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Abstract

Although explainable artificial intelligence
(XAI) has achieved remarkable developments
in recent years, there are few efforts have been
devoted to the following problems, namely,
i) how to develop an explainable method
that could explain the black-box in a model-
agnostic way? and ii) how to improve the
performance and interpretability of the black-
box using such explanations instead of pre-
collected important attributions? To explore
the potential solution, we propose a model-
agnostic explanation method termed as Sparse
Contrastive Coding (SCC) and verify its effec-
tiveness in text classification and natural lan-
guage inference. In brief, SCC explains the
feature attributions which characterize the im-
portance of words based on the hidden states
of each layer of the model. With such word-
level explainability, SCC adaptively divides
the input sentences into foregrounds and back-
grounds in terms of task relevance. Through
maximizing the similarity between the fore-
grounds and input sentences while minimizing
the similarity between the backgrounds and in-
put sentences, SSC employs a supervised con-
trastive learning loss to boost the interpretabil-
ity and performance of the model. Exten-
sive experiments show the superiority of our
method over five state-of-the-art methods in
terms of interpretability and classification mea-
surements. The code is available at https:
//pengxi.me.

1 Introduction

Deep neural networks (DNNs) have achieved re-
markable progress during the past few years. How-
ever, relying on stacking somewhat ad-hoc mod-
ules, DNNs are often referred to as “black-box”
methods that lack understanding of the working
mechanisms, thus increasing the risk of applying
them into real-world applications (Ribeiro et al.,

*The first two authors contributed equally.
†Corresponding author.

Improve
Performance

Feature 
Attributions

great
music

story

Great

and

N
eural N

etw
ork

Post-hoc Explain

Improve
Performance

Feature 
Attributions

great
music

story

Great

and

Improve
Interpretability

N
eural N

etw
ork

Sparse C
oding Layer

Figure 1: An illustration of the major differences be-
tween model explainability and our method. i) Differ-
ent from model explainability (left) which only gives
post-hoc explanations, our method (right) could further
improve the interpretability for a given neural network.
Such an improvement does not rely on pre-defined im-
portant attributions or pre-collected explanations; ii)
In addition, unlike most of the existing works which
only focus on explainability itself, our method could
improve the performance of black-boxes using the ob-
tained explanations.

2016; Rudin, 2019). For example, in medical di-
agnosis, predictions cannot be acted upon on blind
faith. Instead, doctors need to understand the rea-
sons behind the predictions, e.g., which part of
the inputs (e.g., chemical index) the model concen-
trates on.

To understand the working mechanism behind
DNNs, explainable artificial intelligence (Chen
et al., 2020a, 2018; Lundberg and Lee, 2017) has
been devoted in recent and one typical paradigm is
explaining the black-boxes from the level of feature
attributions, i.e., the importance of features w.r.t.
the prediction of the network. In general, these
studies could be roughly divided into two groups,
i.e., interpretable model and model explainability.
To be specific, model explainability (also referred
to as post-hoc explanations) (Ribeiro et al., 2016;
De Cao et al., 2020; Chen et al., 2021; Sun and
Lu, 2020) mainly focuses on explaining the feature
attributions through some visualization techniques
or agent models. The major merit of the post-hoc
explanation is model-agnostic, but it only offers
an approximate explainability and cannot improve
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the interpretability or the performance of the model.
On the contrary, interpretable models (Rudin, 2019;
Han et al., 2021) try to explain the working mech-
anism from the model design. In other words, the
model could explicitly explain the feature attribu-
tions by itself. However, interpretable models are
model-specific that cannot be generalized to differ-
ent neural networks.

Based on the above discussions and observations,
this paper aims to study two less-touched problems
in XAI. Namely, i) how to develop an explain-
able method that could explain the black-box in
a model-agnostic way? and ii) how to improve the
performance and interpretability of the black-box
using such explanations instead of pre-collected
important attributions. The solution to the prob-
lems requires simultaneously enjoying the merits
of model explainability and interpretable model
to a certain extent. Notably, the answer would be
helpful to highlight another perspective of XAI, i.e.,
XAI should play an important role in improving
the model after understanding the model behav-
ior. Notice that, some recent studies have been
conducted and proved the effectiveness of XAI in
interpretability improvement (Erion et al., 2019;
Rieger et al., 2020). However, they often require
to collect pre-defined feature attributions, which is
labor-intensive and uneconomic.

To explore an effective solution to this problem,
this paper proposes a model-agnostic explanation
method dubbed sparse contrastive coding (SCC).
As shown in Fig. 1, SCC designs a novel sparse
coding layer (SCL) which explains the word-level
feature attributions based on the hidden states of
each layer in the model. To make the explanation
faithful and exploit the explainability for model
improvement, SCC employs a novel loss function
consisting of a sparse coding loss, a contrastive
coding loss, and a cross entropy loss. Specifically,
the cross entropy loss is enforced between the pre-
diction of texts masked by the feature attributions
and the ground-truth to achieve word-level explain-
ability. To make the explanation concise, the sparse
coding loss enforces a sparse constraint on the fea-
ture attributions so that the foreground words are
disentangled from the backgrounds. To further ex-
ploit the explainability for improving the model,
the contrastive coding loss is enforced on three
kinds of input divided by the feature attributions,
i.e., the whole texts, foregrounds, and backgrounds.
Different from the vanilla methods (He et al., 2020;

Chen et al., 2020b; Lin et al., 2021, 2022; Yang
et al., 2022), our contrastive coding loss works in
a supervised fashion and embraces the properties
of negative sample mining and auto data augmen-
tation that could boost the interpretability and per-
formance.

The main contributions and novelties of this pa-
per could be summarized as below: i) we study
two less-touched problems in XAI as the afore-
mentioned, i.e., how to develop a model-agnostic
method to explain a given black-box and use such
explanations to improve its performance and inter-
pretability? To the best of our knowledge, there
are few efforts have been devoted so far; ii) we
accordingly propose SCC whose basic idea is dis-
entangling the important words from inputs to im-
prove interpretability and discrimination. Exten-
sive experiments on six textual datasets verify the
effectiveness of SCC in terms of interpretability
and classification metrics.

2 Related Work

This work is closely related to model explainabil-
ity and interpretable models which will be briefly
introduced in this section.

2.1 Model Explainability

Model explainability (post-hoc) methods mainly
focus on explaining models by detecting feature
attributions, i.e., explaining the model by evaluat-
ing the contribution of each feature (Guan et al.,
2019). For example, LIME (Ribeiro et al., 2016)
learns feature attributions by using a local linear
model with perturbations to approximate the black-
box model. L2X (Chen et al., 2018) aims to reveal
the importance of features by maximizing the mu-
tual information between the chosen words and
the outputs of the model. KernelSHAP (Lundberg
and Lee, 2017) employs different Shapley values
to compute feature attributions. Recently, some
post-hoc explanation methods enforce the model
to focus on pre-defined important features using
human-annotated explanations, which achieve re-
markable progress. For example, (Rieger et al.,
2020) utilizes the contextual decomposition to en-
code prior knowledge into explanations and (Erion
et al., 2019) calculates the expected gradients to
make full use of attribution priors.

Although this paper also explores interpretability
based on feature attributions, it is different from
the aforementioned studies in the given aspects.
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Figure 2: Overview of the proposed SCC. (a) Sparse coding layer (SCL) gφ is designed to measure the fea-
ture attributions M based on the output of each hidden layer h(i) in the model fθ. (b) SCC contains three joint
optimization losses, namely, sparse coding lossLsc, contrastive coding lossLcc, and cross entropy lossLce. Specif-
ically, the cross entropy loss is enforced between the prediction of texts masked by the feature attributions and the
ground-truth to achieve word-level explainability. The sparse coding loss is enforced on the feature attributions
to distinguish the irrelevant words and make the explanation concise. The contrastive coding loss is enforced on
the whole text z, foregrounds (task-relevant words) zf , and backgrounds (task-irrelevant words) zb to boost the
interpretability and performance of the model. The subscripts i, p, and n denote the i-th sample and corresponding
within-class and between-class samples.

On the one hand, our method does not rely on the
pre-defined important attributions or pre-collected
explanations (Erion et al., 2019), thus enjoying a
more economic solution. On the other hand, our
method could not only improve the interpretabil-
ity but also the performance. In contrast, existing
methods may cause the performance drop due to
inconsistency between the human explanation and
model reason process (Jacovi and Goldberg, 2020).

2.2 Interpretable Models

Instead of generating post-hoc explanations,
interpretable models aim to build module-
decomposable or algorithm-transparent neural net-
works. For example, TELL (Xi et al., 2021) pro-
poses an algorithm-transparent clustering network
which reformulates the k-means objective as a neu-
ral layer. SENN (Alvarez-Melis and Jaakkola,
2018) designs a module-decomposable neural net-
work by progressively stacking a set of linear clas-
sifiers. VMASK (Chen and Ji, 2020) utilizes word
masks to select important features for building an
interpretable neural network.

The major differences between our work and ex-
isting works are two-folds. On the one hand, our
method is a model-agnostic explanation method
which could be applied to explain different black-
boxes. In contrast, the interpretability of most ex-
isting interpretable models is limited to the original
model. On the other hand, most studies achieve

interpretability at the cost of performance (Rudin,
2019), whereas our method shows that the inter-
pretability could improve the model performance.

3 Method

This section elaborates on the proposed Sparse
Contrastive Coding (SCC) which tries to seek a
feasible solution to the aforementioned two prob-
lems in XAI, i.e., i) how to develop an explain-
able method that could explain the black-box in a
model-agnostic way? and ii) how to improve the
performance and interpretability of the black-box
using such explanations?

As illustrated in Fig. 2, SCC explains and im-
proves the black-boxes through three jointly opti-
mizing objectives, namely, sparse coding loss Lsc,
contrastive coding loss Lcc, and cross entropy loss
Lce:

L = Lce + Lsc + λLcc, (1)

where the balanced factor λ is simply fixed to 0.1
throughout experiments. In the following, we will
introduce how the sparse coding layer with Lsc and
Lce is built for embracing explanability in Section
3.1 and how to improve the model performance
and the interpretability through Lcc in Section 3.2.

3.1 Explaining Model via Sparse Coding
Layer

Without loss of generality, we take text classifi-
cation as an evaluation task. For an input text



x = {x1, x2, . . . , xN}, let xi ∈ Rd (1 ≤ i ≤ N )
represents the embedding of i-th word and N de-
notes the number of words. The neural network
fθ(·) aims at predicting the class label ỹ for x
through the mapping fθ(x).

As shown in Fig. 2(a), to explain the neural net-
works, we design a sparse coding layer (SCL) gφ
that could measure the feature attributions based
on the output of each hidden layer in the model.
To be specific, let h = 〈h(0), . . . , h(L)〉 denotes
the hidden states of each layer in the neural clas-
sifier, where h(0) = x is the word embedding
layer. We identify the important words through
gφ: M = gφ(h) = {M1,M2, . . . ,MN}, where
Mi ∈ [0, 1] measures the importance of i-th word.
In detail, gφ aggregates the information from each
layer in a gated form (Chung et al., 2014) with
three one-layer MLPs:

g(i) = η
(

MLPgate

(
h(i)
))
�MLPrep

(
h(i)
)
,

(2)

M = MLPproba

(
[g(0); . . . ; g(L)]

)
, (3)

where η is the Tanh activation function and [; ] is
the concatenation operation.

To generate an effective explanation, M is ex-
pected to have the following properties: i) remov-
ing irrelevant words as many as possible for a con-
cise explanation, ii) and meanwhile correctly se-
lecting relevant words for classification. To achieve
the first property, it is encouraged to maximize the
sparsity of M through `0-norm, i.e., minimizing
the number of the non-zeros values,

L0 =

n∑
i=1

1[R6=0] (Mi) . (4)

Although `0-norm is discontinuous and has zero
derivative almost everywhere, it is exactly equiva-
lent to `1-norm under the binary case. Based on this
observation, we generate hard masks during train-
ing following the reparameterization trick (Maddi-
son et al., 2017) as below

Mi =
exp

((
log Mi +G1

i

)
/τ
)∑1

l=0 exp
((
wli +Gli

)
/τ
) , (5)

where wli = log (lMi + (1− l) (1−Mi)), Gli =
− log(− log u) is the l-th Gumbel random variable,
u ∼ Uniform(0, 1), and τ is the softmax tempera-
ture. In this way, one could surrogate `0-norm with

`1-norm to achieve sparsity. Furthermore, we intro-
duce a balance term on M to keep the exploratory
in the preliminary training stage. Mathematically,
the sparse coding loss for SCL is given by,

Lsc =
∑
i

(
‖Mi‖1 + γ (Mi log (Mi)

+ (1−Mi) log (1−Mi))) ,
(6)

where γ is steadily annealed from 1.0 to 0.01 with
a decay of 0.099.

To achieve the second property, i.e., selecting
most relevant words, we mask the word embed-
dings based on the measured feature attributions
for classification by minimizing the cross entropy
loss between the prediction ỹ and the ground-truth
y, i.e.,

Lce(ỹ, y) = Lce(fθ(x̃), y), (7)

where
x̃ = M� x, (8)

and � denotes the element-wise multiplication. As
long as the prediction ỹ approximates the ground-
truth, we deem M selects the most relevant words.

3.2 Improving Model using Explainability

Most XAI studies are deemed to be important for
truthful and safety AI, which somehow ignore an-
other important perspective, i.e., improving the in-
terpretability and performance. After understand-
ing the working mechanism of black-box, it is
highly expected not only more trustworthy predic-
tions but also higher performance. To this end,
we propose a novel contrastive coding loss which
could encourage model improvement using the ex-
plainability.

In detail, we first divide the input sentence x
into foreground xf and background xb through the
sparse coding layer,

xf = M� x, xb = (1−M)� x, (9)

where xf denotes the set of important words and xb

contains all irrelevant words for classification. By
passing x, xf , and xb through the neural network
fθ, we could obtain the representations z, zf , and
zb, accordingly.

For clarity, we first present the general form of
our contrastive coding loss and then elaborate on
the training details. Let notation ti marks the i-
sample and tp marks the positive sample for ti, our



contrastive coding loss is given by

Lcc =
∑
i

−1

|P (i)|
∑
p∈P (i)

log
exp (ti · tp/τ2)∑

a∈A(i) exp (ti · ta/τ2)
,

(10)
whereP (i) denotes the corresponding positive sam-
ples set of sample i, A(i) denotes all samples with-
out sample i, and τ2 ∈ R+ is a scalar temperature
parameter.

Notably, one major difference between Eq. (10)
and the vanilla contrastive loss (Khosla et al., 2020)
lies on the positive/negative construction which is
non-trivial as pointed out in (Chen et al., 2020b;
Khosla et al., 2020). Specifically, as shown in
Fig. 2(b), our contrastive coding loss will deal with
three kinds of anchors, i.e., the input sentence zi,
the foreground zfi , and the background zbi . Mathe-
matically, we have anchor ti ∈ {zi, zfi , zbi} (i.e., ti
could be one of the samples zi, zfi , and zbi ) which
will also determine the choice of positive sample
tp, namely,

• When the anchor is the input sentence or
foreground, i.e., ti = zi or ti = zfi , then
tp ∈ {zfi , zp, z

f
p} or tp ∈ {zi, zp, zfp} accord-

ingly. In other words, for either of zi and
zfi , the objective aims to minimize its dis-
tance with within-class samples zp and zfp ,
while maximizing its distance with between-
class samples zn, zfn, and all backgrounds
{zbi , zbn, zbp}. The subscripts p and n denote
the within-class and between-class samples of
zi selected by the classification label.

• When the anchor is the background, i.e., ti =
zbi , then tp ∈ {zbp, zbn}. In other words, the
objective is to ensure that the backgrounds
will only contain irrelevant words by pulling
all backgrounds together while pushing the
other sentences and foregrounds away.

3.3 Discussions
With the above contrastive coding loss, one could
maximize the similarity between the foregrounds
and the input sentences, while minimizing the sim-
ilarity between the foregrounds and backgrounds.
This strategy could encourage the model to se-
lect task-relevant words and throw away irrelevant
words, thus boosting the interpretability. By incor-
porating the explainability into the training process,
our contrastive coding loss owns the following de-
sirable properties:

Datasets C #train #dev #test L B

IMDB 2 20K 5K 25K 250 8
SST2 2 67K 872 1.8K 50 16
YELP 2 500K 60K 38K 150 16
TREC 6 5K 452 500 15 16
SUBJ 2 8K 1K 1K 25 16
SciTail 3 24K 1K 2K 50 16

Table 1: Summary statistics of the datasets. C is the
number of classes, L is the padded sentence length, B
is the training batchsize, and # denotes the number of
samples in train/dev/test sets.

Negative sample mining. The foregrounds and
backgrounds divided by our sparse coding layer
could be regarded as augmented positive samples
and negative samples. Notably, there are few works
that attempt to conduct negative data augmenta-
tions since there is no exact definition of negative
data augmentations. Through our explainability
paradigm, it is reasonable and natural to construct
negative pairs using the task-irrelevant samples. As
shown in Table 5, the ablation study verifies the
effectiveness of such negative sample mining prop-
erty by discarding the backgrounds contrast.

Auto data augmentation. The huge success of
contrastive learning could be partially attributed to
effective data augmentation techniques (He et al.,
2020; Chen et al., 2020b). Most existing data aug-
mentation methods often resort to hand-crafted ap-
proaches, e.g., rotation, flipping, and so on. Differ-
ent from these methods, our SCC could be regarded
as providing an auto data augmentation strategy
which utilizes task relevance to filter out the salient
words that are negative to the input in the semantic
space. In addition, it is worthy to point out the dif-
ference between our method and (Gao et al., 2021).
In brief, (Gao et al., 2021) randomly removes the
fixed-rate words for data augmentation, which is
task-irrelevant and the fixed parameter might lead
to inferior performance. In contrast, our SCC will
select salient words to augment data base on the
task relevance, which will be adaptive to different
inputs. As shown in Table 3, one could find the
superiority of such an auto data augmentation.

4 Experiments

In this section, we carry out experiments on six
widely-used textual datasets. For a comprehensive
study, we compare SCC with five state-of-the-art
approaches on two classification tasks (i.e., senti-
ment analysis and subjective/objective classifica-



Figure 3: Post-hoc accuracy. Higher is better. The vertical axis and horizontal axis denote the post-hoc accuracy
and the number of reserved important words, respectively. SCC has achieved significant improvement compared
with others.

Models Methods
AOPC-5 AOPC-10

YELP SST2 IMDB SUBJ TREC YELP SST2 IMDB SUBJ TREC

BERT

BASE 7.23 30.04 5.45 15.08 63.24 9.80 32.84 6.57 22.18 66.59
L2X 6.92 32.28 4.13 15.63 57.29 9.02 32.22 5.06 15.63 57.29
IBA 6.91 32.04 5.15 15.68 54.64 9.18 32.04 5.90 15.68 54.64

VMASK 7.47 32.73 5.05 16.43 54.24 9.60 33.73 6.05 16.53 54.24
SCC 7.75 32.92 5.87 16.68 65.18 9.64 36.72 6.76 23.74 68.02

RoBERTa

BASE 7.66 30.97 4.71 13.80 61.68 9.95 35.59 5.49 20.37 65.04
L2X 6.85 30.07 3.99 13.92 53.09 9.06 35.18 4.80 20.19 57.88
IBA 7.21 30.43 3.95 13.49 53.92 9.32 35.92 4.73 19.66 58.60

VMASK 7.10 31.00 6.25 14.03 51.15 9.24 35.75 7.11 19.77 56.10
SCC 8.01 32.02 6.39 14.69 62.48 10.06 36.31 7.00 20.12 65.85

Table 2: AOPC scores. Higher is better. The best and second-best results are highlight in bold and underline.
SCC focuses on the most important words for prediction compared with baselines thanks to our sparse coding layer
and three jointly learning losses.

tion) and natural language inference (NLI) task in
terms of the metrics of interpretability and classifi-
cation performance.

4.1 Experimental Settings
Datasets: Six widely-used datasets are used in
our experiments, i.e., YELP reviews dataset (Zhang
et al., 2015), movie reviews dataset IMDB (Maas
et al., 2011), question classification dataset
TREC (Li and Roth, 2002), subjective/objective
classification dataset SUBJ (Pang and Lee,
2005), Stanford Sentiment Treebank datasets SST-
2 (Socher et al., 2013), and NLI dataset Sci-
Tail (Khot et al., 2018). For IMDB and SUBJ
datasets, we hold out a portion of the training set
as the development set. For the other datasets, we
use the original data splits. The statistics of the
datasets are given in Table 1.

Implementation Details : The proposed sparse
coding layer consists of three one-layer MLPs as
shown in Eq. 2 and Eq. 3, i.e., a representation MLP
MLPrep, a gated MLP MLPgate, and a probability
MLP MLPproba. In detail, MLPrep and MLPgate
project the 768-dimension token representation into

100-dimension, and afterwards, MLPproba outputs
1-dimension feature attributions. In the training
stage, we optimize the sparse coding layer and
the neural classifier in an end-to-end fashion with
the aforementioned three objectives. In the testing
stage, we only retain the neural classifier and verify
its improvement.

To show that SCC could improve the inter-
pretability and the classification performance for
a given model, we apply it to two typical neu-
ral models, i.e., BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019). In detail, we imple-
ment SCC in PyTorch 1.7.1 and carry all evalua-
tions on the Red Hat 6.4 OS with a Tesla P100
GPU. To optimize the networks, we adopt AdamW
optimizer (Loshchilov and Hutter, 2017) with the
default parameters and set the initial learning rate
as 1e−5. The softmax temperature τ and τ2 are
all set to 1.0 and the maximal training epoch is
fixed to 10 on all datasets. For fair comparisons,
we adopt the best checkpoint on the validation set
for all tested methods in terms of accuracy.



Figure 4: Qualitative evaluation. The most important four words are highlighted and the color saturation indicates
the word attribution. As shown, SCC could capture more precise sentiment words that indicate the same sentiment
polarity with the prediction.

Baselines: To show the promising performance
of SCC, we compare it with the following methods:
i) L2X (Chen et al., 2018) learns the importance
of features by maximizing the mutual information
between the chosen words and the output of the
model. ii) IBA (Schulz et al., 2020) learns the
feature attributions based on the information bot-
tleneck theory. iii) VMASK (Chen and Ji, 2020)
proposes a learnable mask that removes the irrele-
vant words and keeps the explanation of the model.
iv) SimCSE (Gao et al., 2021) proposes a simple
contrastive learning framework whose performance
is remarkably benefited from the dropout augmen-
tation. v) Base model which denotes the model
is trained by minimizing the cross entropy loss
only. Note that, L2X and IBA are proposed for
generating post-hoc explanations. To investigate
the effectiveness of post-hoc explanations in per-
formance improvement, we integrate L2X and IBA
into the model training stage by adding an extra
word mask layer as suggested by VMASK.

4.2 Quantitative Evaluation of
Interpretability

We adopt two interpretability metrics to evalu-
ate the faithfulness and sufficiency of the model,
i.e., AOPC (Nguyen, 2018) and post-hoc accu-
racy (Chen et al., 2018). In brief, AOPC measures
the fidelity by masking the top-scored words and
calculating the difference on the predicted proba-
bility, while post-hoc accuracy measures the suffi-
ciency of interpretability by keeping the most im-
portant words.

AOPC: We calculate the area over the perturba-
tion curve (AOPC) to evaluate the faithfulness of
explanations to models. To be specific, AOPC cal-

culates the average change of prediction probability
on the predicted class over all test data by deleting
top k words. Mathematically,

AOPC =
1

M

(
M∑
i=1

p(ŷ | xi)− p(ŷ | x̄(k)
i )

)
,

(11)
where ŷ is the predicted label, andM is the number
of samples. x̄(k) is constructed by deleting the top
k important words of x and LIME (Ribeiro et al.,
2016) is used to measure the importance of words.
Higher AOPC indicates better explanations, i.e., the
deleted words are crucial to the model prediction.
Note that, due to the over-high computation costs of
LIME (Ribeiro et al., 2016), we randomly pick up
2,000 examples from YELP and IMDB, and use the
whole SST2, SUBJ, and TREC in the evaluation.

Post-hoc Accuracy: It could evaluate the suffi-
ciency of important words to the model prediction.
More specifically, we select the top v words based
on feature attributions for classification and com-
pare the performance with the case of the whole
text. Note that the importance of words is com-
puted by the word masks (baselines) or the sparse
coding layer (SCC). Mathematically, post-hoc ac-
curacy is defined as,

post-hoc accuracy =
1

M

M∑
i=1

1
[
ỹ
(v)
i = ỹi

]
,

(12)
where ỹi is the predicted label of i-th sample and
ỹ
(v)
i is that of i-th sample with top v words. Higher

values denote better explanations.

Results: Table 2 reports the AOPC scores when
the most important 5 and 10 words are deleted
(marked as AOPC-5 and AOPC-10). From the



results, one could observe that: i) SCC outper-
forms all baselines on most datasets in terms of
AOPC-5 and AOPC-10. For example, SCC sur-
passes the best baseline by 1.94% on TREC dataset
with BERT in terms of AOPC-5. ii) On the YELP
dataset, the AOPC of BASE is even better than
L2X and IBA. This phenomenon reveals that as-
sembling post-hoc explanation methods to neural
networks is not always encouraging, and proves
the effectiveness of our training framework. iii)
The AOPC-10 score on TREC is extremely high
because the maximum length of sentences is 15
in TREC, i.e., removing the top 10 words would
probably exclude most informative words. Fig-
ure 3 shows the results of post-hoc accuracy, which
shows that SCC significantly outperforms all the
tested baselines in all evaluations.

4.3 Qualitative Evaluation of Interpretability
To intuitively investigate the effectiveness of our
method, we first present the feature attributions of
two examples randomly selected from the SST2
dataset with the BERT backbone. As shown in
Figure 4, although all methods have made correct
semantic predictions, the interpretability is quite
different in such a qualitative evaluation. More
specifically, SCC correctly captures the sentiment
words “gory" and “silly" in the first example, while
the baselines fail in capturing “silly". In the second
example, IBA and VMASK ignore “cute", L2X
ignores “amusing", while our method captures all
three important words. To sum up, SCC could
capture more precise sentiment words that indicate
the same sentiment polarity with the prediction.
More examples are presented in Figure 5.

4.4 Evaluation of Classification
As aforementioned, one major goal of this study is
to improve the classification performance by utiliz-
ing the explainability. To investigate such a capac-
ity, we compare the tested methods on five datasets
in terms of classification accuracy. As shown in Ta-
ble 3, SCC significantly outperforms baselines by a
large performance margin on almost all datasets. It
should be pointed out that, SCC is even better than
SimCSE (Gao et al., 2021) which is designed for
representation learning rather than interpretability.

4.5 Evaluation of Natural Language
Inference

Natural language inference is the task of deter-
mining whether a hypothesis is true (entailment),

Methods SST2 TREC SUBJ IMDB YELP
BERT 93.79 96.40 94.80 91.67 96.36
L2X 93.03 96.60 94.85 91.34 96.41
IBA 93.74 96.80 94.90 92.20 96.45

VMASK 93.80 96.80 94.70 92.08 96.48
SimCSE 93.90 97.00 94.70 91.72 96.41

SCC 94.23 97.00 94.90 92.32 96.59
RoBERTa 95.16 96.60 96.00 92.71 96.92

L2X 95.39 96.70 95.90 93.60 96.99
IBA 95.66 96.20 95.70 93.68 97.06

VMASK 95.28 96.40 95.90 90.08 97.07
SimCSE 95.73 96.60 95.90 92.82 97.11

SCC 96.10 97.00 96.10 93.73 97.17

Table 3: Classification accuracy. The top and the bot-
tom six rows denote the results based on BERT and
RoBERTa backbones, respectively. As illustrated, SCC
outperforms five baselines with two different models
on all five datasets.

Methods Classification Acc Post-hoc Acc
BERT 91.90 –
L2X 90.73 59.31
IBA 91.44 54.26

VMASK 88.48 58.93
SCC 92.29 62.13

Table 4: NLI accuracy. SCC outperforms four base-
lines in terms of post-hoc accuracy and classification
accuracy.

false (contradiction), or undetermined (neutral)
given a premise. To verify the universality of our
method, we further compare the tested methods
on SciTail (Khot et al., 2018) in terms of accuracy
and post-hoc accuracy. As shown in Table 4, the
remarkable improvement suggests that our SCC
could be generalized to different tasks and further
improve both the interpretability and performance
of the model.

4.6 Ablation Study

To evaluate our design decisions, we conduct abla-
tion studies on the SST2 dataset. The experiments
are designed to isolate the effect of contrastive cod-
ing loss and sparse coding loss. Moreover, we
also ablate the disentangled backgrounds from con-
trastive learning to verify the effectiveness of the
negative sample mining as discussed in Section 3.3.
As shown in Table 5, all objectives are helpful
in improving the interpretability and classification
performance.



Figure 5: Qualitative evaluation. The most important four words are highlighted and the color saturation indicates
the word attribution.

Method Classification Post-hoc
Acc Acc

BERT 93.79 –

SCC

w/o contrastive coding loss 93.96 74.03
w/o sparse coding loss 94.13 82.27
w/o background contrast 94.07 84.46
Full (Ours) 94.23 85.83

Table 5: Ablation study. We select top 4 words for
calculating post-hoc accuracy. All loss terms play in-
dispensable roles in SCC.

5 Conclusion

In this paper, we show a feasible solution to solve
two less-touched problems in XAI, i.e., how to
develop a model-agnostic method to explain the
black-box and utilize the explanations to improve
the model performance and interpretability. We
take text classification and natural language infer-
ence as evaluation tasks, and quantitatively and
qualitatively show the superiority of our method in
terms of interpretability and classification metrics.
In the future, we plan to explore the potential of
our framework in other applications like medical
diagnosis and extend our idea to other data domains

like images.

Limitations

The motivation of this work is to highlight another
important perspective of explainable AI, i.e., in-
creasing the trustworthiness and performance of
black neural network models in decision making.
However, we need to retrain the whole network
again for improving the black-boxes, which might
consume a lot of energy and cause massive CO2
emissions. In addition, there is no need to hide that
this paper only considers the word-level explain-
ability (i.e., feature attributions), and it is unclear
how to extend this idea to other explainability due
to the diversity and rapid development of XAI.
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