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Abstract—In this paper, we study how tomake unsupervised cross-modal hashing (CMH) benefit from contrastive learning (CL) by

overcoming two challenges. To be exact, i) to address the performance degradation issue caused by binary optimization for hashing, we

propose a novel momentum optimizer that performs hashing operation learnable in CL, thusmaking on-the-shelf deep cross-modal

hashing possible. In other words, our method does not involve binary-continuous relaxation like most existing methods, thus enjoying

better retrieval performance; ii) to alleviate the influence brought by false-negative pairs (FNPs), we propose a Cross-modal Ranking

Learning loss (CRL) which utilizes the discrimination from all instead of only the hard negative pairs, where FNP refers to the within-class

pairs that were wrongly treated as negative pairs. Thanks to such a global strategy, CRL endows our method with better performance

because CRLwill not overuse the FNPswhile ignoring the true-negative pairs. To the best of our knowledge, the proposedmethod could

be one of the first successful contrastive hashing methods. To demonstrate the effectiveness of the proposedmethod, we carry out

experiments on five widely-used datasets compared with 13 state-of-the-art methods. The code is available at https://github.com/

penghu-cs/UCCH.

Index Terms—Common hamming space, contrastive hashing network, cross-modal retrieval, unsupervised cross-modal hashing

Ç

1 INTRODUCTION

CROSS-MODAL retrieval aims to retrieve semantically rele-
vant samples from one modality (e.g., image) by utiliz-

ing a query from another modality (e.g., text). The key
challenge of cross-modal retrieval is to bridge the gap
between different modalities. To narrow such a so-called
heterogeneity gap, a variety of methods have been proposed
and achieved promising performance [1], [2], [3], [4]. How-
ever, these approaches suffer from high costs in storage and
computation because the representation learned by these
methods is with continuous values that are less attractive to

large-scale cross-modal retrieval. Therefore, it is still an
open issue to efficiently bridge the heterogeneity gap for
large-scale cross-modal retrieval.

To efficiently narrow the heterogeneity gap and boost
retrieval performance, cross-modal hashing has been of con-
siderable interest in the community [5], [6], [7], [8], [9], [10].
The basic idea of cross-modal hashing is projecting the high-
dimensional multimodal data into compact binary bits [11],
[12], [13]. Thanks to the bit-wise similarity measurement (i.e.,
XOR), the hashing process will bemore efficient than continu-
ous-value methods [7], [8], [14] in terms of storage and com-
putation. Most existing cross-modal hashing approaches
could be roughly classified into supervised and unsupervised
categories. More specifically, the supervised approaches [8],
[9], [15], [16] often learn the hash codes from the multimodal
data by using the labeled semantic information and have
achieved promising performance. However, they need a large
amount of labeled data and the data annotation is labor-inten-
sive [13], [17]. Different from supervised methods, unsuper-
vised cross-modal hashing methods [13], [18], [19] could
avoid intensive data annotation, which is more attractive in
practice. In this paper, we mainly focus on the unsupervised
learning paradigm.

All existing unsupervised cross-modal hashing approaches
are based on either shallow or deep models. In brief, shallow
methods learn one-layer linear or nonlinear transformations
to project different modalities into a common Hamming
space [13], [18], [20]. However, these shallow models cannot
capture the highly-level nonlinear information well [21], and
thus theywould achieve suboptimal performance. To address
this issue, Deep Neural Networks (DNNs) [13], [19], [22], [23]
are used to learn the hashing functions given their advantages
in modeling nonlinearity. Motivated by the success of recent
contrastive learning, it is highly expected to investigate how
to conduct unsupervised contrastive learning for cross-modal
hashing. Although such an idea seems straightforward, it
is nontrivial due to the following two challenges. First,
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contrastive learning is always treated as a pre-train step, and
there exists a gap with the downstream cross-modal hashing
retrieval. In fact, contrastive learning usually takes a continu-
ous value optimization strategy which is inconsistent with the
binary output of cross-modal hashing (see Fig. 1a), thus proba-
bly resulting in performance degradation. Second, to bridge
hashing learning and cross-modal retrieval, most existing
cross-modal hashing methods employ a max-margin ranking
loss whose performance heavily depends on the established
positive and negative pairs (see Fig. 1b). In an unsupervised
setting, however, it is difficult to well establish the positive
and negative samples due to the unavailability of labels.
Hence, unsupervised cross-modal hashing generally treats
the co-occurred samples as positives and the other samples as
negative. Clearly, such an approach will lead to a novel noise,
i.e., a number of within-class samples are wrongly treated as
negative. To the best of our knowledge, such a false-negative
pair (FNP) problem is less touched so far and no existing solu-
tion is available for cross-modal hashing.

To tackle the aforementioned two problems, we propose
a deep unsupervised cross-modal hashing method, termed
Unsupervised Contrastive Cross-modal Hashing (UCCH).
To be specific, UCCH employs a novel momentum-based
binarization optimizer to endow hashing operation learn-
able, thus making on-the-shelf deep cross-modal hashing
possible. Second, to overcome the FNP challenge, we pro-
pose a Cross-modal Ranking Learning loss (CRL) which uti-
lizes the discrimination from all instead of the hardest
negative pairs (see Fig. 4). Such a remedy is proposed to
avoid the performance degradation caused by a property of
the max-margin loss, i.e., the traditional triplet loss with
max-margin [19], [24], [25] is apt to overfit on the FNPs
while ignoring the true-negative pairs (TNPs) because FNPs
are usually more attractive and harder than TNPs to DNN
optimization (see Section 4.3.7).

Different from the well-studied contrastive learning
models, our UCCH is a task-specified contrastive learning
method. More specifically, almost all existing contrastive

learning methods [26], [27], [28] aim to learn a model in a
self-supervised manner, and then fine-tune the model to fit
the downstream tasks. Limited by such a two-stage strategy,
there exists a performance gap between the contrastive
learning model and the downstream tasks. To bridge the
performance gap, our UCCH is specifically designed for
achieving cross-modal hashing in a one-stage fashion. In
addition, different from the max-margin loss, our CRL
could exploit more discrimination from all negative pairs
than hard ones, because the former contains more TNPs
(see Section 4.3.5 and Section 4.3.7), thus embracing better
performance. To the best of our knowledge, this could be
one of the first studies on FNPs in cross-modal hashing.

The main contribution and novelty of this work could be
summarized as follows:

� To the best of our knowledge, the proposed UCCH
could be the first method that endows contrastive
learning with unsupervised cross-modal hashing.

� A novel momentum optimizer is proposed to make
the binary memory bank learnable, thus narrowing
the gap between contrastive learning and hashing.

� A Cross-modal Ranking Learning loss (CRL) is pro-
posed to overcome the FNP challenge by utilizing
the discrimination from all instead of hard negative
pairs. Thanks to CRL, our method embraces better
performance and robustness to FNPs.

� Extensive experiments verify the efficacy of our
method on five widely-used benchmark multimodal
datasets compared with 13 state-of-the-art methods.

2 RELATED WORK

Over the past decades, a variety of methods have been pro-
posed to learn a common Hamming space to bridge the het-
erogeneity gap existing into cross-modal data. In this
section, we briefly review some related works from the
aspects of supervised cross-modal hashing methods, unsu-
pervised cross-modal hashing methods, and contrastive
learning.

2.1 Supervised Cross-Modal Hashing Methods

By utilizing the discriminative information rooted in the
label, almost all of supervised cross-modal methods learn
different modality-specific hashing functions to project the
multimodal data into a common Hamming space [15], [29],
[30], [31]. One typical approach utilizes max-margin rank-
ing loss to apply the ranking information for cross-modal
hashing learning [15], [32], [33]. In [32], Ding et al. propose a
novel ranking-based hashing framework to map different
modalities into a common Hamming space by explicitly
employing the ranking information with a max-margin
ranking loss. To utilize the semantic ranking information
for cross-modal hashing learning, Liu et al. present a rank-
ing-based deep cross-modal hashing approach to learn uni-
fied Hamming representations from different modalities
with a max-margin loss [33]. Furthermore, Jiang et al. pro-
pose a Discrete Latent Factor model that employs cross-
modal Hashing (DLFH) to directly learn the binary hash
codes by using the semantic information [23]. Xu et al. [34]
develop a Discrete Cross-modal Hashing (DCH) method

Fig. 1. The limitations of existing methods. In this figure, we take a query
as an example. (a) Shows the difference/gap between contrastive
learning (CL) and cross-modal hashing (CMH). More specifically, CL is
optimized with continuous values in a differentiable manner. On the con-
trary, CMH is performed with binary codes and could not compute the
gradients. In the figure, q and k are the query and key samples, respecti-
vely. (b) Shows the traditional max-margin ranking will ignore the cross-
modal samples outside the margin, leading to more attention paid to
false-negative ones (red circles). In the figure, green lines represent rele-
vant/positive cross-modal correlations; orange lines represent irrelevant/
negative cross-modal correlations; gray lines denote ignored correla-
tions; blue items represent query samples; green items denote true-neg-
ative samples, and red items represent false-negative points.
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which directly learns unified discriminative binary codes by
retaining the discrete constraints for multimodal data. These
supervised cross-modal hashing methods have achieved
promising performance for cross-modal retrieval thanks to
the semantic information of annotated data. However, to
achieve desirable performance, these supervised methods
require huge amount of labeled data which is cost- and
time-prohibitive.

2.2 Unsupervised Cross-Modal Hashing Methods

Unsupervised cross-modal hashingmethods learn the unified
binary codes byminimizing the correlation of the cross-modal
pairs (such as image-text pairs) that are cheaper than the data
annotation. Hence, unsupervised cross-modal hashing meth-
ods have attracted much attention from academic and indus-
trial researchers [13], [18], [20]. In [20], Kumar et al. propose a
Cross-view Hashing (CVH) method to learn the common
hash codes by using the intra- and inter-modal similarities of
the multimodal data. In [35], a CollectiveMatrix Factorization
Hashing (CMFH) method is proposed to learn a common
Hamming space by using collective matrix factorization with
a latent factor model. Liu et al. [18] propose Fusion Similarity
Hashing (FSH) method which explicitly embeds the graph-
based fusion similarity between distinct modalities into the
common hash representations. As the aforementioned meth-
ods are shallowmethods, they cannot capture the highly non-
linear semantics in the multimodal data. To address this
problem, some DNN-based methods have been recently pro-
posed. In [19], an Unsupervised Generative Adversarial
Cross-modal Hashing (UGACH) approach is proposed to
employ GAN’s ability to exploit the underlying manifold
structure of cross-modal data with max-margin ranking loss.
In [13], an unsupervised method, termed Unsupervised cou-
pled Cycle generative adversarial Hashing networks (UCH),
is proposed to learn the unified binary representations by
employing outer- and inner-cycle network.

2.3 Unsupervised Contrastive Hashing

In recent, contrastive learning [26], [27], [28] has attracted
considerable attention from the community. For example,
Wu et al. [27] observed that the apparent similarity can be
learned from data themselves without explicit guidance.
Thus, instead of learning from label-level discrimination,

contrastive learning is proposed to learn the discrimination
at the instance level [26], [27]. Inspired by the huge success
of contrastive learning, some contrastive hashing meth-
ods [36], [37], [38] were proposed to learn binary representa-
tions from unimodal data, and achieved promising
performance. In brief, Li et al. [36] proposed a self-super-
vised hashing approach based on dual pseudo agreement
by using an end-to-end differentiable network, a contrastive
loss, a hashing loss, and a balance loss. Qiu et al. [38]
designed a general probabilistic hashing method to learn
binary hashing codes by minimizing the contrastive loss
while reducing the mutual information between the codes
and original input data. In addition, Jang et al. [37] proposed
an unsupervised deep quantization-based image retrieval
method, dubbed Self-supervised Product Quantization
(SPQ) network. In short, SPQ jointly learns the feature
extractor and the codewords by combining contrastive
learning with Product Quantization (PQ) codewords. How-
ever, these methods are developed to handle unimodal data
and less effort has been devoted to exploring how to incor-
porate contrastive learning into cross-modal hashing as far
as we know. To enable cross-modal hashing to benefit from
contrastive learning, there are two challenges at least, i.e.,
the discrete optimization and the FNP issue as discussed in
Introduction.

3 THE PROPOSED METHOD

In numerous real-world applications, one instance can be
described by different modalities, such as image, text,
audio, etc. Without loss of generality, we focus on bimodal
(i.e., image and text) hashing problem in this paper. As
shown in Fig. 2, our UCCH consists of feature extraction
and hashing learning modules. Specifically, the feature
extraction module aims to extract the features using the
given extractors from the original multimedia inputs to rep-
resent the corresponding image/text samples. The detail
implementation of this module will be explained in Sec-
tion 4. Our hashing learning module attempts to project dif-
ferent modalities into a latent common Hamming space,
where the correlated samples are compacted and uncorre-
lated ones are scattered. In this section, we present the
details of the proposed approach including the problem for-
mulation and the hashing learning algorithm.

Fig. 2. The pipeline of the proposed method and we take a bimodal case as an example. In the example, two modality-specific networks learn unified
binary representations for different modalities. The outputs of networks directly interact with the hash codes to learn the latent discrimination by using
instance-level contrast without continuous relaxation, i.e., contrastive hashing learning (Lc). The cross-modal ranking loss Lr is utilized to bridge
cross-modal hashing learning to cross-modal retrieval.
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3.1 Problem Formulation

For ease of presentation, we first give some definitions for
cross-modal Hashing problem. Boldface uppercase letters
(e.g., X) and boldface lowercase letters (e.g., x) denote matri-
ces and vectors, respectively. Let D ¼ fxi; yigni¼1 denote a
cross-modal dataset with n image-text pairs/instances,
where xi 2 Rdx�1 is the i-th sample of the image modality,
yi 2 Rdy�1 is the text modality related to xi, and dx and dy
are the dimension of the image and text features.

The goal of cross-modal hashing is to project different
modalities into a common Hamming space. In the space,
the unified codes of image and text are denoted as: Bx ¼
fbx

i gni¼1 for the image modality and By ¼ fby
i gni¼1 for the text

modality, where b�
i 2 f�1;þ1gL; � 2 fx; yg and L is the

length of hash codes. The Hamming distance is used to
evaluate the similarity between image and text samples.
More specifically, if the i-th image and the j-th text are simi-
lar, the Hamming distance between bx and by should be
small. Otherwise, the Hamming distance between dissimi-
lar samples should be large. To facilitate the computation of
Hamming distance, we can use the inner product hbx;byi to
compute the Hamming distance dðbx;byÞ as dðbx;byÞ ¼
1
2 ðL� hbx;byiÞ. Thus, the similarity between the i-th image
and the j-th text can be quantified by the inner product
hbx;byi in the Hamming space.

To transform different modalities to the unified binary
codes, we learn two modality-specific hash functions for the
cross-modal inputs.Here,we design a couple ofmodality-spe-
cific networks to this end. Indetails, the two hash functions are
formulated as fxðx;QxÞ and fyðy;QyÞ for image and text,
whereQx andQy are the correspondingmodality-specific net-
work parameters to be learned. In our UCCH, the outputs of
the hash functions are defined as hx

i ¼ fxðxiÞ and hy
i ¼ fyðyiÞ

for the i-th image and the i-th text points, respectively. With
the learned hash functions, the binary representation of a
sample is calculated by applying the sign function to h�

i :

b�
i ¼ sgnðh�

i Þ; � 2 fx; yg; (1)

where sgnðxÞ is the sign function, whose value is 1 if x50,
and -1 otherwise. To learn the hash functions, we propose a
novel unsupervised objective function to enforce the net-
works to eliminate the cross-modal discrepancy. Unlike the
supervised methods, our UCCN adopts the contrastive
learning to excavate apparent similarity among image-text
pairs instead of labels. The overall objective function of our
UCCH is formulated as follows:

argmin
Qx;Qy

bLc þ ð1� bÞLrð Þ; (2)

where b ð0 < b < 1Þ is a trade-off hyper-parameter to bal-
ance the contrastive hashing loss Lc and the cross-modal
ranking loss Lr, which are detailedly introduced in the fol-
lowing sections.

3.2 Contrastive Cross-Modal Hashing Learning

Contrastive learning [26] aims at learning discriminative
representations by using the similar and dissimilar relation-
ship of the query-key pairs. This also can be thought of as a
dictionary look-up problem [28], [39]. Different from exiting
contrastive learning methods, we present a task-specific

Contrastive Cross-modal Hashing learning method (CCH)
by leveraging a unified binary dictionary for all modalities.
Such a problem has been less touch so far to the best of
our knowledge. Without continuous-value relaxation, for a
given query h�

i ð� 2 fx; ygÞ, it aims to directly retrieve
the correlated/positive keys from the hashed points
fk1;k2; � � �kng of the dictionary. Moreover, the i-th key ki of
the dictionary corresponds to the i-th image-text pair. In the
unsupervised cross-modal case, there is a single positive
key (denoted as kþ

i ) in the dictionary, which is matched to
the query h�

i ð� 2 fx; ygÞ. The contrastive loss [26], [28] eval-
uates the similarity between a query h�

i ð� 2 fx; ygÞ and its
retrieved results fkigni¼1, whose value is low when h�

i ð� 2
fx; ygÞ is similar to its positive key kþ

i and dissimilar to all
other keys (considered as negative keys for the query).

In practice, it is infeasible to retrieve on a large dictionary
for a large-scale dataset. To address this large scale learning
issue, we randomly sample a part of the whole dictionary
fkigni¼1 (considered as hashing memory bank) as a new
small dictionary for the retrieval (Fig. 3). Specifically, in con-
trast to the positive key, we randomly sampleK points from
the hashing memory bank to construct a negative key set
fk�

j gKj¼1, where k�
j ¼ sgnðvrÞ, vr is the corresponding contin-

uous-valued source key of k�
j (the detail definition is given

in the following part) and r is the corresponding random
index. Following [27], we enforce kh�k ¼ 1 ð� 2 fx; ygÞ and
kk>k ¼ 1 ð> 2 fþ;�gÞ via the ‘2-normalization. As the
aforementioned discussion, the similarity between different
hash points is measured by dot product. With the dot-prod-
uct similarity, an effective contrastive loss function, called
InfoNCE [40], is adopted to maximize the instance-level dis-
crimination and minimize the cross-modal discrepancy:

Lc ¼ �
Xn
i¼1

logP ðijhx
i Þ �

Xn
i¼1

logP ðijhy
i Þ; (3)

where P ðijhx
i Þ and P ðijhy

i Þ are the probability of hx
i and hy

i

being recognized as the i-th point. The formulations are
defined as:

Fig. 3. Contrastive hashing learning adopts a contrastive loss to train the
modality-specific networks by matching an image-text query ðxi; yiÞ to a
dictionary that is sampled from the hashing memory bank. By contrast-
ing with the positive and negative keys, relevant cross-modal pairs
directly approximate the corresponding unified binary codes and sepa-
rate from their irrelevant pairs without continuous relaxation. The mem-
ory bank is driven by a momentum update with the corresponding pairs.
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P ðijh�
i Þ ¼

exp hh�
i ;k

þ
i i=t

� �
exp hh�

i ;k
þ
i i=t

� �þPK
j¼1 exp hh�

i ;k
�
j i=t

� � ;
(4)

where � 2 fx; yg, and t is a temperature hyper-parame-
ter [27]. Intuitively, this loss function could also be seen as
the negative log-likelihood of a ðK þ 1Þ-way non-parameter
softmax-based classifier. Different from the traditional soft-
max based classifier, the above formulation aims at classify-
ing the i-th image-text pair (i.e., hx

i and hy
i ) as the

corresponding positive key (i.e., the i-th hash point kþ
i )

from the memory bank.
Another challenge of the dictionary is binary-value opti-

mization. Thus, the hashing contrastive loss in Eq. (3) enfor-
ces the samples to approximate the hash codes of their
positive keys and distinguish from the discrete representa-
tions of their negative keys. Different from the existing
cross-modal hashing methods, our UCCN directly learns
the discrete representations without continuous relaxation.
However, directly optimizing the discrete memory bank is
an NP-hard problem [20], [41], [42]. To make the hashing
memory bank be learnable, we define its signed magnitude
as fvigni¼1. The hash keys could be obtained by ki ¼ sgnðviÞ
correspondingly. Then, a momentum mechanism is used to
update the memory bank fvigni¼1 as follows:

vi0 ¼ dvi0 þ ð1� dÞh
x
i þ hy

i

2
; (5)

where d 2 ½0; 1Þ is a momentum coefficient, and vi0 is the
value of i0-th location of the memory bank for the positive
key kþ

i which is derived from a sampled multimodal pair
fxi; yig in the batch fxi; yigNb

j¼1, where Nb is the batch size.
Note that i0 is the corresponding location in the memory
bank for the i-th pair of a mini-batch.

3.3 Cross-Modal Ranking Learning

Besides retrieving from the unified hash dictionary, we also
need to bridge the model training to the performance of the
downstream task (i.e., cross-modal retrieval). To achieve this
goal, the similarity of relevant pairs is enforced to be larger
than that of irrelevant cross-modal samples. Specifically, an
image query hx

i is first used to retrieve the co-occurred sam-
ple hy

i from the text dictionary fhy
i gni¼1. Intuitively, the simi-

larity between the query hx
i and the relevant point hy

i should
be larger than the similarities between hx

i and the irrelevant
samples fhy

jgnj 6¼i. This similarly applies to the text query hy
i

and the relevant image point hx
i . To achieve that, a bidirec-

tional max-margin ranking loss is widely adopted to enforce
this constraint in multimodal learning [43], [44]. The max-
margin ranking loss is formulated as follows:

L0
r ¼ Lxy

r þ Lyx
r (6)

where

L�
r ¼

1

n2

Xn
i¼1

Xn
j 6¼i

max 0;mþM�
ij �M�

ii

� �
; (7)

� 2 fxy; yxg,Mxy
ij ¼ hhx

i ;h
y
ji,Myx

ij ¼ hhy
i ;h

x
j i, andm is a posi-

tive margin value.

Eq. (6) shows that themax-margin loss focuses on optimiz-
ing the hard negative pairs whose similarity is not m smaller
than positive pairs (i.e.,M�

ii �M�
ij < m), resulting in ignoring

the easier ones. In other words, the vanilla triplet loss mainly
focuses on harder negative pairs, and its performance heavily
depends on the well-established negative samples. In unsu-
pervised setting, however, it is difficult to guarantee the cor-
rectness of the negative pairs because the pairwise/co-
occurred samples are always used as positive pairs and the
other samples are treated as negative. Clearly, such a pair con-
struction strategy will wrongly treat a number of within-class
samples as negative, and these FNPs will lead to wrong opti-
mization direction of the vanilla triplet loss. More specifically,
the max-margin loss will emphasize separating the FNPs
while ignoring the true negative pairs (TNPs) because the for-
mer is harder to separate than the latter due to the semantic
correlation among FNPs. As a result, it is difficult to obtain
encouraging results as verified in Sections 4.3.5 and 4.3.7.

To overcome the FNP challenge, we propose a new learn-
ing paradigm termed Cross-modal Ranking Learning (CRL)
which uses all negative pairs for optimization. Fig. 4 visu-
ally illustrates the difference between the max-margin loss
and CRL. As shown, one could see that max-margin ranking
loss only focuses on inter-pair samples inside the margin
while ignoring the inter-pair samples outside the margin.
Without semantic labels, it may focus on the FNPs, and
ignore the TNPs as shown in Fig. 4a. Different from the
max-margin loss [19], [24], [33], our CRL could fully utilize
all negative samples, and alleviate the influence of FNPs as
shown in Fig. 4b.

To utilize all negative pairs including the ignored ones,
we construct the following upper bound of max-margin by
simultaneously considering negative samples both inside
and outside the margin. First, let

S�
ij ¼

M�
ij; M�

ii �M�
ij 4m

M�
ij � �; otherwise;

�
(8)

where � > 0. Thus, S�
ij is never larger thanM�

ij.

Fig. 4. The major difference between the max-margin ranking loss and
our loss is that the former does not utilize the samples outside the mar-
gin whereas the latter does. To be specific, for a given query, one aims to
retrieve the most relative sample from a given dictionary, where the
query and dictionary lie into two modalities and different shapes denote
different classes. Due to the existence of FNP, the vanilla max-margin
ranking loss probably lead to wrong optimization result, as shown in (a).
Instead of only pushing within-marginal between-pairs samples away,
our loss simultaneously maximizes the intra-pair similarity while minimiz-
ing all inter-pair similarities. Thus, our ranking loss could fully utilize all
negative samples so that the influence of FNP is alleviated.
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Lemma 1. For any k 2 Rþ, it holds that

max
j¼1;...;n

ðS�
ijÞ4klog

Xn
j¼1

expðS�=
ij kÞ

 !
(9)

where � 2 fxy; yxg.
Proof. To proof the above lemma, we have that

max
j¼1;...;n

ðS�
ijÞ ¼ max

j¼1;...;n
k log expðS�

ijÞ
� �1=k� �

¼ k log max
j¼1;...;n

ðexpðS�
ijÞÞ1=k

� �

4k log
Xn
j¼1

expðS�
ij=kÞ

 !
(10)

tu
Theorem 1. For any k 2 Rþ, it holds thatXn

j¼1

maxð0;mþ S�
ij � S�

iiÞ

4n mþ k log
Xn
j¼1

expðS�
ij=kÞ

 !
� S�

ii

 !
(11)

where � 2 fxy; yxg.
Proof. By Lemma 1, we could easily have that

Xn
j¼1

maxð0;mþ S�
ij � S�

iiÞ

¼ jAijmþ
X

Sij2Ai

S�
ij � jAijS�

ii

4jAij mþ max
j¼1;...;n

ðS�
ijÞ � S�

ii

� �

4jAij mþ klog
Xn
j¼1

expðS�
ij=kÞ

 !
� S�

ii

 !

4n mþ klog
Xn
j¼1

expðS�
ij=kÞ

 !
� S�

ii

 !
; (12)

where Ai ¼ fS�
ijjS�

ii � S�
ij4m; i 6¼ j; j ¼ 1; 2; . . . ; ng, and

jAij is the size of Ai. tu
Therefore, we could easily obtain the following inequation:

L�
r4

1

n

Xn
i¼1

mþ k log
Xn
j¼1

expðS�
ij=kÞ

 !
� S�

ii

 !
: (13)

Then, we can transform the minimizing optimization of
Eq. (6) into minimizing its upper bound as follows:

Lr ¼ 1

n

Xn
i¼1

mþ k log
Xn
j¼1

expðSxy
ij =kÞ

 !
� Sxy

ii

 !

þ 1

n

Xn
i¼1

mþ k log
Xn
j¼1

expðSyx
ij =kÞ

 !
� Syx

ii

 !
(14)

Here,m is a margin constraint as shown in Fig. 4. Bymini-
mizing Eq. (14), the cross-modal networks are trained to scat-
ter all inter-pair samples. Different from the traditional max-
margin ranking loss L0

r, our cross-modal ranking loss Lr can

simultaneously scatter the top to bottom ranking irrelevant
samples instead of only focusing on the top ones. Further-
more, our method pays more attention to the top irrelevant
samples (considered as more difficult points) than the bot-
tom ones, thus the top ones can be sufficiently apart from the
queries. Simultaneously, the loss also compacts the positive
samples (i.e., the relevant image-text pairs) to eliminate the
cross-modal discrepancy.

3.4 Optimization

The process of learning the optimal hashing functions is
conducted by jointly minimizing the contrastive hashing
loss Lc and cross-modal ranking loss Lr as Eq. (2). The joint
loss is as follows:

L ¼ bLc þ ð1� bÞLr: (15)

Our UCCH (Eq. (2)) could be iteratively optimize in a
batch-by-batch manner. By minimizing Lc, our UCCH
learns to capture the apparent similarity through instance-
level discrimination learning [27], and encodes the multi-
modal data to binary codes without continuous relaxation.
Furthermore, the cross-modal retrieval metric is directly
injected into the learning process to bridge the cross-modal
gap. The whole model of our UCCH could be optimized by
using any one stochastic gradient descent optimization
algorithm, like Adam [45]. The optimization process of our
UCCH is summarized in Algorithm 1.

Algorithm 1. Optimization Process of Our UCCH

Input: The training image-text pairs D ¼ fxi; yigni¼1, the length
of the hash codes L, batch size Nb, balance parameter b,
momentum coefficient d, margin constraint parameter m,
number of negative samplesK, and learning rate a.

1: Randomly initialize Qx, Qy.
2: while not converge do
3: Randomly sample Nb image-text pairs from D to

construct an image-text mini-batch fxi; yigNb
i¼1.

4: Randomly sampleK negative keys fk�
j gKj¼1 and select the

corresponding positive key kþ
i ¼ sgnðvi0 Þ for each pair

fxi; yig from the hashing memory bank.
5: Calculate the representation of each point in the mini-batch

by using the corresponding hash function.
6: Compute the hashing contrastive loss and cross-modal

ranking loss according to Eq. (3) and Eq. (14) on the
mini-batch, respectively.

7: Update the parameters of the view-specific hash networks
by minimizing L in Eq. (15) with descending their stochas-
tic gradient:
Q� ¼ Q� � aðb @Lc

@Q� þ ð1� bÞ @Lr
@Q�Þ ð� 2 fx; ygÞ

8: Update the corresponding positive keys of the sampled
mini-batch fxi; yigNb

i¼1 in the hashing memory bank through
Eq. (5):
vþ
i0 ¼ dvþ

i0 þ ð1� dÞ h
x
i þh

y
i

2 ði ¼ 1; . . . ; NbÞ
9: end while
Output: Optimized UCCHmodel.

4 EXPERIMENT STUDY

To verify the effectiveness of our UCCH, we carry out
experiments on five widely-used multimodal datasets, i.e.,
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MIRFLICKR-25K [46], IAPR TC-12 [47], NUS-WIDE [48],
MS-COCO [49], and Flickr30K [50]. Our method is imple-
mented with PyTorch [51] on a single NVIDIA GEFORCE
RTX 2080 Ti GPU.

4.1 Datasets

4.1.1 MIRFLICKR-25K [46]

It is a widely-used cross-modal dataset for cross-modal
hashing retrieval. This dataset consists of 25,000 image-text
pairs where each pair contains an image and its correspond-
ing multiple textual tags manually annotated with a multi-
label from 24 unique semantic classes. After pruning pairs
without class information, 20,015 pairs are totally left for
our experiments. For a fair comparison, we exactly follow
the data partition strategy of [13] to randomly select 2,000
image-text pairs as query set and the remaining ones are
used as retrieval database. For the supervised baselines, we
randomly select 5,000 pairs from the retrieval database as
their training set. Image and text samples are respectively
represented as a 4,096-dimensional vector extracted by the
pretrained 19-layer VGGNet [52] and 1,386-dimensional
bag-of-words (BoW) vector.

4.1.2 IAPR TC-12 [47]

This dataset totally contains 20,000 image-text pairs which
are annotated with multi-labels from 255 unique semantic
categories. Unlike other datasets, the entire IAPR TC-12 is
used for our experiments. The image of each pair is repre-
sented as a 4,096-dimensional vector extracted by the
pretrained CNN-F [53], each text is represented by a 2,912-
dimensional BoW vector. Like MIRFLICKR-25 K, we ran-
domly select 2,000 image-text pairs as the query set and the
remaining ones are used as retrieval database. Furthermore,
we also randomly select 5,000 image-text pairs from the
retrieval database as the training set for the supervised
baselines.

4.1.3 NUS-WIDE [48]

This dataset consists of 269,498 web images with their tex-
tual tags categorized into one or multiple labels from 81
concept categories. In the dataset, 186,557 image-text pairs,
which belong to the 10 most frequent classes, are selected
for our experiments. We follow the data partition strategy
of [22] to randomly select 2,100 image-text pairs as the query
set and the left ones are used as retrieval set. Each text point
is represented as a 1,000-dimensional BoW vector. The fea-
ture of each image sample is a 4,096-dimensional vector
extracted by the pretrained 19-layer VGGNet. Moreover,
5,000 image-text pairs are selected from the retrieval set to
construct the training set for the supervised baselines.

4.1.4 MS-COCO [49]

This dataset totally contains 123,287 images. Each image is
described with five annotated sentences with their annota-
tions classified into 80 categories. After removing the pairs
without any label information, 122,218 image-text pairs are
totally remained for our experiments. Different from other
datasets, the text of each pair is represented by a 300-dimen-
sional vector extracted by the pretrained Doc2Vec [54]. Each

image is represented as a 4,096-dimensional vector
extracted by the pretrained 19-layer VGGNet. We randomly
select 5,000 image-text pairs as query set and the remaining
ones are used as the retrieval set. Like other datasets, 5,000
image-text pairs are randomly selected as the training set
for the supervised approaches.

4.1.5 Flickr30K [50]

This dataset consists of 31,000 images with five text annota-
tions for each image. We use the default splits of [55], i.e.,
the training set includes 29,000 images and 145,000 texts,
the validation set contains 1,000 images and 5,000 texts, and
the testing set consists of 1,000 images and 5,000 texts. Fol-
lowing [55], each image is represented as a 4,096-dimen-
sional vector extracted from FC7 of the pretrained 19-layer
VGGNet. Different four previous datasets, Flickr30 K is an
unlabeled dataset. Thus, we could only conduct image-text
matching on Flickr30 K instead of cross-modal retrieval
based on semantics, which is one kind of cross-modal
retrieval based on instances.

4.2 Evaluation Protocol and Baseline

4.2.1 Evaluation Protocol

For each dataset, some samples are randomly selected from
the total set as the query set and the left ones are used as the
retrieval database following [22], [56], [57]. To evaluate the
performance of the cross-modal hashing methods, we per-
form two different cross-modal retrieval tasks: retrieving
relevant text points using an image query (Image ! Text),
and retrieving relevant image points using a text query
(Text ! Image). The ground-truth relevant neighbors are
defined as the cross-modal points which share at least one
same semantic category. To evaluate the accuracy of the
retrieved results, the widely-used Hamming ranking and
hash lookup are used as retrieval protocols in the experi-
ments. The evaluation metric utilizes the widely-used Mean
Average Precision (MAP), which is the mean value of Aver-
age Precision (AP) scores for each query, to measure the
accuracy scores of the Hamming ranking results. MAP is
extensively used to evaluate the performance of cross-
modal retrieval since it simultaneously considers both
retrieval precision and the ranking of returned results. In
addition to MAP, we adopt the precision-recall curves as
the hash lookup protocol to visually evaluate the perfor-
mance of cross-modal retrieval. Note that all MAP scores
are computed on all returned retrieval results in the experi-
ments (i.e., MAP@ALL). Besides the comparison under the
above two category-level metrics, we adopt Recall@K (R@K,
higher is better) for different values of K to measure the per-
formance for instance-level image-text matching follow-
ing [55]. In brief, R@K is the percentage of tested queries for
which at least one correct item is among the top K ranking
results [55].

4.2.2 Baselines

In our experiments, 13 state-of-the-art cross-modal hashing
methods are used as baselines, including four supervised
cross-modal hashing methods (DLFH [23], MTFH [16],
FOMH [58], DCH [34]), and nine unsupervised approaches
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(CVH [20], LSSH [59], CMFH [60], FSH [18], UGACH [61],
DJSRH [62], JDSH [63], UCH [13], and DGCPN [64]). All of
these methods are shallow cross-modal hashing models
except for UGACH, DJSRH, JDSH, UCH, and DGCPNwhich
are seven recently proposed deep hashing methods. For a fair
comparison, all methods use the same features to learn the
hash codes and the extractors (or backbones) are not fine-
tuned for deep methods during training. We randomly
sample 2000 instances from the retrieval databases as the vali-
dation set. The hyper-parameters of other methods are
adopted as the default parameters given by the authors. For
our UCCH, we utilize validation sets to choose the hyper-
parameter b. Other hyper-parameters are empirically set as
fixed values for all experiments, i.e., d ¼ 0:4, t ¼ 0:9, K ¼
4096, m ¼ 0:2, and a ¼ 0:0001. For Flickr30 K, we transplant
DJSRH [62], JDSH [63], and our UCCH on the framework of
VSE++ [55] for a fair comparison.

4.3 Experimental Analysis

4.3.1 Hamming Ranking

Two cross-modal retrieval tasks (i.e., Image! Text, and Text
! Image) are conducted onfivewidely-used benchmarkmul-
timodal datasets to evaluate the performance of our UCCH
and other baselines. The MAP@ALL/Recall@K scores of
these tasks are reported in Tables 1 and 2, i.e., Table 1 is the
result on the MIRFLICKR-25 K and IAPR TC-12 datasets,
Table 2 is on the NUS-WIDE and MS-COCO datasets, and
Table 4 is on the Flickr30 K dataset. From the experimental
results shown in the tables, one could observe that our UCCH
outperforms all the other baselines for the different code
lengths (i.e., 16, 32, 64, and 128). From the experimental
results, we can draw the following observations:

1) DNN-based cross-modal hashing methods (UGACH,
UCH, and our UCCH) outperform most other shallow

TABLE 1
Performance Comparison in Terms of MAP Scores on the MIRFLICKR-25 K and IAPR TC-12 Datasets

Method MIRFLICKR-25 K IAPR TC-12

Image! Text Text! Image Image! Text Text! Image

16 32 64 128 16 32 64 128 16 32 64 128 16 32 64 128

CVH [20] 0.620 0.608 0.594 0.583 0.629 0.615 0.599 0.587 0.392 0.378 0.366 0.353 0.398 0.384 0.372 0.360
LSSH [57] 0.597 0.609 0.606 0.605 0.602 0.598 0.598 0.597 0.372 0.386 0.396 0.404 0.367 0.380 0.392 0.401
CMFH [58] 0.557 0.557 0.556 0.557 0.553 0.553 0.553 0.553 0.312 0.314 0.314 0.315 0.306 0.306 0.306 0.306
FSH [18] 0.581 0.612 0.635 0.662 0.576 0.607 0.635 0.660 0.377 0.392 0.417 0.445 0.383 0.399 0.425 0.451
DLFH [23] 0.638 0.658 0.677 0.684 0.675 0.700 0.718 0.725 0.342 0.358 0.374 0.395 0.358 0.380 0.403 0.434
MTFH [16] 0.507 0.512 0.558 0.554 0.514 0.524 0.518 0.581 0.277 0.324 0.303 0.311 0.294 0.337 0.269 0.297
FOMH [56] 0.575 0.640 0.691 0.659 0.585 0.648 0.719 0.688 0.312 0.316 0.317 0.350 0.311 0.315 0.322 0.373
DCH [34] 0.596 0.602 0.626 0.636 0.612 0.623 0.653 0.665 0.336 0.336 0.344 0.352 0.350 0.358 0.374 0.391
UGACH [59] 0.685 0.693 0.704 0.702 0.673 0.676 0.686 0.690 0.462 0.467 0.469 0.480 0.447 0.463 0.468 0.463
DJSRH [60] 0.652 0.697 0.700 0.716 0.662 0.691 0.683 0.695 0.409 0.412 0.470 0.480 0.418 0.436 0.467 0.478
JDSH [61] 0.724 0.734 0.741 0.745 0.710 0.720 0.733 0.720 0.449 0.472 0.478 0.484 0.447 0.477 0.473 0.486
DGCPN [62] 0.711 0.723 0.737 0.748 0.695 0.707 0.725 0.731 0.465 0.485 0.486 0.495 0.467 0.488 0.491 0.497
UCH [13] 0.654 0.669 0.679 / 0.661 0.667 0.668 / 0.447 0.471 0.485 / 0.446 0.469 0.488 /

UCCH 0.739 0.744 0.754 0.760 0.725 0.725 0.743 0.747 0.478 0.491 0.503 0.508 0.474 0.488 0.503 0.508

The highest score is shown in boldface.

TABLE 2
Performance Comparison in Terms of MAP Scores on the NUS-WIDE and MS-COCO Datasets

Method NUS-WIDE MS-COCO

Image! Text Text! Image Image! Text Text! Image

16 32 64 128 16 32 64 128 16 32 64 128 16 32 64 128

CVH [20] 0.487 0.495 0.456 0.419 0.470 0.475 0.444 0.412 0.503 0.504 0.471 0.425 0.506 0.508 0.476 0.429
LSSH [57] 0.442 0.457 0.450 0.451 0.473 0.482 0.471 0.457 0.484 0.525 0.542 0.551 0.490 0.522 0.547 0.560
CMFH [58] 0.339 0.338 0.343 0.339 0.306 0.306 0.306 0.306 0.366 0.369 0.370 0.365 0.346 0.346 0.346 0.346
FSH [18] 0.557 0.565 0.598 0.635 0.569 0.604 0.651 0.666 0.539 0.549 0.576 0.587 0.537 0.524 0.564 0.573
DLFH [23] 0.385 0.399 0.443 0.445 0.421 0.421 0.462 0.474 0.522 0.580 0.614 0.631 0.444 0.489 0.513 0.534
MTFH [16] 0.297 0.297 0.272 0.328 0.353 0.314 0.399 0.410 0.399 0.293 0.295 0.395 0.335 0.374 0.300 0.334
FOMH [56] 0.305 0.305 0.306 0.314 0.302 0.304 0.300 0.306 0.378 0.514 0.571 0.601 0.368 0.484 0.559 0.595
DCH [34] 0.392 0.422 0.430 0.436 0.379 0.432 0.444 0.459 0.422 0.420 0.446 0.468 0.421 0.428 0.454 0.471
UGACH [59] 0.613 0.623 0.628 0.631 0.603 0.614 0.640 0.641 0.553 0.599 0.598 0.615 0.581 0.605 0.629 0.635
DJSRH [60] 0.502 0.538 0.527 0.556 0.465 0.532 0.538 0.545 0.501 0.563 0.595 0.615 0.494 0.569 0.604 0.622
JDSH [61] 0.647 0.656 0.679 0.680 0.649 0.669 0.689 0.699 0.579 0.628 0.647 0.662 0.578 0.634 0.659 0.672
DGCPN [62] 0.610 0.614 0.635 0.641 0.617 0.621 0.642 0.647 0.552 0.590 0.602 0.596 0.564 0.590 0.597 0.597
UCH [13] / / / / / / / / 0.521 0.534 0.547 / 0.499 0.519 0.545 /

UCCH 0.698 0.708 0.737 0.742 0.701 0.724 0.745 0.750 0.605 0.645 0.655 0.665 0.610 0.655 0.666 0.677

The highest score is shown in boldface.
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baselines, indicating that highly-level nonlinearity of
DNN can improve the performance of cross-modal
retrieval.

2) Although the supervised methods can achieve prom-
ising performance with sufficient labeled data, they
cannot outperform most of unsupervised methods
with insufficient labeled data, which indicates that
unsupervised approaches have a lot of potential for
amounts of unlabeled data. The supervised methods
are too dependent on costly labeled data, but the
unsupervised ones can handle this problem. Thus,
the unsupervised cross-modal hashingmethods have
great advantages for large-scaledmultimodal data.

3) The cross-modal hashing methods (DLFH and our
UCCH), which directly learns the discrete representa-
tions without any continuous relaxation, outperforms
their relaxation-based continuous counterparts (i.e.,
supervised methods for DLFH, and unsupervised
approaches for our UCCH). Thus, hashing learning
without continuous relaxation can improve the
retrieval performance.

4) Instance-level image-text matching is much more
sensitive to hashing than category-level cross-modal
retrieval, probably because instance-level retrieval is
muchmore complicated than category-level retrieval.
Even so, our method could still achieve a competitive
hashing performance, which indicates that our
method could capture the instance-level discrimina-
tion for cross-modal hashingwell.

4.3.2 Hash Lookup

Besides theHamming ranking, the precision and recall are cal-
culated by the returned results with the Hamming distance

following [9], [13], [61]. The precision-recall curves with code
length 128 are drawn to evaluate the performance of the cross-
modal hashing methods on the MIRFLICKR-25 K, IAPR TC-
12, NUS-WIDE, andMS-COCOdatasets as shown in Figs. 5, 6,
7, and 8. One could see that the precision-recall evaluations in
these figures are consistent with the MAP scores of Hamming
ranking, where our UCCH are superior to all compared cross-
modal hashing methods. In addition, the proposed UCCH
also outperforms other approaches for other cases with other
code length (i.e., 16, 32, 64), whose curves are omitted due to
space limitation. In summary, our UCCH could achieve the
best performance for cross-modal hashing retrieval compar-
ingwith these cross-modal hashing approaches.

4.3.3 Sensitivity to Parameters

To investigate the impact of the hyper-parameter b, Fig. 9
plots theMAP scores of cross-modal retrieval versus different

Fig. 5. The precision-recall curves on the MIRFLICKR-25 K dataset. The
code length is 128.

Fig. 6. The precision-recall curves on the IAPR TC-12 dataset. The code
length is 128.

Fig. 8. The precision-recall curves on the MS-COCO dataset. The code
length is 128.

Fig. 7. The precision-recall curves on the NUS-WIDE dataset. The code
length is 128.

Fig. 9. Cross-modal retrieval performance of our UCCH in terms of
MAP scores versus different values of b on the validation sets of the
IAPR TC-12 and MS-COCO datasets, respectively. The code length is
128.
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b on the IAPR TC-12 and MS-COCO datasets. From the
figure, one could see that both contrastive hashing
loss (Lc) and cross-modal ranking loss (Lr) contribute to
exploiting the discrimination from the multimodal data.
More ablation evaluations could be found in Section 4.3.5.
From the experimental results, one could find that the pro-
posed approach is robust to the choice of the parameters.
Note that, the values are determined by the achieved
retrieval performance on the corresponding validation sets
in the other evaluation parts.

4.3.4 Convergence Analysis

Fig. 10 plot the convergence curves of our UCCH on the IAPR
TC-12 andMS-COCOdatasets, where x-axis indicates the val-
ues of the loss function (i.e., L) and y-axis indicates different
number of epochs. From the figures, one could see that our
UCCHquickly converges from the 50-th to 100-th epochs, and
the loss remarkably decreases in the first 20 epochs. Thus, the
maximum epoch is set as 20 for ourUCCHon all datasets.

4.3.5 Ablation Study

In this section, we investigate the contributions of different
components (i.e., Lc and Lr) to the cross-modal hashing
retrieval. In order to completely evaluate the performance of
each component, we compare ourUCCHwith its three varia-
tions on IAPR TC-12 and MS-COCO datasets, i.e., UCCH

with Lc only, UCCH with L0
r only, and UCCH with Lr only.

All variants are trained with the same setting as our UCCH
for a fair comparison. The experimental results are shown in
Table 3. From the table, one could see that the performance
of UCCH without Lc or Lr are worse than our UCCH on the
two databases. Thus, both of these two components contrib-
ute to the retrieval performance, and the mutual cooperation
of Lc and Lr could improve the retrieval performance. In the
table, we also could see that our proposed cross-modal rank-
ing lossLr (i.e., Eq. (14)) is efficient to improve the traditional
max-margin ranking loss L0

r (i.e., Eq. (6)), which demon-
strates the effectiveness of considering all samples. More-
over, from the comparisons among L0

r;m¼0:1, L0
r;m¼0:5, and

L0
r;m¼0:9, one could see that more negative pairs are used,

the performance becomes better. This verifies our claim on
the max-margin loss, i.e., it will ignore the TNPs. Besides,
we also illustrate the MAP curves to show the performance
of different variations in Fig. 11. From the results, one
could see that CRL is more stable than the max-margin
loss thanks to the use of all negative pairs.

TABLE 3
Ablation Study on Different Datasets

Dataset Method Image! Text Text! Image

16 32 64 128 16 32 64 128

IAPR TC-12 UCCH (with Lc only) 0.457 0.469 0.478 0.482 0.447 0.469 0.483 0.486
UCCH (with L0

r;m¼0:1 only) 0.410 0.426 0.432 0.438 0.421 0.434 0.461 0.460
UCCH (with L0

r;m¼0:5 only) 0.423 0.446 0.463 0.470 0.434 0.450 0.471 0.479
UCCH (with L0

r;m¼0:9 only) 0.444 0.460 0.472 0.480 0.450 0.472 0.469 0.476
UCCH (with Lr only) 0.461 0.482 0.496 0.495 0.457 0.476 0.492 0.488
Full UCCH 0.478 0.491 0.503 0.508 0.474 0.488 0.503 0.508

MS-COCO UCCH (with Lc only) 0.577 0.605 0.621 0.624 0.579 0.610 0.626 0.627
UCCH (with L0

r;m¼0:1 only) 0.495 0.512 0.548 0.555 0.483 0.503 0.534 0.549
UCCH (with L0

r;m¼0:5 only) 0.499 0.525 0.554 0.579 0.498 0.527 0.546 0.566
UCCH (with L0

r;m¼0:9 only) 0.529 0.535 0.554 0.558 0.525 0.545 0.546 0.560
UCCH (with Lr only) 0.563 0.574 0.599 0.602 0.563 0.576 0.606 0.609
Full UCCH 0.605 0.645 0.655 0.665 0.610 0.655 0.666 0.677

The highest score is shown in boldface.

Fig. 10. Convergence curves of our UCCH on the validation sets of IAPR
TC-12 and MS-COCO. The code length is 128.

TABLE 4
Performance Comparison in Terms of

Recall@k Scores on Flickr30 K

Bit Method Image! Text Text! Image

R@1 R@5 R@10 R@1 R@5 R@10

64 VSE++ [55] 10.7 28.0 39.2 8.3 25.4 37.1
DJSRH [60] 3.6 14.4 22.1 3.4 11.6 18.5
JDSH [61] 10.0 28.6 39.3 8.0 23.6 34.5
UCCH 14.5 37.6 50.8 10.9 32.3 44.0

128 VSE++ [55] 11.3 31.1 42.6 9.2 27.7 40.4
DJSRH [60] 7.7 27.2 37.8 5.9 19.9 30.3
JDSH [61] 10.7 30.0 42.5 8.2 25.6 37.3
UCCH 17.9 44.9 55.4 14.0 37.0 50.1

512 VSE++ [55] 13.5 34.7 48.2 10.8 31.1 43.6
DJSRH [60] 17.9 43.5 56.3 13.3 36.3 48.9
JDSH [61] 13.6 35.6 49.4 9.8 29.1 42.6
UCCH 22.8 48.1 61.0 16.9 41.8 54.9

The highest score is shown in boldface.
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4.3.6 Effectiveness of Momentum-Based Binarization

In this section, we compare the proposed CCH with con-
trastive learning without hashing (CL w/o Hashing) [65]
to investigate the effectiveness of our binarization mecha-
nism. Fig. 12 shows their average MAP scores of cross-
modal retrieval with increasing epochs on the validation
set of IAPR TC-12. From the results, one could see that CL
performs unstable for cross-modal hashing retrieval. With
the help of our binarization strategy, CCH achieves better
and more stable performance. Hence, one could conclude
that it is nontrivial to develop cross-modal hashing based
on CL.

4.3.7 Analysis on False-Negative Pairs

To further investigate the influence of FNPs during training,
we take the max-margin loss to train the DNN model with
different margin values (i.e., L0

r;m¼0:1, L0
r;m¼0:5) on IAPR TC-

12. Accordingly, Fig. 13 demonstrates the evolution curves
of FNPs and Fig. 13a shows the average number of valid
negative pairs for all batches of each epoch. From the fig-
ures, one could see that a number of true- and false-negative
samples will be pushed outside the margin. For the lower
margins, almost all negatives samples would be pushed out

of the margin, e.g., m ¼ 0:1 and 0.5. In other words, there
are almost no negative pairs participating in further train-
ing. Furthermore, Fig. 13b illustrates that the FNP rate
increases in the first few epochs and quickly descends with
further training for lower margins (i.e., m ¼ 0:1 and 0.5).
This could attribute to that TNPs are easier to separate than
FNPs. For a larger margin (i.e., m ¼ 0:9), more negative
samples would be remained inside the margin as show in
Fig. 13a. Fig. 13b shows that in the first several epochs the
model will use a number of negative samples. As a result,
TNPs will be rapidly pushed out the margin, while the
FNPs will dominate the negative pairs and thus resulting in
performance degradation as shown in Fig. 12. In contrast,
our method will not encounter this problem and thus enjoy
better performance as shown in Table 3.

4.3.8 Efficiency Comparision With State-of-The-Art

Methods

In this section, we evaluate the efficiency of the proposed
method comparing with some state-of-the-art unsupervised
cross-modal hashing approaches on the MIRFLICKR-25 K
dataset. The testing platform is with an Intel i9-10900X
CPU@3.70 GHz and a GeForce RTX 2080Ti GPU. From
Table 5, we could see that our DNN-based UCCH could need
more training time comparing with the shallow approaches
(e.g., CVH, FSH, CMFH, etc), which is a common phenome-
non in deep methods since the multi-layer neural network
iteration optimization. However, the inference time is much
less than the training time and comparable to the shallow
methods. Furthermore, comparing with a DNN-based cross-
modal hashing method (i.e., UGACH), we need much less
time in both training and inference stages. Furthermore,
UCCHwith contrastive learning (Lc) will cost more time and
memory than UCCHwithout Lc in the training stage, but it is
in the acceptable range (about 0.67 s per epoch and 9.64%
morememory cost). In addition, they have the same inference
efficiency since there is no contrastive learning in the infer-
ence stage. For a fair comparison, the shallow methods use
the default hyper-parameters provided by the authors. For
the DNN-based methods, the maximal training epochs are
set as 20. Our UCCH could approach convergence within 20
epochs as shown in Fig. 10, but UGACH needs more epochs.

Fig. 11. Different epochs vs. average MAP scores of cross-modal
retrieval with different variants on the validation set of IAPR TC-12. The
code length is 128.

Fig. 12. Performance evolution of CCH and CL w/o Hashing in terms of
average MAP scores for cross-modal retrieval on the validation set of
IAPR TC-12.

Fig. 13. False-negative samples analysis on IAPR TC-12. With different
margin values (m ¼ 0:1; 0:5; 0:9), (a) shows the number of valid negative
pairs vs. different epochs. (b) shows the ratio of FNPs vs. different
epochs. The negative pairs could be obtained from image query text (I2T)
and text query image (T2I), respectively. “ALL” denotes all negative pairs.
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Compared to the graph-based method UGACH [61], our
method could remarkably reduce the training time andmem-
ory cost, i.e., decreasing training time from > 12 h to 78.18 s
and 69.62% lessmemory consumption.

5 CONCLUSION

In this paper, we propose a novel cross-modal hashing
approach, termed Unsupervised Contrastive Cross-modal
Hashing (UCCH), which projects different modalities into
a common Hamming space. UCCH consists of two task-
specific learning parts, namely, Contrastive Cross-modal
Hashing (CCH) and Cross-modal Ranking Learning (CRL).
On the one hand, CH enforces different modalities to fit the
unified binary representations with a novel momentum-
based binarization optimizer. Thanks to the optimizer, CCH
could endow contrastive learning with unsupervised cross-
modal hashing. On the other hand, CRL exploits the dis-
crimination from all instead of the hardest negative pairs,
which will alleviate the influence of FNPs to facilitate cross-
modal retrieval. Extensive experimental results on five
widely-used benchmark datasets and the comprehensive
analysis have demonstrated the effectiveness and efficiency
of the proposed method comparing with 13 state-of-the-art
methods. In the future, we plan to investigate how to fur-
ther improve the performance of our method by utilizing a
few labeled data.
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