dimensional features as the common representation. (2)
DCCAE (Deep Canonically Correlated Autoencoders) [56] uti-
lizes autoencoders to learn the common space for different views
and concatenates each low-dimensional feature together as the fi-
nal representation. (3) BMVC (Binary Multi-view Clustering) [60]
jointly learns the collaborative discrete representations and binary
cluster structures. (4) AE

2
-Nets (Autoencoder in Autoencoder

Networks) [61] integrates information from heterogeneous views
by nested autoencoders. (5) ITML (Information-Theoretic Metric
Learning) [62] uses a Mahalanobis distance function and Bregman
optimization to learn the metric. (6) PVC (Partial Multi-View
Clustering) [26] uses non-negative matrix factorization to project
each view into a low-dimensional space. (7) EERIMVC (Efficient
and Effective Regularized Incomplete Multi-view Clustering) [23]
learns a consensus clustering matrix by completing the missing
elements in the kernel matrix. (8) DAIMC (Doubly Aligned In-
complete Multi-view Clustering) [25] learns a common space us-
ing non-negative matrix factorization and L2,1-Norm regularized
regression. (9) IMG (Incomplete Multi-Modal Visual Data Group-
ing) [28] learns a compact global structure in the low-dimensional
space by using a Laplacian graph of the complete instances. (10)
UEAF (Unified Embedding Alignment Framework) [63] projects
features of different views into a common space by using a novel
reverse graph regularization term. (11) PIC (Perturbation-oriented
Incomplete Multi-view Clustering) [22] learns the common rep-
resentation based on spectral perturbation theory. (12) CPMNets

(Cross Partial Multi-View Networks) [14] classifies partial multi-
view data by focusing on the completeness and versatility of
learned representations.

For the above baselines, we use the recommended parameters
and network structures for a fair comparison. In brief, for DCCA
and DCCAE, we fix the dimension of latent representation to 10.
For EERIMVC, we choose the Gauss kernel to construct kernel
matrices and search the optimal parameter � from 2�15 to 215

with an interval of 23. For BMVC, we set the dimension of binary
code to 128. For ITML, we concatenate the original multi-view
features as the input. It should be pointed out that, the first five
baseline methods could only handle complete data and we use the
mean value to fill the missing views.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

To evaluate the performance of handling incomplete data, we
manually create data with different missing rates and use the same
incomplete data for all the tested methods. To be specific, given a
dataset with v views, we randomly select m samples as incomplete
data and randomly remove 1 ⇠ v � 1 views from each of them.
The missing rate ⌘ is defined as ⌘ = m/n, where n is the number
of all examples.

4.2 Network Architectures and Implementation Details
Our method contains two training modules, i.e., view-specific au-
toencoders, and dual prediction networks. For these two modules,
we employ a fully-connected network structure with batch nor-
malization layer and ReLU activation on all datasets. To generate
the over-clustering representations, we use a Softmax activation at
the last layer of the encoders and prediction modules.

To be specific, we set the dimensionality of the encoders to
K � 1024 � 1024 � 1024 � D for Caltech101-20, Scene-15,
Landuse-21, and Noisy MNIST dataset, where K is the dimension
of raw data and D is the dimension of latent space. For the
human action recognition datasets DHA and UWA, we set the
dimensionality of the encoders to K � 2048 � 512 � D for the
RGB view and K � 1024 � 512 � D for the Depth view. Note
that the decoders mirror the encoders. The dimensionality of the
dual predictors is fixed to D�128�256�128�256�128�D

for all datasets. In practice, D is set to 128, 128, 128, 64, 40, and
32 for Caltech101-20, Scene-15, UWA, DHA, Noisy MNIST, and
Landuse-21, respectively.

For evaluation, we simply concatenate all view-specific rep-
resentations as the common representation. For the clustering
task, we feed the common representation into k-means like the
traditional fashion [22], [23], [25], [26], [28], [56], [63]–[67]. For
the supervised tasks (i.e., classification and action recognition), we
use Eq. (27) to predict the label.

We carry out experiments on an Ubuntu 18.04 OS with an
NVIDIA 2080Ti GPU in PyTorch 1.2 [68]. We use Adam
optimizer [69] with the initial learning rate of 0.0001 for all
datasets. The batch-size is set to 256 for LandUse-21, Caltech101-
20, Scene-15, and Noisy MNIST; 128 for DHA and 200 for
UWA. The maximal training epoch is fixed to 500 for LandUse-
21, Caltech101-20, Scene-15, and Noisy MNIST; and 2000 for
DHA and UWA. The trade-off parameters ↵, �1 and �2 are fix
to 9, 0.1, and 0.1 for all datasets. For the time cost evaluation,
our method takes about 50 seconds to train a model on LandUse-
15, 60 seconds on Caltech101-20, 80 seconds on Scene-15, 500
seconds on Noisy MNIST, 50 seconds on UWA, and 40 seconds
on DHA.

4.3 Experiments on Clustering
In this section, we evaluate our method with 10 state-of-the-art
multi-view clustering methods. In this experiment, our DCP does
not include the category-level contrastive loss Lccl for optimiza-
tion. Instead, we first pre-train the autoencoders by Licl and Lrec

with 100 epochs which stabilizes the training of the dual prediction
and after the warm-up, we train the whole networks with Eq. (19).

For a comprehensive analysis, we utilize three widely-used
clustering metrics including ACC (Accuracy), NMI (Normalized
Mutual Information), and ARI (Adjusted Rand Index) for perfor-
mance evaluation. In general, a higher value indicates a better
clustering performance. We investigate the effectiveness of all
methods by increasing the missing rate ⌘ from 0 to 0.8 with a

gap of 0.1. The clustering results are obtained by repeating each
method with five random dataset partitions and initializations.

From the results in Fig. 4 and Appendix A, one could ob-
serve that: i) when data is complete, DCP achieves competitive
performance on all datasets, which verifies the effectiveness of
our method on the complete multi-view data; ii) our method
significantly outperforms all the tested baselines in almost all
settings; iii) with the increase of the missing rate, the performance
degradation of the compared methods are much larger than that of
ours. For example, our method and the most competitive baseline
PIC achieve the NMI of 68.06% and 67.93% when ⌘ = 0
on Caltech101-20. While, with the increase of ⌘, our method
is remarkably superior to PIC, e.g., 67.39% vs. 64.32% when
⌘ = 0.5.

4.3.1 Parameter Analysis
In this section, we conduct the parameter sensitivity analysis and
ablation study on the Caltech101-20 dataset. In the experiment,
we fix the missing rate ⌘ to 0.5.

As discussed above, our method contains three balance pa-
rameters, namely, the dual prediction trade-off parameter �1,
the reconstruction trade-off parameter �2, and the entropy trade-
off parameter ↵. Although DCP with the fixed value of these
parameters has shown promising performance, it is still important
to explore the influence of these parameters and the full potential
of our method. To the end, we first evaluate the influence of �1

and �2. As shown in Fig. 6, we change the value of �1 and �2 in
the range of {0.01, 0.1, 1, 10, 100}. From the results, one could
observe that our method is not sensitive to �1. In addition, a good
choice of �2 (0.1 or 1) will remarkably improve the performance
of our method and the best result is achieved when �2 = 1.

Next, we evaluate the influence of ↵ by investigating the rela-
tions among ↵, the information entropy of representations H(Zi),
and the clustering performance (i.e., ACC, NMI, and ARI). In
the evaluations, we fix �1 and �2 to 0.1 based on the above
parameter analysis and increase the value of ↵ from 0 to 30 with
an interval of 0.5. As shown in Fig. 7, with increasing ↵, H(Zi)
synchronously grows while the clustering performance generally
first improves and then degrades. Such a result could be explained
by the InfoMin principle [43], i.e., the irrelevant information might
be thrown away when the mutual information between views
is reduced. To be specific, the increased entropy will enlarge
the mutual information and thus the clustering performance is
improved. When ↵ further increases, the mutual information will
contain more task-irrelevant information, thus leading to more
redundancy that will suppress the performance of the downstream
tasks.

4.3.2 Visualization on Data Recovery
In this section, we carry out visual experiments on the Noisy
MNIST dataset by passing the recovered representation through
the decoder to recover the missing views. The experiment is
designed to verify our theoretical results, i.e., only the information
shared by views (i.e., A2 and A3 in Fig. 1) will be recovered or
equivalently DCP could learn sufficient and minimal representa-
tions. In addition, the evaluation will also show that our method
could explicitly infer the representation rather than the similarity
of the missing views.

In the experiments, the missing rate ⌘ is set as 0.5 and some
recovered examples are shown in Fig. 8. In the figure, we recover
view 1 from view 2 (the top three rows) and view 2 from view 1
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(a) Caltech101-20

(b) Noisy MNIST

Fig. 4: Clustering performance comparisons on (a) Caltech101-20 and (b) Noisy MNIST with different missing rates (⌘).

(a) Caltech101-20

(b) Noisy MNIST

Fig. 5: Classification performance comparisons on (a) Caltech101-20 and (b) Noisy MNIST with different missing rates (⌘).
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Fig. 6: Parameter analysis on Caltech101-20.

Fig. 7: Clustering results of our method with the increasing ↵

on Caltech101-20. The x-axis denotes the parameter ↵, the left
and right y-axis denote clustering performance and information
entropy, respectively.

(the bottom three rows), respectively. From the results, one could
have the following observations. In the first case (i.e., the first
three rows), although the recovered images are inferred from the
complete ones, they are more similar to the missing images instead
of the complete ones. In the second case (i.e., the last three rows),
the contrary results are obtained. These results show that DCP
recovers the important characteristics (digits) while discarding the
superfluous information like noises, which is consistent with our
theoretical result. More specifically, on the one hand, the recovered
images will sufficiently remain the shared information (i.e., digits)
of two views through maximizing the mutual information. On the
other hand, the recovered images will discard the inconsistent
information (noisy background) by minimizing the conditional
entropy.

4.4 Experiments on Classification

In this section, we evaluate the effectiveness of our method for
classification task comparing with 12 state-of-the-art multi-view
representation learning algorithms. We vary the missing rate ⌘

from 0 to 0.8 with a gap of 0.1. The classification results are
obtained by repeating each method with five random initializations
and dataset partitions. For a comprehensive analysis, three widely-
used classification metrics including Accuracy, F-score, and Pre-

Fig. 8: Data recovery on the Noisy MNIST dataset. Row 1 and 4
are complete views, Row 2 and 5 are missing views, and Row 3
and 6 are the recovered results from the complete view.

cision are used. A higher value of these metrics indicates a better
classification performance.

From Fig. 5 and Appendix A, one could observe that: i) DCP
achieves the highest performance among all baselines in most
of the settings; ii) Although some baselines achieve competitive
results when the missing rate is low, their results degenerate signif-
icantly with increasing ⌘. Taking the results on Noisy MNIST as
an example (see Fig. 5(b)), DCP and DCCAE obtain an Accuracy
of 98.30% and 97.84% when ⌘ = 0, respectively. However, when
⌘ = 0.8, DCP performs remarkably superior to DCCAE, i.e.,
86.47% vs. 75.74%.

4.4.1 Ablation Studies

We carry out the following ablation study to investigate the role
of our four losses, i.e., the instance-level contrastive loss Licl,
the category-level contrastive loss Lccl, the dual prediction loss
Lpre, and the reconstruction loss Lrec. From Table 3, one could
observe that all loss terms play indispensable roles. It should
be pointed out that category-level contrastive loss Lccl utilizes
the label information thus cannot be applied for unsupervised
clustering tasks. As shown in the bottom three lines of Table 3,
the separability of the representation could be further enhanced
by incorporating category-level contrastive loss Lccl with the
instance-level contrastive loss Licl.
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TABLE 1: Multi-view clustering performance with more than two views. † denotes different variations of our method DCP.

Missing Methods Caltech101-20 Scene-15 LandUse-21
Type ACC NMI ARI ACC NMI ARI ACC NMI ARI

Incomplete

EERIMVC [23] (TPAMI’20) 42.72 49.77 27.96 33.45 30.13 16.36 22.05 22.60 7.76
BMVC [60] (TPAMI’19) 36.46 45.46 20.38 28.73 26.78 10.16 20.14 21.36 5.26
DCP (bi-view) 68.44 67.39 75.44 39.50 42.35 23.51 23.07 27.00 11.13

DCP-CV† 69.76 67.10 74.65 38.92 40.59 22.87 24.03 30.32 10.04
DCP-CG† 68.58 66.85 76.41 40.18 41.81 23.46 25.09 31.20 10.95

Complete

EERIMVC [23] (TPAMI’20) 42.63 54.03 30.16 40.41 38.39 23.41 25.25 30.87 12.00
BMVC [60] (TPAMI’19) 48.11 59.23 35.95 40.35 43.76 24.29 25.61 29.80 12.80
DCP (bi-view) 70.18 68.06 76.88 41.07 45.11 24.78 26.23 30.65 13.70

DCP-CV† 70.34 69.29 76.10 40.86 44.42 24.79 26.37 32.38 13.06
DCP-CG† 70.58 69.59 76.83 41.81 45.23 25.84 26.66 32.74 13.50

TABLE 2: Multi-view classification performance with more than two views. † denotes different variations of our method DCP.

Missing Methods Caltech101-20 Scene-15 LandUse-21
Type ACC Precision F-score ACC Precision F-score ACC Precision F-score

Incomplete

EERIMVC [23] (TPAMI’20) 51.92 46.11 45.33 45.81 44.31 39.71 35.33 31.50 30.31
BMVC [60] (TPAMI’19) 52.51 49.41 38.62 34.62 42.12 31.38 28.52 39.73 28.56
CPMNets [14] (TPAMI’20) 87.11 78.27 75.81 48.42 48.65 45.41 31.76 31.59 29.50
DCP (bi-view) 90.48 78.20 78.00 65.70 64.80 63.40 57.71 57.40 55.60
DCP-CV† 87.09 74.00 71.60 67.53 66.20 65.60 55.14 55.80 53.40
DCP-CG† 87.49 81.00 76.00 68.14 67.20 66.20 58.81 59.20 57.20

Complete

EERIMVC [23] (TPAMI’20) 53.59 48.09 49.44 53.71 54.69 47.45 37.47 35.49 33.90
BMVC [60] (TPAMI’19) 76.61 73.17 68.29 42.72 40.65 34.57 43.57 45.92 41.01
CPMNets [14] (TPAMI’20) 91.55 82.82 83.34 56.11 58.35 52.72 42.00 42.77 39.60
DCP (bi-view) 91.93 84.20 83.80 75.10 74.00 73.40 69.67 70.80 70.40
DCP-CV† 92.85 85.20 82.80 75.44 74.40 74.30 72.24 72.40 71.80
DCP-CG† 93.31 87.80 84.20 75.59 74.80 74.40 73.14 73.20 72.80

TABLE 3: Ablation study on the Caltech101-20 dataset, where
“3” indicates the used component. The results in the middle
column and right column denote the clustering results and clas-
sification results, respectively.

Lpre Lrec Licl Lccl ACC NMI ARI ACC Precision F-score

3 38.61 37.65 26.50 12.92 11.00 5.00
3 33.65 31.60 16.43 61.17 42.80 42.60

3 46.69 58.03 41.86 74.44 41.80 41.20
3 3 54.70 52.63 43.49 63.64 52.40 41.46

3 3 55.75 59.35 58.88 76.01 43.40 43.20
3 3 64.59 62.11 71.07 76.07 44.20 44.60
3 3 3 68.44 67.39 75.44 76.32 49.40 47.60

3 3 3 – – – 86.19 77.80 70.60
3 3 3 3 – – – 90.48 78.20 78.00

4.5 Experiments with More than Two Views

In this section, we evaluate the effectiveness of our method on
multi-view data in both clustering and classification tasks. For the
Caltech101-20 dataset, we use the HOG, GIST, and LBP features.
For the Scene-15 and LandUse-21 datasets, we use the PHOG,
LBP, and GIST features. For our core view based approach (DCP-
CV), we choose the HOG, GIST, and PHOG as the core view
for Caltech101-20, Scene-15, and LandUse-21, respectively. To
verify the generalization of DCP, we use the same network and
hyper-parameters as described in Section 4.2.

We test all methods in two settings, i.e., missing rate ⌘ = 0.5
(marked as Incomplete) and ⌘ = 0 (marked as Complete). From
the result in Table 1 and Table 2, one could observe that: i) in
these two settings, the DCP-CG outperforms the DCP-CV on
all three datasets, showing that the former is a better choice
as discussed in Section 3.3; ii) when the views are complete,
the DCP-CG and the DCP-CV both achieve better results than

DCP (bi-view), indicating that the representation quality could
be further improved with increasing view number; iii) although
the missing scenario of triple-view data is more complex than
bi-view data, the DCP-CG achieves comparable results with DCP
(bi-view), demonstrating the scalability of our method to the multi-
view setting.

4.6 Experiments on Human Action Recognition
In this section, we compare our method with eight state-of-
the-art multi-view action recognition baselines on two datasets.
More specifically, (1) SVM (Support Vector Machine) [70] is
a traditional classifier which constructs hyperplanes in a pre-
determined high-dimension space. (2) VLAD (Action Vector of
Local Aggregated Descriptor) [71] learns the representation by
aggregating local features and the video spatio-temporal content.
(3) TSN (Temporal Segment Networks) [72] combines a sparse
temporal sampling with the video-level supervision. (4) WDMM

(Weighted Depth Motion Maps) [73] uses the linear aggregation of
spatio-temporal information to recognize from the depth view. (5)
AMGL (Auto-Weight Multiple Graph Learning) [74] is a super-
vised multi-view classification method which learns an optimal
weight for each graph. (6) MLAN (Multi-view Learning with
Adaptive Neighbours) [75] performs semi-supervised classifica-
tion using an adaptive graph-based learning method. (7) GM-

VAR (Generative Multi-View Human Action Recognition) [18]
explores the latent connections in both intra- and cross-view
using an adversarial generative network. (8) GVCA (Generative
View-Correlation Adaptation) [76] employs a semi-supervised
data augmentation mechanism to enhance the action recognition
performance.

To evaluate SVM in the multi-view scenario, we concatenate
the RGB and depth features as the input like [18], [76] do. In
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TABLE 4: Human action recognition performance on the UWA
dataset, where “–” denotes the method cannot handle such sce-
narios. In addition, RGB (R), Depth (D), and R+D denote the
performance with single RGB view, single depth view, and RGB-
Depth view, respectively. A!B indicates that the view A is
generated by the view B. The best and the second-best result is
indicated in red and blue color, respectively.

Method RGB R!D Depth D!R R+D

SVM [70] 69.44 68.53 34.92 34.33 72.72
VLAD [71] 71.54 - - - -
TSN [72] 71.01 - - - -
WDMM [73] - - 46.58 - -
AMGL [74] 69.17 71.54 39.92 35.96 68.53
MLAN [75] 67.19 67.19 33.28 33.61 66.64
GMVAR [18] - 73.53 - 50.35 76.28
GVCA [76] - - - - 77.08
Ours: (Mean) 79.92 79.69 50.39 50.16 77.95
Ours: (Best) 81.10 81.88 51.18 51.18 80.31

TABLE 5: Human action recognition performance on the DHA
dataset.

Method RGB R!D Depth D!R R+D

SVM [70] 66.11 70.24 78.92 78.18 83.47
VLAD [71] 67.13 - - - -
TSN [72] 67.85 - - - -
WDMM [73] - - 81.05 - -
AMGL [74] 64.61 59.05 72.84 67.33 74.89
MLAN [75] 67.91 67.91 72.96 72.83 76.13
GMVAR [18] - 69.72 - 83.48 88.72
GVCA [76] - - - - 89.31
Ours: (Mean) 78.43 79.50 79.26 80.99 89.26
Ours: (Best) 82.64 81.40 82.23 83.05 90.08

experiments, we use TSN [72] and WDMM [73] to extract the
RGB features and depth features, respectively. More specifically,
each video is divided into five segments and a snippet is randomly
chosen from each segment. In accordance with [18], we sample
three snippets from each video. For the RGB view of the snippets,
we use the ResNet-101 pre-trained on ImageNet to produce the
class scores for each snippet and the class scores are with the
dimension of 6,144. For the depth view of the snippets, we utilize
WDMM and follow the same scheme used in [18], [76] to obtain
a 110-dimensional feature vector. In the evaluation, 50% samples
are used for training and the remainder is used for testing.

The action recognition accuracy is reported in Table 4 and 5.
As our method could recover the missing view from its corre-
spondence, we show its result in terms of R!D and D!R. For
SVM, AMGL, and MLAN which could only handle the complete
data, we use the mean feature as the “generated” view. From the
results, one could observe that DCP achieves the best results in
almost all settings. Especially, its performance superiority is quite
notable when the RGB view is available, i.e., R!D and RGB. In
detail, the accuracy of DCP is 12% and 9% higher than the best
baseline in the case of RGB and R!D, respectively. Moreover, the
results in R+D illustrate that our method could further improve
the accuracy compared with the baselines.

5 CONCLUSION

This paper theoretically unifies two seemingly separate chal-
lenges in incomplete multi-view representation learning, namely,

consistency learning and missing data recovery. We show the
two problems are equivalent from the perspective of information
theory and could be treated as two sides of one coin rather
than two independent objectives. Our proposed method DCP
elegantly achieves both objectives by jointly optimizing a dual
contrastive loss and a dual prediction loss. The experiments show
that DCP achieves superior performance in both complete and
incomplete scenarios over existing approaches and is scalable to
the multi-view (more than two) settings. One open question worth
discussing is the role of complementary principles in incomplete
multi-view representation learning. More specifically, as shown
in the visualization results of data recovery, only the shared
information among different views will be recovered. Hence, a
question naturally arises on whether preserving the view-specific
information during recovery would lead to a better representation.
We think such a question is worthy to explore and would inspire
some novel insights to the community.
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In this supplementary material, we present the additional ex-
perimental results and new visualization results to further support
our theoretical conclusions.

APPENDIX A

EXPERIMENTS ON CLUSTERING AND CLASSIFICA-

TION

In this section, we present the clustering and classification results
of the LandUse-21 and Scene-15 datasets. As shown in Fig. 9 and
Fig. 10, DCP has achieved the superior performance in almost all
settings over existing approaches.

APPENDIX B

COMPLEMENTARITY BETWEEN Lpre AND Licl

During training, the dual prediction loss Lpre overcomes the data
recovery problem through a instance-level formulation similar to
contrastive learning. A natural question to ask is whether Lpre is
redundant to our model when Licl can help to learn consistent
representations already? In short, the dual prediction loss Lpre

is complementary to Licl, which is indispensable to our model.
In the following, we will theoretically show and experimentally
verify the necessity of Lpre.

From information theory: It should be pointed out that the
prediction loss Lpre is proposed to recover the missing views
through minimizing the conditional entropy H(Zi|Zj), and the
instance-level contrastive loss Licl is designed for the consistency
learning through maximizing mutual information I(Z1;Z2). In
short, Lpre and Licl are specific training losses of the general
objective function Eq. (3):

max I
�
Z1;Z2�

s.t. minH
�
Z1|Z2�

, minH
�
Z2|Z1� (3)

As shown in Theorem 1 of manuscript, the cross-view con-
sistency learning and cross-view data recoverability are equivalent
from the information-theoretic point of view. More specifically, the
cross-view consistency and data recoverability could be treated as
two sides of one coin. On the one hand, the data recoverability
could be further improved because maximizing I(Zi;Zj) will
increase the view-shared information. On the other hand, the view-
inconsistent information will be discarded throughout minimizing
H(Zi|Zj), thus improving the consistency. Moreover, Theorem 2

has shown that optimizing Eq. (3) could achieve sufficient and
minimal multi-view representations. To sum up, Lpre and Licl

are complementary to each other and will mutually boost.
From experimental results: To verify the above theoretical

results, we investigate the impact of Lpre towards Licl by ablating
Lpre. In detail, we use the same network and balance parameters
described in Section 4.2, and test it in the following two settings,
i.e., missing rate ⌘ = 0.5 (marked as Incomplete) and ⌘ = 0
(marked as Complete). As shown in Table 6, Lpre + Licl is
consistently superior to Licl in both settings, verifying our claim
that Lpre is complementary to Licl.

APPENDIX C

EXPERIMENTS ON UNBALANCED MULTI-VIEW DATA

Real world data gathered from multiple sensors may exhibit
different levels of view quality, causing degradation in the model’s
performance. In this section, we show that utilizing dual prediction
loss Lpre can be helpful to address the problem of unbalanced
view quality.

When one view is of low quality, e.g., X2 is noisy, one
could assume that X2 contains more task irrelevant information
H(X2|Y) (i.e., A2 [ A5 in Fig 1). As the dual prediction loss
Lpre is designed for data recovery through minimization of the
conditional entropy H(Zi|Zj), most task-irrelevant information
H(X2|X1) (i.e., A5 in Fig 1) will be discarded via optimizing
Lpre. Meanwhile, as indicated by Theorem 1 and the above exper-
iments, Lpre is beneficial to consistency learning and performance
improvement.

To assess our method’s capacity for this problem, following
CoMVC [1], we corrupt the USPS view and Edge view in MNIST-
USPS and E-MNIST with additive Gaussian noise and record
the models’ performance in terms of clustering as the standard
deviation of the noise increases.

1) E-MNIST dataset, derived from the MNIST dataset, con-
tains the original hand-written digit and an edge-detected feature,
respectively. Following [1], we use the training set containing
50,000 images. The MNIST and Edge images are with 784
(28 ⇥ 28) pixels. Note that E-MNIST naturally contains unbal-
anced view information by design.

2) MNIST-USPS dataset. Following [2], we use raw images
from the MNIST and USPS datasets as two different views. For
each dataset, we randomly selected 5,000 samples distributed over
10 digits to constitute the MNIST-USPS dataset. A single MNIST
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(a) LandUse-21

(b) Scene-15

Fig. 9: Clustering performance comparisons on (a) LandUse-21 and (b) Scene-15 with different missing rates (⌘).

(a) LandUse-21

(b) Scene-15

Fig. 10: Classification performance comparisons on (a) LandUse-21 and (b) Scene-15 with different missing rates (⌘).
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(a) MNIST-USPS (b) E-MNIST

Fig. 11: Clustering ACC and NMI on MNIST-USPS and E-MNIST, with increasing levels of Gaussian noise added to the second view.

TABLE 6: Clustering performance by ablating Lpre. As shown, Lpre improves the performance of Licl in two different settings on
three datasets.

Missing Methods Caltech101-20 Scene-15 LandUse-21
ACC NMI ARI ACC NMI ARI ACC NMI ARI

Incomplete Licl 46.69 58.03 41.86 38.07 40.62 21.30 16.80 22.46 5.75
Lpre + Licl 64.59 62.11 71.07 39.49 42.08 22.92 20.34 26.89 10.14

Complete Licl 70.33 68.07 78.39 40.87 43.79 23.29 25.31 29.91 13.86
Lpre + Licl 70.79 68.38 77.87 41.28 44.27 24.16 26.57 30.22 14.32

image consists of 784 (28⇥ 28) pixels, and a single USPS image
consists of 256 (16⇥ 16) pixels.

For fair comparisons, we use the same networks described in
Section 4.2, except the encoder for E-MNIST, where the same
network of CoMVC [1] is used. The dimension D of latent
representation is set to 128 and 64 for E-MNIST and MNIST-
USPS, respectively. We maintain the same trade-off parameters as
described in the manuscript.

As shown in Fig. 11, DCP performs better than DCP w/o Lpre

in most cases, which verifies our claim that the dual prediction loss
Lpre is of use to unbalanced multi-view problems. Admittedly,
the performance of DCP is worse than CoMVC [1] on the E-
MNIST dataset since the primary focus of DCP is different from
CoMVC. To be specific, CoMVC is designed to solve this partic-
ular problem by learning a fusion weight designated for balancing
the importance of each view. In contrast, our DCP is proposed to
address the incomplete multi-view problem. Surprisingly, despite
the mentioned “unfairness” in the comparison, DCP still achieves
a slightly better performance than CoMVC on MNIST-USPS in
almost all noise cases.

APPENDIX D

VISUALIZATION ON REPRESENTATIONS

For a more comprehensive study, we employ t-SNE [3] to visually
illustrate the learned representation on the Noisy MNIST dataset
with the dimensionality of two. As shown in Fig. 12, the represen-
tations learned by DCP become more compact and discriminative
with increasing training epochs when missing rate ⌘ = 0.5. Fur-
thermore, we visually investigate all methods in the following two
settings, i.e., ⌘ = 0.5 (Fig. 13(a)) and ⌘ = 0 (Fig. 13(b)). From
the results, one could observe that the representations learned by
DCP are more discriminative than other methods.
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(a) 20 epoch (NMI = 0.567) (b) 50 epoch (NMI = 0.651) (c) 100 epoch (NMI = 0.707) (d) 200 epoch (NMI = 0.759)

Fig. 12: t-SNE visualization on the Noisy MNIST dataset with increasing training iteration.

(a) Incomplete (b) Complete

Fig. 13: t-SNE visualization on the Noisy MNIST dataset. ‘U’ and ‘S’ denote unsupervised and supervised learning paradigm,
respectively.


