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Low-Rank Tensor Learning for Incomplete
Multiview Clustering
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Abstract—Incomplete multiview clustering (IMVC) is an effective way to identify the underlying structure of incomplete multiview data.
Most existing algorithms based on matrix factorization, graph learning or subspace learning have at least one of the following
limitations: (1) the global and local structures of high-dimensional data are not effectively explored simultaneously; (2) the high-order
correlations among multiple views are ignored. In this paper, we propose a low-rank tensor learning (LRTL) method that learns a
consensus low-dimensional embedding matrix for IMVC. We first take advantage of the self-expressiveness property of
high-dimensional data to construct sparse similarity matrices for individual views under low-rank and sparsity constraints. Individual
low-dimensional embedding matrices can be obtained from the sparse similarity matrices using spectral embedding techniques. This
approach simultaneously explores the global and local structures of incomplete multiview data. Then, we present a multiview
embedding matrix fusion model that incorporates individual low-dimensional embedding matrices into a third-norm tensor to achieve a
consensus low-dimensional embedding matrix. The fusion model exploits complementary information by finding the high-order
correlations among multiple views. In addition, the computational cost of an improved fusion strategy is dramatically reduced.
Extensive experimental results demonstrate that the proposed LRTL method outperforms several state-of-the-art approaches.

Index Terms—Multiview clustering, tensor nuclear norm, spectral embedding, high-dimensional data.
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1 INTRODUCTION

IN real scenarios, high-dimensional data are often col-
lected from different signal sources or represented by

different types of features [1]. For example, a color image
can be described by different modalities, e.g., its color,
textures, and edges. A piece of news can be reported in
several languages while still delivering the same message.
These examples are referred to as a typical kind of multi-
view data. Multiview clustering (MVC) attempts to partition
samples into their respective groups by fully integrating
the information obtained from multiple views. In contrast
to clustering with a single view, clustering with multiple
views may provide some consistency and complementary
information regarding multiview data, which can effectively
improve clustering performance [2], [3], [4], [5], [6].

Most MVC algorithms always assume that the data of all
views are fully available and that the instances are strictly
aligned in these views [7], [8], [9], [10], [11], [12], [13]. For
example, Chen et al. presented a symmetric multiview low-
rank representation method to seek the low-dimensional
structures of high-dimensional data across multiple views
[10]. Zhu et al. presented a multiview spectral clustering
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method to generate a common affinity matrix for MVC [12].
Xie et al. [14] presented a deep multi-view joint clustering
framework to simultaneously learn multiple deep embed-
ded features, a multiview fusion mechanism, and cluster-
ing assignments for deep MVC. In practical applications,
multiview data often suffer from the absence of instances
in some views for various reasons, e.g., temporary failures
on data acquisition devices or high data collection costs.
How to efficiently manipulate incomplete multiview data
becomes the incomplete MVC (IMVC) problem. The lack of
instances in some views inevitably degrades the clustering
performance of traditional MVC algorithms.

A variety of IMVC algorithms have been proposed dur-
ing the past decade to alleviate the problem of missing
instances in multiple views [15], [16], [17]. Most IMVC
algorithms are roughly grouped into five categories from
the perspective of the theory behind their optimization
models, i.e., subspace learning-based methods [18], [19],
[20], [21], nonnegative matrix factorization (NMF)-based
methods [22], [23], graph learning-based methods [15], [17],
multiple kernel-based methods [16], [24] and deep learning-
based methods [25], [26], [27], [28], [29]. A number of IMVC
algorithms often construct a shared similarity matrix for
spectral clustering or learn a consensus clustering matrix
for the k-means algorithm [30] across multiple views by
inferring the missing views or imputing the missing features
or incomplete base kernel matrices. For example, Wen et
al. [20] presented an incomplete multiview tensor-based
spectral clustering method that incorporates feature space-
based missing view inference and similarity graph learning
into a unified framework to learn similarity matrices for
multiple views. Liu et al. [16] presented an IMVC algorithm
that learns a consensus clustering matrix by imputing in-
complete kernel matrices, which are initially generated by
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incomplete views. These algorithms can obtain encouraging
clustering results for incomplete multiview data. However,
some limitations and drawbacks remain. First, the missing
instances in the sample views are not effectively recovered
when individual instances are completely absent in each
individual view. As the missing rate gradually increases,
the numbers of instances available in multiple views also
decline considerably. As a result, conducting imputation
on the original missing instances or filling the missing
instances with zeros or mean values could adversely affect
the clustering performance of such methods, especially for
a large missing data ratio. Next, the IMVC algorithms that
take advantage of the self-expressiveness property of high-
dimensional data cannot fully capture the global and local
structures of such data because they only consider the
intuitive combinations of various matrix norms, e.g., low-
rank or sparsity norms, in high-dimensional data. However,
it is not simple to explicitly determine which norms play
dominant roles in joint data self-representations. Finally,
the high-order correlations among multiple views are often
ignored in IMVC. Consequently, IMVC still faces significant
challenges.

Lu et al. [31] recently introduced a tensor-robust prin-
cipal component analysis (PCA) method to recover a low
tubal rank tensor and sparse tensor from their sum, which
is based on the tensor-tensor product [32]. Motivated by
advances in tensor analysis techniques [31], [32], several
works have introduced tensor nuclear norms to exploit the
high-order correlations among multiple views [9], [17], [21],
[33]. Most of these methods stack the LRRs of multiple
views into an individual tensor to exploit the high-order
information embedded in these views [17], [21], [33], and
they apply tensor-singular value decomposition (t-SVD) or
its variants on the self-expressive tensor to obtain individual
LRRs for multiple views. For example, Xie et al. [33] pro-
posed a hyper-Laplacian regularized multilinear multiview
self-representation method to learn the correlations among
multiple views in a unified tensor space. The multiview
self-representation approach is considered an excellent LRR
extension for multiple views. Li et al. [17] proposed an
IMVC method that stacks low-rank dimensional embedding
matrices into a third-order tensor and rotates the tensor
to learn a consensus clustering representation. This IMVC
method performs imputation on the missing parts of the
spectral embedding matrices under a low-rank tensor con-
straint. However, the reasons why the rotation of the third-
order tensor is beneficial for finding high-order correlations
deserve further investigation.

In this paper, we present a low-rank tensor learning
(LRTL) method for IMVC. Different from with most existing
IMVC methods, the proposed LRTL approach simultane-
ously explores the global and local structures of incomplete
multiview data, which is beneficial for capturing consis-
tency information across multiple views. Specifically, we
first take advantage of the self-expressiveness property of
high-dimensional data to learn sparse similarity matrices for
individual views under low-rank and sparsity constraints.
In particular, the missing instances are removed from the
views when learning the sparse similarity matrices. A global
block diagonal structure is investigated for sparse similarity
matrices. Then, we apply spectral embedding techniques

TABLE 1
Definitions of symbols.

Symbols Definitions
Ik The identity matrix of size k × k
XT The transpose of X
X−1 The inverse of X

diag (X)The vector containing the n diagonal elements of X
tr (X) The trace of X
‖X‖0 The number of nonzero elements in X
‖X‖1 The l1-norm of X
‖X‖F The Frobenius norm of X
‖X‖∗ The nuclear norm of X

on the sparse similarity matrices to obtain individual low-
dimensional embedding matrices. To find the positive high-
order correlations of multiple views, we present a multi-
view embedding matrix fusion model by incorporating in-
dividual low-dimensional embedding matrices into a third
tensor. This is beneficial for capturing complementary in-
formation among the instances of multiple views. Finally,
the proposed multiview embedding matrix fusion model
achieves a consensus low-dimensional embedding matrix
for k-means clustering. In addition, we present an alterna-
tive fusion strategy to reduce the computational cost of the
optimization problem in the fusion model. Simultaneously, a
theoretical analysis is given to explain why the fusion model
can work effectively under certain conditions.

Our major contributions are summarized as follows:

• The proposed approach learns individual low-
dimensional embedding matrices from incomplete
multiview data by considering low-rank and sparsity
constraints. This technique simultaneously explores
the global and local structures of multiview data.

• The proposed approach presents a multiview em-
bedding matrix fusion model, which exploits com-
plementary information by finding the high-order
correlations of multiple views, to achieve a consensus
low-dimensional embedding matrix.

• Our method presents an alternative fusion strategy
for the fusion model. This strategy explains why the
fusion model is able to work effectively under certain
conditions and simultaneously achieve a reduced
computational cost.

• Experimental results on benchmark datasets indi-
cate that the proposed method achieves consider-
able improvements over the state-of-the-art IMVC
approaches.

The remainder of this paper is organized as follows. In
Section 2, we provide a brief review of the related work.
Section 3 presents the proposed LRTL method in detail.
Extensive experiments are conducted to validate the effec-
tiveness of the proposed LRTL method in Section 4. Finally,
we conclude this paper in Section 5.

2 RELATED WORK

In this section, we briefly review the current spectral em-
bedding techniques and tensor nuclear norm theory. For
convenience, the definitions of the utilized symbols are
shown in Table 1.
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2.1 Spectral Embedding Techniques
Consider a matrix X = [x1,x2, ...,xn] ∈ Rd×n with n
samples, where d is the dimensionality of each sample. The
weighted adjacency matrix is W ∈ Rn×n, where Wij rep-
resents a nonnegative weight that measures the similarity
between samples xi and xj . A normalized Laplacian matrix
L ∈ Rn×n is defined as follows:

L = In −D−1/2WD−1/2 (1)

where D = diag [d1, d2, ..., dn] is a diagonal matrix with

elements di =
n∑
j=1

Wij [34].

Assume that the samples can be partitioned into k dis-
tinct clusters. A low-dimensional embedding matrix H ∈
Rn×k can be obtained by solving the following optimization
problem of the normalized cut (NCut) [34]:

min
H

tr
(
HTLH

)
s.t. HTH = Ik. (2)

The solution H consists of the eigenvectors of the normal-
ized Laplacian matrix L that correspond to the k smallest
eigenvalues.

Each row vector of H is normalized by the l2-norm,
i.e., H = PH, where pi is the i-th row of H and
P = diag [p1, p2, ..., pn] is a diagonal matrix with elements
pi = 1√

hT
i hi

. Ideally, Wij = 0 if samples xi and xj are in

different clusters. Then,

H = YR (3)

where each column of Y ∈ Rn×k is an indicator vector [34]
and R ∈ Rk×k is an orthogonal matrix. Thus,

H H
T

= YR(YR)
T

= YYT . (4)

Here, H H
T

is a block diagonal matrix [17], i.e.,

H H
T

=


−→
1n1 0 · · · 0

0
−→
1n2

. . . 0
...

...
. . . . . .

0 0 . . .
−−→
1nk

 (5)

where ni (1 ≤ i ≤ k) represents the number of samples in
the i-th cluster and

−→
1ni a submatrix of size ni×ni containing

all ones.

2.2 Tensor Nuclear Norm Theory
Given a tensor Y ∈ Rn1×n2×n3 , we define

unfold (Y) =


Y(1)

Y(2)

...
Y(n3)

 , fold (unfold (Y)) = Y (6)

where the unfold operator maps Y to a matrix of size
n1n2 × n3 and fold is its inverse operator [35]. The block
circulant matrix bcirc (Y) is defined as

bcirc (Y) =


Y(1) Y(n3) · · · Y(2)

Y(2) Y(1) · · · Y(3)

...
...

. . .
...

Y(n3) Y(n3−1) · · · Y(1)

 . (7)

Algorithm 1 The t-SVT operator [31]

1: Input: Y ∈ Rn1×n2×n3 and a parameter α > 0.
2: Compute Ȳ = fft (Y, [], 3);
3: for i = 1, ..., dn3+1e

2 do
4: [U,S,V] = svd

(
Ȳ(i)

)
;

5: W̄(i) = U (S− α)+ VT ;
6: end for
7: for i = dn3+1e

2 + 1, ..., n3 do
8: W̄(i) = conj

(
W̄(n3−i+2)

)
;

9: end for
10: Output: Dα (Y) = ifft

(
W̄, [], 3

)
.

The t-product of two tensors A ∈ Rn1×n2×n3 and B ∈
Rn2×n1×n3 is defined as

E = A ∗ B = fold (bcirc (A) · unfold (B)) (8)

where E ∈ Rn1×nl×n3 [35]. The t-product is equivalent to
matrix multiplication in the Fourier domain [35]. The t-SVD
operation is defined as

Y = U ∗ S ∗ V (9)

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal
tensors, and S ∈ Rn1×n2×n3 is an f -diagonal tensor whose
frontal slices are diagonal matrices [31], [35].

The tensor nuclear norm of Y is defined as

‖Y‖∗ =
r∑
i=1

S (i, i, 1) (10)

where r represents the tensor tubal rank of Y . The tensor
tubal rank is equivalent to the number of nonzero singular
values in Y [31]. The problem of finding a low tubal rank
approximation of Y can be formulated as

min
X∈Rn1×n2×n3

α ‖X‖∗ +
1

2
‖X − Y‖2F . (11)

This problem has a closed-form solution, which is the
proximal operator of the matrix nuclear norm. The tensor-
singular value thresholding (t-SVT) operator is defined as
follows:

Dα (Y) = U ∗ Sα ∗ V (12)

where Sα = ifft
((
S̄ − α

)
+
, [], 3

)
, S̄ is a real tensor, ifft

is a MATLAB command and (t)+ = max(t, 0) [31]. The t-
SVT operator is a proximity operator that is closely related
to the tensor nuclear norm. Specifically, this operator applies
a shrinkage-based thresholding rule to the singular values
S̄ of the frontal slices of Y . For completeness, the details of
the t-SVT operator are given in Algorithm 1 [31], where fft
is also a MATLAB command.

3 LOW-RANK TENSOR LEARNING FOR IMVC
In this section, we present an LRTL method that learns a
consensus low-dimensional embedding matrix for IMVC.
The proposed LRTL method is mainly composed of two
parts: sparse LRR learning and multiview embedding ma-
trix fusion. Moreover, we present an alternative fusion strat-
egy to improve the computational efficiency of the LRTL
method.
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3.1 Problem Formulation

Given a set of incomplete multiview data{
X(v) ∈ Rdv×n, v ∈ {1, 2, ...nv}

}
with n samples, X(v)

is the v-th view of the incomplete multiview data. Each
view X(v) has n instances, i.e., X(v) =

[
x
(v)
1 ,x

(v)
2 , ...,x

(v)
n

]
,

and dv represents the instance dimensionality in the v-th
view. We use a diagonal indicator matrix M(v) to denote
the missing instances in the v-th view, which is defined as:

M
(v)
ii =

{
1, the instance x

(v)
i is available in the v-th view

0, otherwise.
(13)

The goal of IMVC is to group the n samples into k clusters
according to particular similarity measures.

3.2 Sparse LRR Learning for Spectral Embedding

For ease of exploration, we begin with an assumption that
each sample in X is exactly drawn from k independent sub-
spaces, i.e., X = [X1,X2...,Xk]. We consider the following
general nuclear norm minimization problem:

min
Z
‖Z‖∗ s.t. X = XZ (14)

where Z is considered the LRR of X with respect to itself.
The optimal solution to Problem (14) is

Z∗ = X†X (15)

where X† is the pseudoinverse of X. In particular, Z∗ is a
block diagonal, i.e.,

Z∗ =


Z∗1 0 0 0
0 Z∗2 0 0

0 0
. . . 0

0 0 0 Z∗k

 (16)

where rank (Z∗i ) = rank (Xi) (1 ≤ i ≤ k).
Suppose that Z∗ is regarded as a weighted adjacency

matrix for X, where Zij represents the weight of the sim-
ilarity between samples xi and xj . Thus, the normalized
Laplacian matrix L constructed from Z∗ is also a block di-
agonal matrix. Moreover, HHT is block diagonal according
to solving Problem (2). However, X may not strictly follow
independent subspace structures in practice. This results in
the block diagonal property of HHT not being satisfied.
Consequently, it is crucially important to find an adjacency
matrix for the incomplete multiview data

{
X(v)

}nv

v=1
that is

as approximate to the block diagonal structure as possible.
Recovering the missing instances in the given views is an

intractable problem. Moreover, it is impossible to construct
complete LRRs for incomplete multiview data

{
X(v)

}nv

v=1
due to missing instances. Hence, the existing instances are
preserved, and the columns of X(v) corresponding to the
missing instances are removed from the v-th view. Suppose
X

(v)
c ∈ Rdv×Nv consists of the existing instances in the vth

view, where Nv is the number of columns of X
(v)
c . To seek

the corresponding adjacency matrix, we explore the global
structure of the incomplete multiview data by using LRR.

Specifically, we consider the nuclear norm minimization
problem for

{
X

(v)
c

}nv

v=1
:

min
Z

(v)
c

nv∑
v=1

∥∥∥Z(v)
c

∥∥∥
∗

+ λ
∥∥∥X(v)

c −X(v)
c Z(v)

c

∥∥∥2
F

(17)

where Z
(v)
c ∈ RNv×Nv is an LRR for the existing instances

in the vth view. The variable Z
(v)
c associated with the

vth view can be updated independently in Problem (17).

Let X
(v)
c = U

(v)
c Σ

(v)
c V

(v)
c

T
be the SVD of X

(v)
c , where

diag
(
Σ

(v)
c

)
= [r1, r2, ...rn] and ri (1 ≤ i ≤ n) represents

the corresponding singular value in Σ
(v)
c . Each subproblem

with respect to Z
(v)
c has a closed-form solution [36], i.e.,

Z̃(v)
c = V

(v)
1

(
I− 1

λ

(
Σ

(v)
1

)−2)
V

(v)
1

T
(18)

where V
(v)
c =

[
V

(v)
1 ,V

(v)
2

]
, V

(v)
1 consists of the left

c columns of V
(v)
c according to the sets

{
c : rc >

1√
λ

}
,

V
(v)
2 is composed of the remaining columns of V

(v)
c , and

diag
(
Σ

(v)
1

)
= [r1, r2, ...rc].

According to the above discussion, each LRR in{
Z̃

(v)
c

}nv

v=1
may not be block diagonal but of low rank

instead. We construct Z(v) = UΣ
1
2 , where the economy

SVD of Z̃
(v)
c is Z̃

(v)
c = UΣVT . By taking advantage of

the angular information contained in the columns of Z(v)(
Z(v) =

[
z
(v)
1 , z

(v)
2 , ..., z

(v)
Nv

])
, we define a weighted adja-

cency matrix C
(v)
c ∈ RNv×Nv to evaluate the similarity

among the existing instances in the vth view. Each element
in C

(v)
c is defined as follows [37]:

[
C(v)
c

]
ij

=

 z
(v)
i

(
z
(v)
j

)T∥∥∥z(v)i ∥∥∥
2

∥∥∥z(v)j ∥∥∥
2


2

(19)

where z
(v)
i and z

(v)
j represent the ith and jth columns of

Z(v), respectively. The introduction of the angular infor-
mation from the columns of Z(v) can help to alleviate the
negative effects brought by deviations from the ideal entries
in Z(v).

The size of C
(v)
c may be different from other matrices

in multiple views due to the differences in the numbers
of missing instances among multiple views. Thus, C(v) ∈
Rn×n is employed to represent the complete weighted ad-
jacency matrix that measures the similarity among all the
instances in the vth view. We introduce a mapping function
for each weighted adjacency matrix of the incomplete mul-
tiple views, which is defined as

C(v) = h
(
C(v)
c ,M(v)

)
(20)

where the mapping function h (·) performs an operation in
which all elements of C

(v)
c are filled into the corresponding

entries of C(v) and the other entries of C(v) are filled with
zeros.
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Algorithm 2 Calculating individual low-dimensional em-
bedding matrices

{
H(v)

}nv

v=1

Input: Data matrices
{
X

(v)
c

}nv

v=1
and a parameter λ > 0.

1: for v = 1 to nv do
2: Calculate Z̃

(v)
c by solving Problem (17) using Equation

(18);
3: Calculate

[
C

(v)
c

]
ij

for each pair of existing instances

by using Equation (19);
4: Calculate C(v) by using Equation (20);
5: C(v) ← normalize(0,1]

(
C(v)

)
;

6: Calculate W(v) by solving Problem (22) using the
Euclidean projection method with a scalar z = 1 [38];

7: W(v) ←
(
W(v) + W(v)T

)/
2 ;

8: Calculate L(v) by using Equation (23);
9: Calculate H(v) by solving Problem (2).

10: end for
Output:{

H(v)
}nv

v=1
.

We further explore the local structure of the incomplete
multiview data by pursuing the sparsity of C(v). This opti-
mization problem is formulated as

min
W(v)

∥∥∥W(v)
∥∥∥
1

+ η
∥∥∥W(v) −C(v)

∥∥∥2
F

s.t. W
(v)
ij ≥ 0,

(
W

(v)
i

)T
1 = 1

(21)

where η is a tradeoff parameter, W
(v)
i is the ith column

of W(v) ∈ Rn×n and W
(v)
ij is the jth element of W

(v)
i .

The sparsity regularization term
∥∥∥W(v)

∥∥∥
1

in Problem (21)

becomes a constant according to the constraints W (v)
ij ≥ 0

and
(
W

(v)
i

)T
1 = 1. For individual W

(v)
i , Problem (21) is

reformulated as

min
W

(v)
i

∥∥∥W(v)
i −C

(v)
i

∥∥∥2
F
s.t. W

(v)
ij ≥ 0,

(
W

(v)
i

)T
1 = 1 (22)

where C
(v)
i is the ith column of C(v). Each W

(v)
i in Problem

(22) can be solved by the Euclidean projection method
with guaranteed sparsity [38], where C

(v)
i is normalized by

C
(v)
i ← normalize(0,1]

(
C

(v)
i

)
. The number of nonzero ele-

ments in W(v) is less than the number of nonzero elements
in C(v) due to the sparsity of W(v). As a result, W(v) is
approximately closer to a strict block diagonal matrix than
C(v).

By seeking individual
{
W(v)

}nv

v=1
, we capture the con-

sistent information across incomplete multiple views. Fur-
thermore, we construct a normalized Laplacian matrix
L(v) ∈ Rn×n for the vth view according to Equation (1),
i.e.,

L(v) = I(v)n −
(
D(v)

)−1/2
W(v)

(
D(v)

)−1/2
. (23)

Similar to Problem (2), the optimization problem of spectral
embedding can be formulated as follows:

min
H(v)

tr

((
H(v)

)T
L(v)H(v)

)
s.t.

(
H(v)

)T
H(v) = Ik. (24)

Finally, we can achieve individual low-dimensional em-
bedding matrices

{
H(v) ∈ Rn×k

}nv

v=1
by solving Problem

(24). Algorithm 2 summarizes the complete optimization
procedure for

{
H(v)

}nv

v=1
.

We explore the global structures of high-dimensional
data by solving Z

(v)
c in Problem (17). Furthermore, the

sparsity of solving W(v) in Problem (22) is introduced to
capture the local structures of high-dimensional data. The
low-rank criterion and the sparsity constraint imposed on
the adjacency matrices of the incomplete multiple views
are significant for capturing the local and global structures
of high-dimensional data. In Problem (24), H(v) is a low-
dimensional embedding matrix derived from L(v), which
is associated with W(v). Therefore, the global and local
structures of high-dimensional data are effectively explored
simultaneously using Algorithm 2.

3.3 Low-Rank Tensor-Based Spectral Embedding Fu-
sion
Multiple views usually provide complementary informa-
tion. Given individual low-dimensional embedding matri-
ces
{
H(v)

}nv

v=1
, we first present a multiview embedding ma-

trix fusion model to achieve a consensus low-dimensional
embedding matrix F ∈ Rn×k. The fusion model explores
the complementary information across multiple views and
is formulated as

max
F,αv

tr

(
FT

nv∑
v=1

α(v)H(v)

)

s.t.
nv∑
v=1

(
α(v)

)2
= 1, α(v) ≥ 0, FTF = Ik

(25)

where α(v) is an adaptive weight factor used to balance the
significance of the vth view. Here, F shares the consensus
information across different views, and it is considered a
fused result obtained by aligning multiple low-dimensional
embedding matrices.

According to Equation (5), H
(v)
(
H

(v)
)T

is a block diag-

onal matrix for the vth view, where H
(v)

= P(v)H(v). Each
block submatrix contains elements that are all ones. Hence,

H
(v)
(
H

(v)
)T

is also a low-rank matrix. Furthermore, we
have

H
(v)
(
H

(v)
)T

= P(v)H(v)
(
H(v)

)T (
P(v)

)T
(26)

where P(v) = diag
[
p
(v)
1 , p

(v)
2 , ..., p

(v)
n

]
is a diago-

nal matrix with elements p
(v)
i = 1√

h
(v)
i

T
h

(v)
i

. Conse-

quently, H(v)
(
H(v)

)T
is a low-rank matrix contain-

ing k diagonal block submatrices. Intuitively, we stack{
H(v)

(
H(v)

)T}nv

v=1

into a third-order tensor H ∈
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Rn×n×nv , whose first frontal slices form an n × n low-
rank matrix. The tensor H can be decomposed into a low-
rank component and a sparse component. However, it is
impossible to capture complementary information across
multiple views since each individual low-rank matrix in the
first frontal slices of H is considered for an individual view.

Thus, we consider T =

{
H(v)

(
H(v)

)T}nv

v=1

∈ Rn×nv×n as

a surrogate forH. The first frontal slices of T are n×nv ma-
trices. Hence, a low-rank tensor constraint is introduced to
discover the high-level correlations among different views.
From the perspective of low-dimensional embedding matrix
fusion, the introduction of T is beneficial for capturing
complementary information across multiple views.

For incomplete multiview data, we formulate a low-
dimensional embedding matrix fusion model based on a
low-rank tensor as follows:

min
F,{H(v)}nv

v=1
,α(v)

‖T ‖∗ − βtr
(

FT
nv∑
v=1

α(v)H(v)

)

s.t.
nv∑
v=1

(
α(v)

)2
= 1, α(v) ≥ 0,

FTF = Ik,
(
H(v)

)T
H(v) = Ik

(27)

where β is a tradeoff parameter. This model requires each
group of embedding vectors in H(v) to be aligned with the
low-dimensional embedding vectors in F.

3.4 Optimization Strategy

Problem (27) can be solved by an alternating direction
method of multipliers (ADMM) framework [39]. We intro-
duce an auxiliary tensor variable G into Problem (27) and
consider the following equivalent problem

min
F,{H(v)}nv

v=1
,α(v),G

‖G‖∗ − βtr
(

FT
nv∑
v=1

α(v)H(v)

)

s.t.
nv∑
v=1

(
α(v)

)2
= 1, α(v) ≥ 0,G = T ,

FTF = Ik,
(
H(v)

)T
H(v) = Ik.

(28)

The augmented Lagrangian function in Problem (28) is

L
(
F,
{
H(v)

}nv

v=1
, α(v),G

)
=‖G‖∗ − βtr

(
FT

nv∑
v=1

α(v)H(v)

)
+ 〈R, T − G〉+

µ

2
‖T − G‖2F

(29)

where R is a Lagrange multiplier, and µ > 0 is an adaptive
penalty parameter. The augmented Lagrangian function of
Problem (29) can be transformed into the following equiva-
lent function by using linear algebra techniques:

L
(
F,
{
H(v)

}nv

v=1
, α(v),G

)
=‖G‖∗ − βtr

(
FT

nv∑
v=1

α(v)H(v)

)

+
µ

2

∥∥∥∥G − (T +
R
µ

)∥∥∥∥2
F

.

(30)

The variables F,
{
H(v)

}nv

v=1
, α(v) and G are updated al-

ternately while the other variables are kept fixed until the
algorithm converges. Problem (30) can be transformed into
the four steps shown below. The updating scheme for the
tth iteration is formulated as follows.

We first update Ft with fixed
{
H

(v)
(t−1)

}nv

v=1
, α(v)

(t−1) and
G(t−1). Equation (30) can be rewritten as

max
Ft

tr

(
FTt

nv∑
v=1

α
(v)
(t−1)H

(v)
(t−1)

)
s.t. FTt Ft = Ik. (31)

Let HF =
nv∑
v=1

α
(v)
(t−1)H

(v)
(t−1); then, and Problem (31) has a

closed-form solution [40], i.e.,

Ft = UFVT
F (32)

where the SVD of HF is HF = UFΣFVT
F . Here, VF is

an orthogonal matrix, i.e., VF (VF )
T

= (VF )
T

VF = I.
Hence, VF can be regarded as a rotation matrix for Ft,
which makes Ft approximate to the discrete indicator ma-
trix.

Then, we update
{
H

(v)
t

}nv

v=1
with fixed Ft, α

(v)
(t−1) and

G(t−1). Equation (30) can be reformulated as

min{
H

(v)
t

}nv

v=1

−βtr
(

FTt

nv∑
v=1

α
(v)
(t−1)H

(v)
t

)

+
µ

2

∥∥∥∥∥G(t−1) −
(
Tt +

R(t−1)

µ(t−1)

)∥∥∥∥∥
2

F

s.t.
(
H

(v)
t

)T
H

(v)
t = Ik.

(33)

We stack
{

H
(v)
t

(
H

(v)
t

)T}nv

v=1

into a third-order tensor Tt,
whose first frontal slices form a matrix of size n × nv . Let
A = G(t−1) −

R(t−1)

µ(t−1)
and A(v) is the vth frontal slice of A.

For ease of computation, we obtain the relaxed problem

min
H

(v)
t

tr

((
H

(v)
t

)T
B(v)

)
+ tr

((
H

(v)
t

)T
C(v)H

(v)
t

)
s.t.

(
H

(v)
t

)T
H

(v)
t = Ik

(34)

where B(v) = −βα(v)
(t−1)Ft and C(v) =

µ(t−1)

2

(
H

(v)
(t−1)

(
H

(v)
(t−1)

)T
−
(
A(v) +

(
A(v)

)T))
. Problem

(34) can be solved by a first-order framework [41].

Next, we update Gt with fixed Ft,
{
H

(v)
t

}nv

v=1
and

α
(v)
(t−1). The solution to Gt can be obtained by solving the

following problem:

min
Gt
‖Gt‖∗ +

µ

2

∥∥∥∥∥Gt −
(
Tt +

R(t−1)

µ(t−1)

)∥∥∥∥∥
2

F

. (35)

Problem (35) can be solved via the t-SVT operator [31],
which is given in Algorithm 1.
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Algorithm 3 Solving (27) by using an ADMM framework
Input: The low-dimensional embedding matrices{

H(v)
}nv

v=1
and a parameter β > 0.

Initialize: α(v)
0 =

√
1
nv

, H
(v)
0 = H(v), G0 = R0 = 0, ρ =

1.2, µ = 10−4, µ0 = µ, µmax = 106, ε = 10−6, t = 1 and
maxIters = 100.

1: while not converged do
2: update Ft by using (32);
3: update

{
H

(v)
t

}nv

v=1
by using a first-order framework

[41];
4: update Gt by using Algorithm 1;
5: update

{
α
(v)
t

}nv

v=1
by using (37);

6: update the Lagrange multiplier Rt by using (38);
7: update the parameter µt by using (39);
8: check the convergence condition:
9: ‖Gt − Tt‖max < ε;

10: if t < maxIters and not converged then
11: t← t+ 1;
12: else
13: break;
14: end if
15: end while
Output: Ft.

Finally, we update α(v)
t with fixed Ft,

{
H

(v)
t

}nv

v=1
and

Gt. Equation. (30) can be rewritten as

max{
α

(v)
t

}nv

v=1

tr

(
FTt

nv∑
v=1

α
(v)
t H

(v)
t

)

s.t.
nv∑
v=1

(
α
(v)
t

)2
= 1, α

(v)
t ≥ 0.

(36)

The optimal solution to Problem (36) is given by:

α
(v)
t =

H
(v)
α√

nv∑
i=1

(
H

(i)
α

)2 (37)

where H
(v)
α = tr

(
FTt H

(v)
t

)
[42].

In addition, Rt and µ(t−1) are updated during the tth
iteration. Given Gt, Tt and µk, the Lagrange multiplierRt is
updated as

Rt = R(t−1) + µ(t−1) (Gt − Tt) . (38)

The penalty parameter µt is updated as

µt = min(ρµ(t−1), µmax) (39)

where ρ and µmax are constants. These steps are performed
repeatedly until the convergence condition is satisfied, i.e.,
‖Gt+1 − Tt+1‖max < ε, or the number of iterations exceeds
a maximum threshold. Algorithm 3 summarizes the entire
procedure of the approach for optimizing Problem (27).

3.5 Theoretical Analysis of LRTL
After obtaining the consensus low-dimensional embedding
matrix F, we execute the k-means algorithm [30] on F to

Algorithm 4 The LRTL algorithm

Input: Data matrices
{
X

(v)
c

}nv

v=1
, diagonal indicator matri-

ces
{
M(v)

}nv

v=1
, parameters λ > 0, β > 0 and the number

of clusters k.
1: for v = 1 to nv do
2: X

(v)
c consists of the nonzero columns of X(v)M(v);

3: end for
4: Obtaining the low-dimensional embedding matrices{

H(v)
}nv

v=1
by using Algorithm 2;

5: Obtaining F by using Algorithm 3;
6: Executing the k-means algorithm on F to obtain k

clusters [30];
Output: The k clusters.

obtain k clusters. The complete IMVC procedure is outlined
in Algorithm 4. Each diagonal indicator matrix M(v) be-
comes an identity matrix of size n × n in Equation (13)
if all instances are available in multiple views. Thus, the
mapping function (20) is redundant since it degenerates
into the equivalent mapping function. This indicates that
the proposed LRTL method can also be applied for MVC.

3.5.1 An Alternative Fusion Strategy

We present an alternative fusion strategy to improve the
efficiency of LRTL in the fusion model. Considering B(v)

and C(v) in Problem (34), we suppose that∥∥∥C(v)
∥∥∥
max

/∥∥∥B(v)
∥∥∥
max
≤ δ (40)

where ‖·‖max represents the maximum absolute value
among all the elements in a matrix and δ is a small positive
value, e.g., δ = 1e−6. This implies that H(v) is heavily
dependent on F in Problem (34). The dimensions of the
third-order tensors T and G corresponding to the first
frontal slices are reduced from nv to 1 in Problem (35) be-
cause all

{
H(v)

}nv

v=1
are identical for v ∈ [1, nv]. Moreover,{

α
(v)
t

}nv

v=1
are also identical according to Equation (37). This

indicates that
{
α
(v)
t

}nv

v=1
can be removed from Problem (27).

Therefore, updating
{
H

(v)
t

}nv

v=1
can be relaxed to finding

any individual H
(v)
t in Problem (34) if we set µ = 10−4

in Algorithm 3 as along with a proper β. After the first
iteration, F is equal to any individual H

(v)
t in Problem (31).

The above consensus analysis on
{
H(v)

}nv

v=1
and F explains

why the fusion model is able to work if condition (40)
imposed on the values of µ and β is satisfied in Algorithm
3.

In Algorithm 3, the t-SVT operator involves SVD opera-
tions for n matrices of size n×nv . This results in a relatively
heavy computational cost. Since the sizes of the first frontal
slices of T and G are reduced from n× nv to n× 1, we can
avoid these SVD operations. Suppose that T ∈ Rn×1 is a
matrix of size n× 1. Let T 6= 0 and the economy SVD of T
is given by

T = UTΣT (41)
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where UT = T/‖T‖2 ∈ Rn×1 and ΣT = ‖T‖2 ∈ R1×1.
Each SVD operation can be replaced by Equation (41) when
we apply the t-SVT operator in Algorithm 1 [31] to solve G
in Problem (35). Such a replacement is able to effectively
reduce the computational cost of the technique. Conse-
quently, this alignment model improvement is considered
a surrogate for updating

{
H

(v)
t

}nv

v=1
in Algorithm 3.

3.5.2 Convergence Analysis

The general convergence properties of the ADMM frame-
work have been investigated in theory. Algorithm 4 per-
forms well in practical applications. We provide an expla-
nation for the convergence condition ‖Gt+1 − Tt+1‖max < ε
of Algorithm 4. According to Equation (39), µ dramatically
rises with ρ > 1 as t steadily increases. This implies that
G approaches to T in Problem (35) as µ → ∞, where all{
H(v)

}nv

v=1
are identical in T . Consequently, the conver-

gence condition will eventually be satisfied as t constantly
increases under certain conditions, i.e., the appropriate ini-
tialization values of µ and ρ.

3.5.3 Computational Complexity Analysis

We first consider the computational complexity for an
individual view. The computational complexities of low-
rank and sparsity computations are O

(
dvN

2
v +N2

v

)
and

O (dv log (dv)n), respectively. The computational com-
plexities of the construction process and the eigen-
value decomposition of the normalized Laplacian ma-
trix L(v) are O

(
n2
)

and O
(
n3
)
, respectively. Hence,

the total computational complexity of Algorithm 2 is

O

(
nv∑
v=1

(
dvN

2
v + dv log (dv)n

)
+ nvn

3

)
. In Algorithm 3,

three important variables F, H(v) and G are updated al-
ternately during each iteration. The first step of Algorithm
3 that updates F requires the SVD of the matrix H(v),
whose computational complexity isO(kn2). The second and
third steps of Algorithm 3 that update H(v) and G require
computational complexities of O(t1kn

2) and O(n2), respec-
tively, where t1 is the number of iterations needed to solve
Problem (34). In addition, k-means requires a computational
complexity of O(t2k

2n) in Algorithm 4, where t2 is the
number of iterations. Therefore, the final overall complexity

of Algorithm 4 is O
(
nv∑
v=1

dvN
2
v + nvn

3 + kt1t3n
2

)
, where

dv � n, k � n, t1 � n, t2 � n, t3 � n and t3 is the
number of iterations required for solving Problem (27).

4 EXPERIMENTS

In this section, we conduct a series of experiments to
evaluate the effectiveness of the proposed LRTL method
on benchmark datasets. The source code for the proposed
method is implemented in MATLAB 2021b, and is available
online1. All experiments are conducted on a Windows 10
platform with an Intel i7-10700 CPU and 32 GB of RAM.

1. https://codeocean.com/capsule/3481358/tree/v1

TABLE 2
Statistics of the datasets.

Dataset Clusters Views Data samples
Reuters 6 5 600
O-Scene 8 4 2688

Handwritten 10 6 2000
Flower17 17 7 1360
COIL-20 20 3 1440

ProteinFold 27 12 694
SUN RGB-D 45 2 10,335

100leaves 100 3 1600
Caltech101 101 6 8677

4.1 Experimental Settings
4.1.1 Datasets
Nine multiview benchmark datasets are used to evaluate the
proposed LRTL method in the experiments. The statistics of
the datasets are summarized in Table 2. The descriptions of
the datasets are listed as follows.

• Reuters Dataset [43]: This dataset contains 600 docu-
ments written in five languages and their translations
over a common set of six categories. We randomly
select 600 documents for this dataset, where each
class contains 100 documents.

• Outdoor Scene (O-Scene) Dataset [44]: This dataset
has 2688 images consisting of 8 groups. For each
image, we extract four different feature vectors.

• Handwritten Dataset [45]: This dataset consists of
2,000 images of ten handwritten digits (0–9), each of
which is represented by six different features.

• ProteinFold Dataset 2: This dataset contains 694 pro-
tein domains that belong to 27 classes. Each protein
domain is represented by 12 views.

• Flower17 Dataset [46]: This dataset includes 17 dif-
ferent flower categories, where each class has 80
images. Each image is represented by 7 views.

• COIL-20 Dataset [47]: This dataset is composed of
1,440 images of 20 objects in which the background
has been discarded. Each image is represented by
three kinds of features, including a 1024-dimension
intensity, 3304-dimension local binary pattern and
6750-dimension Gabor.

• SUN RGB-D Dataset [48]: This dataset has 10,335
RGB-D images. The features are extracted from the
original images using the deep neural network [49].

• 100leaves Dataset [50]: This dataset contains 1,600
samples of 100 categories. The shape descriptor, fine
scale margin and texture histogram features are ex-
tracted to depict each sample.

• Caltech-101 Dataset [51]: This dataset contains 8,677
images of objects that belong to 101 classes, where
we remove the background category. Each object has
approximately 30-800 images.

4.1.2 Comparison Methods
We compare our approach with five state-of-the-art meth-
ods, the descriptions of which are given as follows:

• DPSC [28]: The distribution preserving subspace
clustering (DPSC) algorithm constructs a latent
distribution-preserving autoencoder.

2. http://mkl.ucsd.edu/dataset/protein-fold-prediction
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TABLE 3
Average clustering results and standard deviations of the different methods on nine multiview datasets with various missing ratios.

Datasets Methods ACC NMI F-measure
0 0.1 0.3 0.5 0 0.1 0.3 0.5 0 0.1 0.3 0.5

Reuters

LRTLAgg 51.07±0.16 49.33±0.00 48.98±0.05 42.17±0.00 34.68±0.09 33±0.00 25.47±0.01 23.57±0.00 52.49±0.16 49.67±0.00 48.47±0.04 45.35±0.00
DPSC 55.17±0.00 56.33±0.00 49.33±0.00 45.17±0.00 37.6±0.00 37.14±0.00 35.7±0.00 29.75±0.00 55.42±0.00 56.63±0.00 51.54±0.00 48.41±0.00
SRSC 86.75±1.72 86.76±1.34 70.37±6.29 64.11±6.85 77.77±1.64 77.56±1.7 68.39±3.7 58.59±4.68 86.87±1.72 86.83±1.31 73.38±5.5 67±5.97
GIMC 50.83±0.21 48.5±0.00 48±0.00 49.17±0.00 29.24±0.17 32.83±0.12 25.99±0.00 36.23±0.00 52.65±0.19 49.36±0.11 47.29±0.00 51.45±0.00

EE-IMVC 52±0.00 52.17±0.00 52±0.00 53.5±0.00 34.48±0.00 34.97±0.00 35.11±0.00 36.08±0.00 51.71±0.00 51.48±0.00 51.85±0.00 53.59±0.00
TMBDSD 76.67±0.00 74.97±0.11 77.62±0.11 78.5±0.24 57.89±0.00 55.77±0.16 62.82±0.28 65.83±0.31 76.61±0.00 74.99±0.01 77.18±0.01 78.28±0.27

LRTL 96.5±0.25 92.83±0.00 98.33±0.00 94.78±0.97 91.88±0.58 85.91±0.00 95.36±0.00 88.66±1.56 96.5±0.25 92.83±0.00 98.33±0.00 94.78±0.97

O-Scene

LRTLAgg 54.61±0.32 57.56±0.12 44.42±0.04 28.02±0.17 40.6±0.19 42.44±0.11 27.26±0.07 16.54±0.29 53.47±0.32 56.93±0.13 46.38±0.03 33.26±0.29
DPSC 62.17±0.00 61.05±0.00 52.9±0.00 44.12±0.00 50.09±0.00 46.39±0.00 36.53±0.00 29.02±0.00 61.62±0.00 60.13±0.00 52.95±0.00 46.95±0.00
SRSC 73.65±0.02 65.74±0.02 57.22±0.01 37.37±0.05 59.29±0.02 49.65±0.02 40.68±0.01 22.87±0.05 73.23±0.02 65.43±0.02 56.98±0.01 40.96±0.06
GIMC 51.76±0.03 51.7±0.04 41.11±0.57 32.55±0.25 35.54±0.03 35.46±0.02 26.55±0.31 23.52±0.16 51.03±0.05 50.95±0.05 42.27±0.56 36.02±0.24

EE-IMVC 64.17±0.2 64.83±0.26 59.18±0.23 46.87±0.16 49.16±0.21 48.74±0.19 41.37±0.08 29.44±0.12 63.89±0.19 64.29±0.26 59.07±0.23 48.04±0.1
TMBDSD 70.8±0.04 41.35±0.08 38.26±0.03 30.13±0.09 57.79±0.06 29.03±0.07 25.19±0.05 14.47±0.09 70.04±0.05 41.19±0.07 38.42±0.04 32.64±0.07

LRTL 96.09±0.00 95.65±0.00 94.4±0.02 87.25±0.07 91.8±0.00 89.91±0.00 89.17±0.03 76.47±0.11 96.08±0.00 95.65±0.00 94.4±0.02 87.25±0.07

Handwritten

LRTLAgg 86.22±0.03 73±0.02 60.67±0.04 39.67±0.12 81±0.05 72.86±0.02 51.39±0.14 39.15±0.17 86.1±0.3 76.38±0.01 65.49±0.11 44.58±0.19
DPSC 88.15±0.00 87.6±0.00 79.4±0.00 74.45±0.00 79.67±0.00 79.43±0.00 73.82±0.00 65.69±0.00 88.17±0.00 87.65±0.00 81.26±0.00 76.46±0.00
SRSC 92.02±0.04 92.15±0.00 91.14±0.02 82.41±0.04 85.04±0.09 85.38±0.00 83.23±0.06 69.74±0.04 92.03±0.04 92.17±0.00 91.16±0.02 82.51±0.04
GIMC 87.72±0.05 84.17±0.06 85.32±0.22 77.01±0.14 78.96±0.05 77.58±0.11 77.99±0.19 69.38±0.08 87.7±0.05 84.15±0.07 85.35±0.23 77.01±0.15

EE-IMVC 88.53±0.14 89.49±0.06 89.84±0.06 82.84±0.06 79.72±0.14 80.79±0.09 79.75±0.09 69.42±0.12 88.55±0.15 89.48±0.05 89.89±0.06 82.9±0.06
TMBDSD 99.5±0.00 97.7±0.00 94.05±0.00 94.68±0.03 98.81±0.00 94.89±0.00 91.04±0.00 87.85±0.05 99.5±0.00 97.71±0.00 93.98±0.00 94.68±0.03

LRTL 99.59±0.02 99.27±0.05 98.8±0.00 98.15±0.00 98.92±0.04 98.28±0.13 97.2±0.00 95.98±0.00 99.59±0.02 99.27±0.05 98.8±0.00 98.15±0.00

Flower17

LRTLAgg 61.01±0.2 59.2±0.12 55.82±0.13 39.28±0.47 57.34±0.15 56.72±0.16 50.52±0.18 40.17±0.42 64.01±0.2 62.39±0.14 57.68±0.15 44.79±0.5
DPSC 47.87±0.00 48.31±0.00 43.53±0.00 37.94±0.00 47.76±0.00 47.16±0.00 43.21±0.00 34.74±0.00 49.72±0.00 51.63±0.00 45.98±0.00 40.87±0.00
SRSC 48.37±0.59 46.27±0.29 45.4±0.62 37.58±0.3 46.55±0.62 47.49±0.4 43.1±0.43 37.7±0.27 51.56±0.57 51.82±0.35 49.23±0.69 42.44±0.38
GIMC 45.71±0.5 44.85±1.07 43.38±1.08 38.93±0.71 49.41±0.38 45.83±0.46 43.16±0.35 40.42±0.26 49.67±0.35 46.94±0.64 45.2±0.5 40.69±0.34

EE-IMVC 59.77±0.49 57.38±0.36 54.91±0.61 49.35±1.4 57.11±0.36 54.4±0.4 50.67±0.38 43.49±0.85 61.79±0.29 60.49±0.36 56.73±0.43 50.93±1.33
TMBDSD 76.4±0.28 88.42±0.28 86.32±0.09 87.97±0.14 74.41±0.23 86.93±0.14 83.57±0.15 89.55±0.06 78.11±0.27 88.33±0.27 85.93±0.09 88.28±0.05

LRTL 96.13±0.54 92.88±0.16 91.63±0.71 91.13±0.12 94.43±0.63 91.5±0.09 90.85±0.55 89.18±0.09 96.13±0.54 92.83±0.17 91.64±0.71 91.1±0.12

COIL-20

LRTLAgg 72.98±0.02 73.13±0.04 72.89±0.68 59.51±1.89 81.43±0.05 80.01±0.06 79.72±0.24 67.73±0.7 74.48±0.03 73.2±0.04 74.75±0.27 64.93±1.66
DPSC 76.04±0.00 73.13±0.00 69.03±0.00 60.9±0.00 83.24±0.00 83.68±0.00 76.98±0.00 69.04±0.00 76.49±0.00 76.13±0.00 71.2±0.00 67.45±0.00
SRSC 79.31±0.97 76.97±3.02 80.01±0.57 69.12±0.9 86±0.24 85.71±1.32 84.34±0.41 74.6±0.79 81.54±0.94 79.39±2.24 81.71±0.37 74.36±0.98
GIMC 75.96±1.2 73.65±1.35 72.32±1.01 58.13±0.76 84.48±0.88 81.19±0.73 79.66±0.86 66.42±0.7 78.12±0.13 74.3±0.98 73.25±1.16 61.08±0.71

EE-IMVC 74.15±1.02 73.75±0.99 71.93±0.5 64.72±0.31 82.73±0.57 82.02±1.06 77.86±0.53 69.51±0.26 75.03±0.44 74.53±1.03 73.48±0.55 69.89±0.28
TMBDSD 90.09±0.03 87.67±0.05 89.74±0.07 90.28±0.47 91.33±0.06 89.53±0.03 90.52±0.1 89.51±0.35 90.16±0.02 87.61±0.05 89.78±0.06 90.21±0.46

LRTL 95.9±0.88 89.83±0.23 95.06±0.83 93.36±0.59 94.53±0.96 90.71±0.18 93.88±0.79 92.01±0.51 95.9±0.88 89.84±0.23 95.06±0.83 93.36±0.59

ProteinFold

LRTLAgg 34.01±1.22 33.03±1.24 27.67±0.46 21.08±0.6 43.29±0.9 41.37±0.88 35.31±0.41 28.36±0.44 36.27±1.52 35.71±1.22 30.34±0.5 23.85±0.51
DPSC 29.25±0.00 30.98±0.00 29.54±0.00 28.24±0.00 39.68±0.00 39.59±0.00 39.93±0.00 35.36±0.00 32.03±0.00 34.07±0.00 32.7±0.00 31.09±0.00
SRSC 37.71±1.31 36.08±0.8 34.25±1.54 31.64±0.92 46.62±1.1 44.1±0.66 43.43±1 39.47±0.4 39.77±1.12 38.01±0.83 36.46±1.42 34.02±0.98
GIMC 23.8±0.78 22.95±0.96 20.12±1.08 17.32±0.67 34.05±0.62 32.78±0.69 28.62±1.16 23.43±0.51 26.78±0.65 26.22±1.09 23.28±0.9 19.49±0.56

EE-IMVC 33.86±1.11 34.35±1.65 33.23±2.13 30.43±0.69 43.87±0.96 43.63±0.78 42.38±1.21 38.2±0.74 36.63±1.23 36.59±1.51 35.34±2.1 32.48±0.79
TMBDSD 58.14±2.23 36.21±0.9 41.61±1.47 36.53±1.02 74.44±1.69 53.38±0.82 63.3±0.96 55.91±1.13 63.24±2.39 39.35±0.68 44.29±1.47 39.92±1.36

LRTL 59.32±1.5 55.88±2.56 51.97±1.86 45.13±1.39 78.29±1.01 75.55±0.99 71.17±1.29 69.45±0.85 64.35±1.05 59.8±2.05 56.08±2.41 50.11±1.31

SUN RGB-D

LRTLAgg 18.69±0.38 17.45±0.21 14.53±0.35 12.75±0.31 29.27±0.21 25.96±0.15 21.1±0.31 16.69±0.18 25.13±0.27 23.77±0.3 20.39±0.47 17.62±0.49
DPSC 20.25±0.51 19.61±1.04 17.63±0.58 15.72±0.51 29.92±0.24 26.75±0.38 20.72±0.37 14.95±0.3 27.38±0.57 26.13±1.22 23.87±0.65 19.91±0.6
SRSC 19.45±0.27 18.84±0.51 16.13±0.3 13.04±0.45 29.66±0.19 25.93±0.21 21.04±0.15 16.53±023 25.84±0.46 25.5±0.72 22.51±0.4 17.5±0.59
GIMC 16.46±0.42 15.31±0.41 14.43±0.13 13.68±0.15 23.61±0.65 23.84±0.18 22.46±0.32 19.28±0.26 22.91±0.14 21.19±0.25 19.89±0.24 15.92±0.37

EE-IMVC 19.76±0.7 19.46±0.65 16.25±0.46 12.83±0.49 27.09±0.28 24.23±0.33 18.68±0.28 14.6±0.27 26.45±0.82 26.2±0.75 24.44±0.61 22.42±0.43
TMBDSD 19.79±0.38 17.47±0.73 16.98±0.44 16.29±0.32 28.64±0.38 23.5±0.48 22.66±0.2 19.95±0.03 26.49±0.51 24.29±1.01 22.43±0.46 18.36±1.24

LRTL 23.76±0.88 22.48±0.75 22.05±0.67 22.29±0.36 39.17±0.49 37.57±0.6 38.05±0.34 36.01±0.28 30.69±1.01 29.17±0.8 29.39±0.64 29.43±0.28

100leaves

LRTLAgg 77.2±0.8 69.01±1.53 47.61±0.99 35.09±0.81 88.78±0.06 83.3±0.82 70.72±0.29 61.21±0.28 79.61±0.92 71.67±1.38 51.86±0.6 40.54±0.61
DPSC 80.69±0.00 66±0.00 48.13±0.00 33.5±0.00 91.72±0.00 83.48±0.00 70.64±0.00 59.94±0.00 82.15±0.00 69.96±0.00 52.57±0.00 38.81±0.00
SRSC 82.42±1.52 71.24±0.94 51.37±1.53 34.48±0.56 92.56±0.51 85.06±0.48 72.62±0.64 61.45±0.37 84.64±1.33 74.47±0.82 56.45±1.28 39.59±0.77
GIMC 75.3±1.25 73.04±1.74 47.13±1.99 30.69±1.73 91.08±0.47 89.73±0.32 73.81±0.58 58.86±0.59 79.25±1.14 77.47±1.14 50.27±1.65 33.7±1.36

EE-IMVC 74.17±1.81 63.56±1.36 43.2±0.75 30.62±0.61 87.76±0.55 80.61±0.51 68.04±0.55 58.57±0.67 76.59±1.32 66.5±1.16 47.68±0.76 35.15±0.65
TMBDSD 90.83±1.24 90.92±1.09 88.79±0.89 87.48±1.09 96.67±0.24 96.34±0.29 95.01±0.18 93.06±0.26 93.08±0.82 92.98±0.77 91.04±0.59 89.52±0.83

LRTL 92.49±0.87 92.55±0.88 91.1±0.95 88.56±1.00 98.3±0.21 98.13±0.27 97.25±0.3 95.25±0.41 94.65±0.67 94.52±0.66 93.11±0.78 90.41±0.92

Caltech-101

LRTLAgg 20.92±0.46 20.7±0.5 16.29±0.23 12.91±0.19 45.39±0.26 43.64±0.21 36.16±0.19 31.67±0.3 26.14±0.44 26.01±0.78 21.01±0.29 16.49±0.25
DPSC 27.68±0.00 26.47±0.00 25.84±0.00 24.2±0.00 51.71±0.00 50.81±0.00 46.52±0.00 42.51±0.00 35.27±0.00 33.63±0.00 31.46±0.00 30.28±0.00
SRSC 23.73±0.53 20±0.4 21.9 ±0.53 18.27±0.55 48.47±0.38 42.92±0.21 42.26±0.21 37.01±0.41 29.99±0.57 26.39±0.61 27.65±0.52 23.01±0.69
GIMC 18.11±0.00 16.09±0.00 15.02±0.00 13.14±0.00 39.05±0.00 36.02±0.00 35.1±0.00 30.52±0.00 23±0.00 19.61±0.00 18.24±0.00 16.18±0.00

EE-IMVC 27.12±0.88 26.57±0.57 21.36±0.92 18.9±0.55 51.67±0.33 50.16±0.34 43.56±0.19 36.76±0.34 33.21±1.11 31.61±0.61 27.41±0.87 23.4±0.57
TMBDSD 32.38±1.18 32.75±0.46 29.14±0.9 24.56±0.23 59.14±0.58 59.08±0.66 54.29±0.19 47.5±0.41 38.04±1.07 38.26±0.24 35.32±1.21 30.68±0.53

LRTL 60.86±1.26 60.04±1.02 60.81±1.73 59.05±1.84 87.05±0.41 87.27±0.39 87.1±0.5 87.14±0.48 67.05±1.23 65.88±1.24 66.45±153 65.36±1.74

• SRSC [52]: The self-representation subspace cluster-
ing (SRSC) algorithm jointly performs data imputa-
tion and self-representation learning.

• GIMC [53]: The generalized incomplete multiview
clustering (GIMC) algorithm considers the local geo-
metric information and the unbalanced discriminant
information of incomplete multiple views.

• EE-IMVC [16]: The efficient and effective incomplete
multiview clustering (EE-IMVC) algorithm imputes
each incomplete base matrix generated by incom-
plete multiple views with a learned consensus clus-

tering matrix.
• TMBDSD [17]: The tensor-based multiview block di-

agonal structure diffusion (TMBDSD) algorithm ex-
plores block-diagonal structures of incomplete mul-
tiview data with a tensor low-rank constraint.

The source codes of the competing algorithms are provided
by their authors. In addition, we consider a variant of
the proposed LRTL method, namely, LRTLAgg , to validate
the effectiveness of the spectral embedding-based fusion
of LRTL for IMVC. Specifically, we aggregate all similarity
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TABLE 4
Computational times (in seconds) of the different methods on nine

multiview datasets with various missing ratios.

Datasets Ratio LRTLAgg DPSC SRSC GIMC EE-IMVC TMBDSD LRTL

Reuters

0 3.3 3.9 1.1 6.3 1.1 21.3 5.6 (7.8)
0.1 2.5 3.6 1.4 5.3 1.2 16.1 5.8 (6)
0.3 2.4 4.8 1.4 7.4 1.2 13.3 4.3 (6.1)
0.5 2 3.5 1.2 5.7 1.3 12.9 4.9 (9.6)

O-Scene

0 32.2 53.2 19.8 149.6 9.2 499.1 111.8 (145.1)
0.1 28.7 50.8 45.4 143.3 10.3 455.1 112.8 (142.3)
0.3 13.3 51.7 52.5 137.6 10.6 384.2 102.6 (136.8)
0.5 15 50.5 61.3 135.8 12.9 364.7 100.5 (132.2)

Handwritten

0 15.3 23 12.3 103.2 6.4 401.8 65.2 (93.3)
0.1 13.3 17 20.8 99.7 6.5 323.4 53.7 (81.4)
0.3 11 19.7 25.6 99.3 7.3 237.6 78.8 (105.5)
0.5 11.5 23.9 34.4 92.3 7.9 263.8 65.8 (97.7)

Flower17

0 8.7 146.72 6.7 36.6 5.3 186.5 29.8 (46.7)
0.1 8.4 163.1 13.8 30.1 6.2 138.6 34.8 (53.2)
0.3 8.3 158.8 31 31.2 6.4 111.4 26.9 (42.9)
0.5 7.5 175.9 28.2 33 6.8 118.4 34.4 (52.6)

COIL-20

0 5.9 32.4 5 15.4 4.4 131.4 14.6 (20.8)
0.1 5.2 40.8 10.4 29.2 5 77.9 15.1 (22.5)
0.3 4.6 23.5 10.4 27 5 82 13.9 (20.7)
0.5 6.1 34.2 18.6 27.1 5.2 73.6 14.2 (24.9)

ProteinFold

0 4.2 55.7 3.5 24.3 3.1 97.6 15 (37.9)
0.1 4.1 48.6 4.2 20.6 3.9 82.3 15.3 (24.3)
0.3 3.9 66.9 4.8 29.3 3.9 67.6 14.6 (23.6)
0.5 3.6 69.8 6.7 21.8 4.1 60.3 12.9 (20.8)

SUN RGB-D

0 818 3804 443 3897 273 6445 1682 (2268)
0.1 704 3891 809 2645 270 5529 1560 (2124)
0.3 520 4241 897 1610 249 4128 1295 (1743)
0.5 461 4048 1151 1615 235 3635 1278 (1764)

100leaves

0 22.4 212.7 21.9 58.8 20.9 150.6 28.8 (63.1)
0.1 24.9 156.5 29.6 59.3 23.4 196.2 27.1 (43.6)
0.3 24.4 119.5 38.8 61 22.3 167.2 26.2 (41.1)
0.5 24.4 122.5 30.2 51.1 21.7 152 26.9 (64.1)

Caltech-101

0 1097 1123 853 4796 333 20238 5718 (5748)
0.1 833 1492 746 5876 323 15335 5792 (7933)
0.3 470 1481 637 4605 300 12002 5215 (7961)
0.5 250 1469 544 2803 289 10421 5222 (7516)

matrices
{
C(v)

}nv

v=1
into a similarity matrix by using Al-

gorithm 2. Then, we perform standard spectral clustering
on the similarity matrix to complete IMVC. All similarity
matrices produced by DPSC are aggregated for IMVC.

4.1.3 Evaluation Metrics
Following previous work [54], three standard metrics are
employed to evaluate the clustering performance of all com-
peting algorithms, including the clustering accuracy (ACC),
normalized mutual information (NMI) and F-measure. In
the experiments, higher values of these metrics indicate
better performance.

4.1.4 Parameter Settings
We assume that the true number of clusters is known for
each dataset. The evaluation of the actual number of clusters
is beyond the scope of our work. For the changes in the
missing ratio during the experiments, we first consider the
situation in which all instances available in all the views.
Then, we randomly remove a certain percentage of the
instances from each view. The missing percentage for each
view varies from 10% to 50% in intervals of 20%. In addition,
we apply a PCA algorithm to preprocess the existing in-
stances of the samples if the dimensionality of the instances
is larger than the number of samples [55]. The existing
instances are normalized to [0, 1] in the experiments.

Two parameters λ and β are contained in the proposed
LRTL method. To find the best clustering results, the pa-
rameter λ is set to λ ∈ [0.05, 10], while the parameter β
is tuned in the range of {0.05, 0.1, 0.2, 0.5, 1, 2, 5} for the

experiments. We employ the grid search approach to find
suitable values in the ranges of the parameters λ and β
and report the best clustering results. For a fair compar-
ison, we repeat each experiment 10 times and report the
average clustering results and the standard deviations for
all competing algorithms. For the competing algorithms,
we manually tune their parameters to achieve the highest
average clustering results. The best and second-best aver-
age clustering results are shown in bold and underlined,
respectively.

4.2 Clustering Performance Evaluation

Table 3 shows the averages and standard deviations of the
ACC (%), NMI (%) and F-measure (%) values for all the
competing algorithms with different missing ratios on the
nine multiview benchmark datasets. The LRTL algorithm
consistently achieves the best clustering results with respect
to ACC, NMI and the F-measure in comparison with all
the state-of-the art algorithms. For example, the proposed
method obtains significant improvements of approximately
19.83%, 17.86%, 20.71% and 16.28% in terms of ACC over
the second-best method (TMBDSD) with different missing
rates of 0, 10%, 30% and 50% on the Reuters dataset, respec-
tively. Moreover, the proposed LRTL method consistently
outperforms all the competing algorithms on the other
datasets. This validates the advantages and effectiveness
of the proposed LRTL method. In particular, we observe
that our method performs slightly better than TMBDSD
with improvements of approximately 0.09%, 0.11% and
0.09% in terms of the ACC, NMI and F-measure, respec-
tively, achieved on the Handwritten dataset. This is be-
cause these handwritten images of digits lie in a distinct
low-dimensional subspace of the ambient space. The low-
rank structures of multiple spectral embedding matrices are
well preserved by LRTL and TMBDSD. Hence, LRTL and
TMBDSD perform dramatically better than the other com-
peting methods. In contrast with the other competing meth-
ods, DPSC achieves comparable clustering performance for
larger-scale datasets, e.g., the SUN RGB-D and Caltech-101
datasets. This indicates that DPSC exhibits a good ability to
learn high-level features from large scale datasets.

The clustering performance of the proposed method
slightly declines as the missing rate increases. Specifically,
the differences between the clustering results of the pro-
posed method with missing rates of 0 and 50% are less
than 10% on all the datasets. In contrast, the clustering
performance of the other competing algorithms is often
sensitive to changes in the missing rate. This indicates
that the proposed method is more robust than the other
approaches. The main reason for this is that the local and
global structures of high-dimensional data are effectively
explored under the low-rank and sparsity constraints of
LRTL. As a result, this alleviates the negative impact of the
missing instances.

We also observe that LRTL performs significantly better
than LRTLAgg. This shows that the multiview embedding
matrix fusion model in LRTL can effectively reveal the
essential block structures in high-dimensional data when
compared with the summation of the individual adjacency
matrices. As expected, the clustering performance worsens

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3230964

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SICHUAN UNIVERSITY. Downloaded on January 07,2023 at 13:46:04 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

(a) Ratio = 0 (b) Ratio = 0.1 (c) Ratio = 0.3 (d) Ratio = 0.5

Fig. 1. The ACC with different λ and β combinations on the Handwritten dataset.

(a) Ratio = 0 (b) Ratio = 0.1 (c) Ratio = 0.3 (d) Ratio = 0.5

Fig. 2. The NMI with different λ and β combinations on the Handwritten dataset.

(a) Ratio = 0 (b) Ratio = 0.1 (c) Ratio = 0.3 (d) Ratio = 0.5

Fig. 3. The ACC with different λ and β combinations on the COIL-20 dataset.

(a) Ratio = 0 (b) Ratio = 0.1 (c) Ratio = 0.3 (d) Ratio = 0.5

Fig. 4. The NMI with different λ and β combinations on the COIL-20 dataset.

in most cases as the missing ratio increases. However, a
few slight exceptions are closely related to the random
selection of the missing instances in the experiments. In
addition, the TMBDSD method achieves the second-best
clustering performance on most datasets. However, the clus-
tering performance of TMBDSD often remains unstable on
several datasets, e.g., the O-Scene and ProteinFold datasets,
as the missing ratio increases. For example, the ACC of the
TMBDSD method dramatically drops from 70.8% to 30.13%
when the missing ratio increases from 0 to 50%.

Table 4 shows the running times of the algorithms men-
tioned above on all the datasets with different missing rates
(0, 10%, 30% and 50%). The running time of the proposed
algorithm usually drops as the missing ratio increases. This

is because the number of available instances declines as
the missing ratio gradually increases. However, the running
time of the proposed algorithm also depends on another
important factor, i.e., the number of iterations in Algorithm
3. This is why the running time of the proposed algorithm
increases as the missing ratio increases in a few of the
experiments. The running times of the proposed algorithm
without the alternative fusion strategy are given in the
parentheses of Table 4. According to the comparison, the
alternative fusion strategy achieves a dramatically reduced
computational cost. As theoretically demonstrated, the pro-
posed algorithm dramatically improves the computational
efficiency according to the alternative fusion strategy. In
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addition, it can be seen that the EE-IMVC method executes
faster than the other algorithms. However, the clustering
results of the EE-IMVC method are worse than those of the
proposed method and TMBDSD. Moreover, the proposed
method outperforms TMBDSD in terms of running time.
Consequently, the running time of the proposed method is
average among those of all the competing methods.

4.3 Parameter Sensitivity Analysis

The proposed LRTL method contains two parameters: λ and
β. We conduct some experiments to investigate the sensitiv-
ity of parameters λ and β in terms of the resulting ACC
and NMI. In the experiments, we choose the parameters λ
and β from the ranges of {0.05, 0.1, 0.2, 0.5, 1, 2, 5} with the
grid search strategy. Due to space limitations, two datasets
are considered as representatives, i.e., the Handwritten and
COIL-20 datasets, for parameter sensitivity analysis with
different missing ratios of 0, 10%, 30% and 50%.

Figs. 1-4 show the clustering performance achieved in
terms of ACC and NMI with different combinations of
the parameters λ and β on the Handwritten and COIL-20
datasets. This indicates that relatively large ranges of the λ
and β parameters yield satisfactory clustering results. For
example, the clustering results obtained on the two datasets
are relatively stable when λ ∈ [1, 5] and β ∈ [0.05, 0.2].
In particular, λ is less sensitive than β in the experiments.
This is because sparsity is introduced to reduce the impact
of the fluctuation of λ to some extent when computing the
individual adjacency matrices. It is feasible to employ the
grid search approach to find suitable parameters if prior
knowledge of the datasets is available in practice.

4.4 Diagonal Block Structure Analysis

The diagonal block structures play critical roles in the pro-

posed method. In Problem (27), H(v)
(
H(v)

)T
is a low-rank

matrix containing k diagonal block submatrices under ideal
conditions. Moreover, the diagonal block structure property

of H(v)
(
H(v)

)T
is closely related to W(v) in Equation (23).

Specifically, H(v)
(
H(v)

)T
must contain diagonal block sub-

matrices if W(v) is a strict diagonal block structure, but the
converse is not always true. In the experiments, each dataset
contains 3 or more views. For simplicity, we conduct an
experiment to investigate the block structures of the special
matrices produced by the summation of

{
W(v)

}nv

v=1
with

different missing ratios. The block structure of an individual
W(v) is much stricter than that of the corresponding special
matrix. The parameters of the proposed method are set
according to Section 4.2.

Fig. 5 shows four examples of the block structures of the
similarity matrices produced with different missing ratios
on the Reuters dataset. For example, six distinct diagonal
block submatrices are located along the diagonal direction
of the special matrix in Fig. 5a. The number of diagonal
block submatrices is equal to the number of clusters in the
Reuters dataset. In addition, six diagonal block submatrices
are accurately observed with some noise in Figs. 5b-5c as the
missing rate gradually increases from 10% to 30%. However,

(a) (b) (c) (d)

Fig. 5. Examples of the block structures of the similarity matrices
produced with different missing ratios on the Reuters dataset. (a)
Ratio = 0. (b) Ratio = 0.1. (c) Ratio = 0.3. (d) Ratio = 0.5.
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Fig. 6. The purity and NMI values obtained with respect to different
number of clusters on the Handwritten and COIL-20 datasets. (a) The
purity achieved on Handwritten. (b) The NMI attained on Handwritten.
(c) The purity achieved on COIL-20. (d) The NMI attained on COIL-20.

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Iterations

0

0.05

0.1

0.15

0.2

0.25

0.3
V

a
lu

e
Reuters

O-Scene

Handwritten

Flower17

COIL20

ProteinFold

SUN RGB-D

100leaves

Caltech-101

(a)

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

V
a
lu

e

Reuters

O-Scene

Handwritten

Flower17

COIL20

ProteinFold

SUN RGB-D

100leaves

Caltech-101

(b)

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

V
a
lu

e

Reuters

O-Scene

Handwritten

Flower17

COIL20

ProteinFold

SUN RGB-D

100leaves

Caltech-101

(c)

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

V
a
lu

e

Reuters

O-Scene

Handwritten

Flower17

COIL20

ProteinFold

SUN RGB-D

100leaves

Caltech-101

(d)

Fig. 7. Convergence results of Algorithm 3 with different missing ratios
on all the datasets. (a) Ratio = 0. (b) Ratio = 0.1. (c) Ratio = 0.3. (d)
Ratio = 0.5.

the diagonal block submatrices become insufficiently clear
in Fig. 5d since the missing rate adds up to 50%. The experi-
mental results validate the block structures of H(v)H(v)T in
Problem (27).

4.5 Empirical Study on the Number of Clusters
The number of clusters k is assumed to be known in the
above experiments. However, the number of clusters may
be unknown in practice. Hence, we investigate the effect
induced by varying the number of clusters involved in
the proposed LRTL method. Two metrics are employed
to measure the clustering quality achieved under different
numbers of clusters, i.e., the clustering purity and NMI [54].
We set the parameters of the proposed method according to
Section 4.2.

Fig. 6 shows the clustering performance achieved in
terms of the purity and NMI values obtained with differ-
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ent number of clusters on the Handwritten and COIL-20
datasets. It is observed that an increase in the number of
clusters results in higher purity and NMI values until the
true number of clusters for these two datasets is reached.
Then the purity and NMI values decline slowly as the num-
ber of clusters continues to steadily increase. This indicates
that the relatively large number of clusters still produces
encouraging clustering results for the proposed method.
Therefore, we empirically suggest setting a relatively large
number of clusters if no prior knowledge concerning the
number of clusters is available.

4.6 Convergence Analysis

We analyze the convergence property of the proposed
method on the nine datasets. Fig. 7 shows the convergence
curves of Algorithm 3 with different missing ratios (0, 10%,
30% and 50%) on all the datasets. For each figure, the x-
axis represents the number of iterations, and the y-axis
denotes the absolute value of the convergence condition
‖Gt − Tt‖max for Algorithm 3. From the figures, we observe
that the value of the convergence condition remains steady
within approximately 30-40 iterations and then starts to
monotonically decrease, quickly converging to a steady
state. It usually converges in less than 70 iterations in the ex-
periments. These results demonstrate the good convergence
of the proposed method in practice, although it is difficult
to prove the convergence of Algorithm 3 in theory.

5 CONCLUSION

In this paper, we propose an LRTL method that success-
fully learns a consensus low-dimensional embedding matrix
for IMVC. Individual low-dimensional embedding matrices
are learned from incomplete multiview data via the self-
expressiveness property of high-dimensional data. Com-
pared with the intuitive combination of low-rank and spar-
sity regularizations, the global and local structures of multi-
view data are explicitly captured by considering successive
low-rank and sparsity constraints. In addition, we present a
multiview embedding matrix fusion model to achieve a con-
sensus low-dimensional embedding matrix for the k-means
algorithm. This model effectively exploits complementary
information by finding the high-order correlations of mul-
tiple views. To improve the computational efficiency of our
approach, we present an alternative fusion strategy for the
fusion model by considering the relations among multiple
views. Finally, extensive experimental results obtained on
nine datasets demonstrate the superiority of the proposed
LRTL method over other state-of-the-art approaches.
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