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Abstract

Vision Transformers have shown promising performance
in image restoration, which usually conduct window- or
channel-based attention to avoid intensive computations.
Although the promising performance has been achieved,
they go against the biggest success factor of Transformers to
a certain extent by capturing the local instead of global de-
pendency among pixels. In this paper, we propose a novel
efficient image restoration Transformer that first captures
the superpixel-wise global dependency, and then transfers
it into each pixel. Such a coarse-to-fine paradigm is imple-
mented through two neural blocks, i.e., condensed attention
neural block (CA) and dual adaptive neural block (DA). In
brief, CA employs feature aggregation, attention computa-
tion, and feature recovery to efficiently capture the global
dependency at the superpixel level. To embrace the pixel-
wise global dependency, DA takes a novel dual-way struc-
ture to adaptively encapsulate the globality from superpix-
els into pixels. Thanks to the two neural blocks, our method
achieves comparable performance while taking only ∼6%
FLOPs compared with SwinIR.

1. Introduction

Image restoration aims to recover the high-quality im-
age from its degraded version, and huge success has been
achieved by plentiful methods in the past years [22, 30, 35,
54–56, 60]. In the era of deep learning, Convolutional Neu-
ral Networks (CNNs) have shown promising performance
in image restoration [25, 52, 67] thanks to the inductive bi-
ases of weight sharing and spatial locality [12]. However,
although a number of studies have shown the effectiveness
of CNNs, it has suffered from the following limitations [12],
i.e., i) non-dynamic weights of CNNs limit the model ca-
pacity of instance adaption, and ii) the sparse connections
of CNNs limit the capture of global dependency.
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Figure 1. Illustration of the dependency capture in existing vision
Transformers and ours. The red boxes refer to the dependency
capture range of a given pixel marked by a red point. We gener-
ally summarize the dependency capture in existing vision Trans-
formers as the three ways above the dashed line. Obviously, they
could only capture the dependency in a local range. In contrast,
our method could obtain a pixel-wise global dependency through
superpixel-wise dependency computation and distribution.

To overcome these limitations, some solutions [51,
60, 67, 68] have been specifically established, of which
Transformer-based methods [3, 5, 28, 47, 53] have achieved
huge success thanks to their high capacities of dynamic
weighting and global dependency capturing. Towards the
image-restoration-specific Transformers, the biggest road-
block might be the unacceptable cost caused by the global
attention computation. Therefore, some efficient attentions
have been proposed to trade-off the efficiency and depen-
dency range, e.g., local window attention [49], shifted win-
dow attention [22], and channel attention [56]. Although
the promising performance has been achieved, these Trans-
formers have still suffered from the following limitations.
First, the computation costs are still very high, thus limit-
ing their applications in the mobile scenarios. Second, the
attention mechanisms could only capture the dependency
from a given range, and thus such a locality might not fully
explore the potential of Transformer.



In practice, it is daunting to develop an efficient image
restoration Transformer while directly capturing the global
dependency, since it necessarily introduces intensive com-
putations, which goes against efficiency. Different from ex-
isting studies focusing on efficient attention mechanisms,
this paper resolves the contradiction from a novel perspec-
tive. To be specific, our basic idea is to adaptively aggregate
the features at pixel level into a lower dimensional space of
superpixel to remove the redundancy in channel [13] and
space [50] domains. Through the feature aggregation, the
dimension is remarkably reduced, and thus the attention
could be computed in a global way with acceptable com-
putation costs. After that, the feature recovery is performed
to restore the feature distribution in channel and space do-
mains. Although the above paradigm shows a feasible so-
lution, it is far from the final goal since the obtained de-
pendency actually works at the superpixel level. Hence, we
need to transfer such a superpixel-wise global dependency
to a pixel-wise global dependency. As a result, pixel-wise
restoration can depend on the global information from su-
perpixels.

Based on the above motivations, we propose an effi-
cient Transformer for COmprehensive and DElicate image
restoration (CODE). To be specific, CODE consists of a
condensed attention neural block (CA) and a dual adap-
tive neural block (DA). In brief, CA captures the global
dependency at the superpixel level with acceptable compu-
tations thanks to the aforementioned paradigm. To obtain
the pixel-wise global dependency, DA extracts the global-
ity from the CA output and then dynamically encapsulates
it into each pixel. Thanks to the two complementary neural
blocks, CODE could capture the pixel-wise global depen-
dency, while embracing high computational efficiency.

The contributions and novelty of this work could be sum-
marized as below.

• Unlike existing efficient Transformers only capture the
pixel-wise local dependency, our solution could obtain
the pixel-wise global dependency through superpixel-
wise dependency computation and transformation.

• The proposed image restoration Transformer (CODE)
consists of two neural blocks. In brief, CA employs
feature aggregation, attention computation, and fea-
ture recovery to efficiently capture the superpixel-wise
global dependency. To obtain pixel-wise global depen-
dency, DA takes a novel dual-way structure and a dy-
namic weighting fashion to distribute the superpixel-
wise globality into each pixel.

• Extensive experiments are conducted on four image
restoration tasks to demonstrate the efficiency and ef-
fectiveness of CODE, e.g., it achieves comparable per-
formance while taking only ∼6% FLOPs compared
with SwinIR [22].

2. Related Work

In this section, we first introduce the related works in im-
age restoration and vision Transformers, and then elaborate
on the differences between CODE and existing methods.

2.1. Image Restoration

At present, deep image restoration methods could be di-
vided into two categories according to the architectures, i.e.,
CNN- and Transformer-based methods. Here, we introduce
the former while detailing the latter in the Sec. 2.2.

In the past decades, CNN-based methods have achieved
promising performance thanks to the introduction of the
inductive biases, e.g., weight sharing and spatial locality.
As a result, plentiful CNN-based methods have been pro-
posed [10,11,19,27,32,39,48,57,60,69], and advanced the
image restoration to a new stage in both efficiency and ef-
fectiveness. For example, BSRN [21] proposed an efficient
and effective neural network by introducing blueprint sepa-
rable convolutions and spatial-channel attention modules.
MPRNet [57] proposed an effective multi-stage architec-
ture for image restoration by progressively recovering the
degraded images. Although CNNs have shown impressive
performance, they still suffer from the limitations of i) static
(non-dynamic) weights for every instance, and ii) sparse
connection for every output. As a result, CNNs are short
in instance adaptation ability and global dependency cap-
turing. To alleviate these problems, some ingenious designs
are introduced. For example, CBAM [51] inferred atten-
tion maps along channel and spatial dimensions for adap-
tive refinement. IRCNN [63] used dilated convolutions to
enlarge the receptive field, thus capturing more contextual
information. RDN [67] designed a very deep network to
capture rich hierarchical features. Although these methods
have shown effectiveness, more studies are expected so that
the aforementioned limitations could be further overcome.

2.2. Vision Transformers

Vision Transformers [5,20,28] have achieved remarkable
performance due to the attention mechanism, which natu-
rally embraces the powerful dynamic weights and global
dependency capturing. However, as each coin has two sides,
the intensive computations in attention limit the application
to vision tasks, in which the images are generally with a
high dimensionality. Therefore, some vision Transformers
decompose the images into small patches and take the se-
quence of patches as input, thus alleviating computational
costs. IPT [3] could be the first work that introduces this
strategy into image restoration. Afterward, some methods
employed window-based attention, which performs atten-
tion on a local window instead of the global feature map.
For example, Uformer [49] introduced the locally-enhanced
window Transformer block that performs non-overlapping



window-based attention for image restoration. SwinIR [22]
used the local and shifted window scheme to sequentially
perform the within- and cross-window attention for image
restoration. In addition, to avoid intensive computations
in the space domain, Restormer [56] employed the chan-
nel attention to substitute the original spatial attention, so
that the attention is performed in a low dimension. Al-
though these methods have achieved both effectiveness and
efficiency, they restrict the attention within a local range,
which may not fully explore the potential of Transformers
in capturing global dependency. Meanwhile, their compu-
tations still are non-trivial, especially in mobile scenarios,
e.g., SwinIR [22] involves ∼373G FLOPs on 128 × 128
images.

Overall, the differences between our CODE and exist-
ing methods could be summarized as follows. On the one
hand, we design an efficient image restoration Transformer
CODE to obtain the pixel-wise global dependency, through
superpixel-wise dependency computation and transforma-
tion. On the other hand, our CODE consists of two neural
blocks, i.e., CA and DA, which capture the superpixel-wise
global dependency and distribute the globality in superpix-
els into pixels in an efficient way, respectively.

3. Method
In this section, we first introduce the overall architecture

and then elaborate on the two neural blocks, i.e., condensed
attention(CA) and dual adaptive neural block (DA).

3.1. Overall Architecture

As shown in the Fig. 2, our network is the hierarchi-
cal multi-scale architecture, which enjoys the advantage of
fewer computation costs than non-hierarchical or single-
scale ones. For a given degraded image, we first use a 3× 3
convolution to extract the shallow features F0 and then em-
ploy an encoder-decoder with four scales to extract the deep
feature F ′

0. Each scale in the encoder-decoder consists of
multiple Transformer blocks and each Transformer block is
the sequential combination of CA and DA.

At the beginning of each scale in the encoder (except for
the first scale), we reduce the feature resolution to half while
expanding the feature channel to double (denoted as ↓) and
then extract the deep feature through multiple Transformer
blocks Ti(·), i.e.,

Fi =

{
Ti(F0), i = 1,
Ti(Fi−1 ↓), i = 2, 3, 4,

(1)

where Fi−1 and Fi are the input and output features of the
i-th scale in the encoder. As for the decoder, we double
the feature resolution while halving the feature channel (de-
noted as ↑) at the beginning of each scale (except for the last
scale). Meanwhile, a skip connection of the corresponding

scale from the encoder is introduced to fuse the hierarchi-
cal multi-scale features, and follows multiple Transformer
blocks to refine them, i.e.,

F ′
i−1 =

{
T ′
i (Fi), i = 4,

T ′
i (F

′
i ↑ +Fi), i = 3, 2, 1,

(2)

where F ′
i and F ′

i−1 are the input and output features of i-th
scale in the decoder, and Fi is the feature from the encoder,
which is the same scale as F ′

i .
After the encoder-decoder, we fuse the deep feature F ′

0

with the shallow feature F0, and refine them through several
Transformer blocks T ′′

r to obtain the final feature Fr, i.e.,

Fr = T ′′
r (F

′
0 + F0). (3)

Finally, we use a 3× 3 convolution to fuse Fr as a residual
image, which would be added to the degraded image for
obtaining the restored image.

3.2. Condensed Attention Neural Block

To capture the global dependency at the superpixel level,
we propose a three-step paradigm of feature aggregation,
attention computation, and feature recovery, which is im-
plemented by our CA. As shown in Fig. 2, CA first aggre-
gates the channel and spatial features into the condensed
ones, i.e., superpixel features. Then, as the features involve
two dimensions of channel and space, CA sequentially con-
ducts the channel and spatial attentions on them, so that the
global dependency could be fully captured along the two
dimensions. Finally, CA recovers the space and channel di-
mensions so that the output superpixel features’ resolution
and channels are consistent with the input pixel features. In
this section, we first introduce the feature aggregation and
recovery, and then detail the channel and spatial attentions.

Feature Aggregation and Recovery. Motivated by the
observation that there exists a lot of redundant features in
both the channel and space domains, we reduce them to ob-
tain the superpixel features before attention computation,
while recovering them after that to achieve better efficiency.
However, the biggest challenge of this paradigm is how to
properly reduce the redundant features while retaining the
informative ones as far as possible and recover the feature
distribution in the channel and space domains after attention
computation. To achieve this end, CA performs the feature
aggregation and recovery in an adaptive fashion, i.e., adap-
tively learning to aggregate the informative features, and re-
cover the feature distribution through the network.

Given the input features F ∈ RH×W×C , where H ×W
denotes the spatial resolution and C is the number of chan-
nels, CA aggregates the features along the channel di-
mension to obtain the channel-condensed features F̃ ∈
RH×W×C′

, i.e.,
F̃ = ΦCA(F ), (4)
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Figure 2. The overall architecture of our proposed efficient Transformer for image restoration. The key components are shown in (b)
Transformer block which consists of (c) condensed attention neural block (CA) and (d) dual adaptive neural block (DA).

where C ′ = C/rc and rc is the aggregation factor. For gen-
erality, CA introduces a point-wise convolution as ΦCA(·)
to adaptively aggregate the informative features in channel
domain. Afterward, CA aggregates the features along the
spatial dimensions to obtain the space-condensed features
F̂ ∈ RH′×W ′×C′′

, i.e.,

F̂ = ΨSA(F̃ ), (5)

where H ′ = H/S, W ′ = W/S and C ′′ = C ′rs. In brief,
ΨSA(·) aggregates the spatial features with the patch size of
S×S×1 into the condensed features with that of 1×1×rs,
thus obtaining the F̂ of size H/S ×W/S ×C ′rs. For gen-
erality, CA introduces a channel-wise group convolution,
whose input and output channels are C ′ and C ′′, kennel size
is S × S, and stride is S, to implement it. In this way, the
spatial features could be aggregated while being sufficiently
preserved in the expanded channels. As a result, the super-
pixel features in the channel and space domains could be
obtained, and used to capture the superpixel-wise depen-
dency in a lower dimensional space.

To recover the feature distribution in channel and space
domains after attention, CA employs the reverse process of
the aggregation. To be specific, it recovers the spatial fea-
tures first and then the channel features, i.e.,

F = ΦCR(ΨSR(Θ(F̂ ))), (6)

where Θ(F̂ ) is the features after attention calculation,
ΨSR(·) and ΦCR(·) are the recovery functions of spatial
and channel features, respectively. To recover the spatial
features from size H ′ ×W ′ ×C ′′ to H ×W ×C ′, ΨSR(·)

employs a 1 × 1 channel-wise group convolution, whose
input and output channels are C ′′ and C ′S2, followed by a
pixel-shuffle [42] to recover the spatial resolution of H×W .
To recover the feature channels, ΦCR(·) uses a point-wise
convolution with the input and output channel of C ′ and
C. As a result, the final features F could be obtained while
keeping the spatial resolution and the channel number iden-
tical to the input features F .

Channel and Spatial Attention. To fully capture the
superpixel-wise global dependency along the two dimen-
sions, we sequentially perform the channel and spatial at-
tentions on the superpixel features F̂ ∈ RH′×W ′×C′′

. In
brief, channel attention captures the dependency along the
channel dimension, which is followed by the spatial atten-
tion to capture the dependency along the space dimension.
As a result, the global dependency could be fully captured
in both the channel and space domains.

To improve the efficiency of our attention block, we in-
troduce a novel channel-wise slice and merge mechanism
before and after the multi-head attention calculation, re-
spectively, and the overall pipeline could be formulated as,

{Xj
i }

3n
j=1 = Φproj

i (F̂i), i = 1, · · · , C ′′, (7)

{{Y j
i }

n
j=1}C

′′

i=1 = Θ({{Xj
i }

3n
j=1}C

′′

i=1), (8)

Zi = Ψfuse
i ({Y j

i }
n
j=1), i = 1, · · · , C ′′, (9)

where Φproj
i (·) projects the ith channel feature F̂i into

3n channel slices {Xj
i }3nj=1, and thus obtaining the over-



all channel features {{Xj
i }3nj=1}C

′′

i=1, where the number of
channels is 3n × C ′′. Ψfuse

i (·) merges the channel slices
into one channel after attention computation. Both Φproj

i (·)
and Ψfuse

i (·) are implemented by group convolutions. Θ(·)
is the multi-head attention calculation, which first uniformly
divides the sliced channels into the query (Q), key (K), value
(V), i.e.,

{{Qj
i}nj=1, {K

j
i }nj=1, {V

j
i }nj=1}C

′′

i=1 = {{Xj
i }3nj=1}C

′′

i=1, (10)

and then respectively shuffles them, so that the sliced chan-
nels from the same channel could be divided into different
attention heads, i.e.,

{{Qj
i}C

′′

i=1, {K
j
i }C

′′

i=1, {V
j
i }C

′′

i=1}nj=1 = {{Qj
i}nj=1, {K

j
i }nj=1, {V

j
i }nj=1}C

′′

i=1. (11)

Next, we calculate the attention with the head number
greater than or equal to n. At each head, we calculate the
attention through the following formulation,

F = Softmax(QKT /α)V, (12)

where α is the learnable scaling factor, and here we ignore
the superscripts and subscripts for simplicity. Finally, we
concatenate the results from multiple heads and unshuffle
them to obtain the attention features {{Y j

i }nj=1}C
′′

i=1.
Both the channel and spatial attentions follow the above

pipeline with the only difference in Eq. (12), where the for-
mer calculates attention along the channel dimension while
the latter does that along the spatial dimension. Benefiting
from the pipeline, the efficiency and effectiveness of our
method could be further enhanced, as it expands more chan-
nel slices for attention calculation while introducing fewer
parameters and computations.

3.3. Dual Adaptive Neural Block

Thanks to the three-step paradigm, CA has captured the
superpixel-wise global dependency and each superpixel fea-
ture embraces rich global information. However, obtaining
such a global dependency at the superpixel level is far from
our final goal of the pixel-wise global dependency. As a re-
sult, pixel-wise restoration can depend on the global infor-
mation from superpixels. To solve this problem, we intro-
duce a dual adaptive neural block (DA) to encapsulate the
superpixel-wise globality into the pixel-wise global depen-
dency, through a novel dual-way structure and a dynamic
weighting fashion. To be specific, DA first employs a point-
wise convolution Pmix(·) to mix the superpixel features,
i.e.,

F̃ = Pmix(F ). (13)

Then, as each superpixel contains global information, DA
introduces a dual-way structure to capture the dependency
of each pixel on superpixels from a short range, while ex-
tracting the pixel’s features from superpixels’ ones in a local

region. After that, we let the former act on the latter in a dy-
namic weighting fashion, i.e.,

{X̃1
i , X̃

2
i } = ΦDW

i (F̃i), (14)

Ỹi = σ(X̃1
i )⊙ ϕ(X̃2

i ) (15)

where i = 1, · · · , C is the index of channels. In brief, ΦDW
i

extracts two channel slices {X̃1
i , X̃

2
i } from each channel

F̃i, which is implemented by a group convolution with the
kernel size of 7 × 7. σ(·) and ϕ(·) are Sigmoid and GELU
activations, which convert the dependency to the weights
and filter the extracted pixel features, respectively. Finally,
CA employs a point-wise convolution Pfus(·) to refine the
features with the globality, i.e.,

Z̃ = Pfus(Ỹ ). (16)

With the above designs, DA could capture the pixel-wise
global dependency by transferring the global dependency as
well as global features from the superpixels into each pixel,
while only introducing a few computations and parameters.

4. Experiment
In this section, we evaluate CODE on four image restora-

tion tasks, i.e., grayscale and color image denoising, JPEG
compression artifact reduction, and motion deblurring. In
the following, we first introduce the experimental settings
and then show the quantitative and qualitative results. Fi-
nally, we conduct analysis experiments to demonstrate the
efficient and effective designs in CODE. Due to the space
limitations, more experiments and analyses are presented in
the supplementary material.

4.1. Experiment Settings

Implementation Details. We use the same settings for
all experiments. To be specific, the channel numbers and
Transformer blocks are [64, 128, 256, 512] and [4, 6, 6,
2] from the first scale to the fourth scale in the encoder-
decoder, respectively. After that, four Transformer blocks
are used to fuse and refine the deep and shallow features.
In the aggregation of CA, rc is 4, rs and S respectively are
[32, 16, 8, 4] and [16, 8, 4, 2] from the first to fourth scales.
Besides, n is 4 in the attention calculations of CA.

Training details: The experiments are conducted in Py-
Torch [37] framework with NVIDIA GeForce RTX 3090
GPUs. For training, we use the Adam optimizer [16] with
β1 = 0.9 and β2 = 0.999. The learning rate is initialized
to 2e−4 and gradually decreased to 1e−6 through the cosine
annealing strategy [29]. We train our model with the batch
size of 16 and the patch size of 128 for 1000K iterations.
Meanwhile, we adopt horizontal and vertical flips, and 90◦,
180◦, and 270◦ rotations for augmentation. In experiments,
all FLOPs are computed on 128× 128 images.



Table 1. Quantitative results of grayscale image denoising on benchmark datasets. The best and second-best results are colored by red
and blue, respectively, and “Ours*” denotes our method with self-ensemble. σ refers to the noise level, of which a larger value denotes a
higher noise level.

Method DnCNN [62] IRCNN [63] FFDNet [64] NLRN [24] FOCNet [14] RNAN [66] MWCNN [26] DRUNet [60] SwinIR [22] Ours Ours*
#Params 0.56M 0.19M 0.49M 0.34M - 8.96M 16.15M 32.64M 11.43M 12.18M 12.18M
FLOPs 18.22G 6.09G 3.98G 1382.08G - 248.13G 28.95G 71.71G(+319%) 373.02G(+1662%) 22.44G 179.52G

Set12
σ = 15 32.86 32.76 32.75 33.16 33.07 - 33.15 33.25 33.36 33.33 33.36
σ = 25 30.44 30.37 30.43 30.80 30.73 - 30.79 30.94 31.01 31.01 31.05
σ = 50 27.18 27.12 27.32 27.64 27.68 27.70 27.74 27.90 27.91 27.93 27.97

BSD68
σ = 15 31.73 31.63 31.63 31.88 31.83 - 31.86 31.91 31.97 31.96 31.98
σ = 25 29.23 29.15 29.19 29.41 29.38 - 29.41 29.48 29.50 29.51 29.53
σ = 50 26.23 26.19 26.29 26.47 26.50 26.48 26.53 26.59 26.58 26.58 26.60

Noisy DnCNN FFDNet DRUNet SwinIR CODE (ours) GT

Figure 3. Qualitative comparisons of grayscale image denoising (noise level 50) on the image “House” from Set12.

4.2. Grayscale and Color Image Denoising

In this section, we evaluate our CODE on both the
grayscale and color image denoising w.r.t. the additive
white Gaussian noise level of σ = 15, 25, 50. To be spe-
cific, for color image denoising, we train CODE on the
combination of DIV2K [1], Flickr2k [46], BSD400 [2], and
WED [31], which respectively contain 800, 2650, 400 and
4774 images, and test it on CBSD68 [33], Kodak24 [8], and
McMaster [65]. For grayscale image denoising, we train
CODE on the grayscale version of the above training com-
bination and test it on Set12 [62] and BSD68 [33].

We compare our CODE with 9 representative grayscale
image denoising methods and 10 color image denoising
methods, where six methods could be simultaneously eval-
uated on grayscale and color denoising, i.e., DnCNN [62],
IRCNN [63], FFDNet [64], RNAN [66], DRUNet [60] and
SwinIR [22]. Besides, three methods for grayscale image
denoising are NLRN [24], FOCNet [14] and MWCNN [26],
and four methods for color image denoising are DSNet [38],
BRDNet [45], RDN [67] and IPT [3].

Tab. 1 shows the quantitative results of grayscale image
denoising. In addition to PSNR, we also show the param-
eters and FLOPs of our and compared methods for eval-
uating the complexities. From the Tab. 1, one could ob-
serve that our method achieves the best balance between
efficiency and effectiveness. To be specific, our method
embraces significantly fewer FLOPs or parameters while
obtaining comparable performance compared with other
state-of-the-art methods. For example, our method obtains
competitive performance compared to SwinIR which has
∼17× FLOPs than ours, and better performance compared
to DRUNet which has ∼3× parameters than ours. More-

over, our method is 0.02 and 0.01 higher in PSNR than
SwinIR on Set12 and BSD68 when σ = 50, 25, respec-
tively. To further investigate the potential of our method, we
increase its FLOPs by introducing the self-ensemble strat-
egy [23], since it increases 8× FLOPs without modifying
our method. With this strategy, our method could obtain
the best performance. Specifically, our method outperforms
SwinIR with 0.04dB in PSNR, while still being less than
half of its FLOPs.

Tab. 2 shows the quantitative results of color image de-
noising. As shown in the table, our method obtains com-
parable even better performance while embracing much
higher efficiency. For example, our method with self-
ensemble outperforms SwinIR with 0.01dB∼0.07dB in
PSNR on Kodak24 while being less than half of its FLOPs,
and outperforms DRUNet with at most 0.05dB, 0.04dB,
and 0.03dB in PSNR on CBSD68, Kodak24, and McMas-
ter, respectively, while having nearly a third of its param-
eters. Note that although our method has inferior perfor-
mance than SwinIR on CBSD68 and McMaster, it acquires
the second-best performance with the highest efficiency.

Fig. 3 and Fig. 4 respectively show the qualitative results
on grayscale and color image denoising. From the figures,
one could observe that DnCNN and FFDNet have residual
noises and artifacts, DRUNet and SwinIR obtain the over-
smoothed and distorted results. In contrast, our method re-
covers the structures better and details finer, thus obtaining
clearer restorations.

4.3. Motion Deblurring

To evaluate our method on motion deblurring, we train
it on GoPro dataset [34] which consists of 2103 clean and



Table 2. Quantitative results of color image denoising on benchmark datasets. The best and second-best results are colored by red and
blue, respectively, and “Ours*” denotes our method with self-ensemble. σ refers to the noise level, of which a larger value denotes a higher
noise level.

Method DnCNN [62] IRCNN [63] FFDNet [64] DSNet [38] BRDNet [45] RNAN [66] RDN [67] IPT [3] DRUNet [60] SwinIR [22] Ours Ours*
#Params 0.56M 0.19M 0.85M - - 8.96M 22.12M 67.17M 32.64M 11.43M 12.18M 12.18M
FLOPs 18.30G 6.17G 7.00G - - 248.21G 725.11G 248.40G 71.79G(+319%) 373.02G(+1656%) 22.52G 180.16G

CBSD68
σ = 15 33.90 33.86 33.87 33.91 34.10 - - - 34.30 34.42 34.33 34.35
σ = 25 31.24 31.16 31.21 31.28 31.43 - - - 31.69 31.78 31.69 31.71
σ = 50 27.95 27.86 27.96 28.05 28.16 28.27 28.31 28.39 28.51 28.56 28.47 28.50

Kodak24
σ = 15 34.60 34.69 34.63 34.63 34.88 - - - 35.31 35.34 35.32 35.35
σ = 25 32.14 32.18 32.13 32.16 32.41 - - - 32.89 32.89 32.88 32.91
σ = 50 28.95 28.93 28.98 29.05 29.22 29.58 29.66 29.64 29.86 29.79 29.82 29.86

McMaster
σ = 15 33.45 34.58 34.66 34.67 35.08 - - - 35.40 35.61 35.38 35.43
σ = 25 31.52 32.18 32.35 32.40 32.75 - - - 33.14 33.20 33.11 33.16
σ = 50 28.62 28.91 29.18 29.28 29.52 29.72 - 29.98 30.08 30.22 30.03 30.08

Noisy DnCNN FFDNet DRUNet SwinIR CODE (ours) GT

Figure 4. Qualitative comparisons of color image denoising (noise level 50) on the image “351093” from CBSD68.

Table 3. Quantitative results of motion deblurring on the bench-
mark datasets of GoPro and HIDE. The best and second-best re-
sults are colored by red and blue, respectively.

Method #Params FLOPs GoPro HIDE

DGAN [17] - 16.96G 28.70 24.51
DeepDeblur [34] 303.60M 44.00G 29.08 25.73
RNNDeblur [59] - - 29.19 -
DGANv2 [18] 7.83M 10.28G 29.55 26.61
SRN [44] 3.76M 35.87G 30.26 28.36
HAMD [41] - - - 28.89
DSD [9] 2.84M - 30.90 29.11
DBGAN [61] 11.59M 379.92G 31.10 28.94
MT-RNN [36] 2.64M 13.72G 31.15 29.15
DMPHN [58] 86.80M - 31.20 29.09
EBMD [15] - - 31.79 -
SAPHNet [43] 23.00M - 31.85 29.98
Ours 12.18M 22.52G 31.94 29.67

blurry image pairs. For evaluation, we employ two widely
used datasets, i.e., GoPro testset and HIDE [41], which con-
sist of 1111 and 2025 clean and blurry image pairs with
the size of 1280 × 720, respectively. For comparisons,
we choose 12 representative methods that have compara-
ble complexity as our method, i.e., DGAN [17], Deep-
Deblur [34], RNNDeblur [59], DGANv2 [18], SRN [44],
HAMD [41], DSD [9], DBGAN [61], MT-RNN [36], DM-
PHN [58], EBMD [15], and SAPHNet [43].

Tab. 3 shows the quantitative results, from which one
could observe that our method achieves comparable or even
better performance while having fewer parameters and/or
FLOPs. For instance, our network obtains the PSNR of
31.94dB and 29.67dB on GoPro and HIDE, which respec-

tively are 0.74dB and 0.58dB higher in PSNR than DMPHN
that has more than 7× ours parameters. Although our PSNR
is lower than SAPHNet on HIDE, our method obtains bet-
ter results on GoPro with only nearly half of its parameters,
which could also demonstrate the efficiency and effective-
ness of our method.

4.4. JPEG Compression Artifact Reduction

To evaluate our method on JPEG compression artifact
reduction, we train it on the same training datasets as color
image denoising, by applying JPEG compression algorithm
to the images with the quality factor of 10, 20, 30, and 40.
For evaluations, we employ two widely used datasets, i.e.,
Classic5 [7] and LIVE1 [40], which consist of five classic
grayscale images and 29 natural color images, respectively.
For comparisons, seven representative methods are intro-
duced including ARCNN [4], DnCNN-3 [62], QGAC [6],
RNAN [66], RDN [67], DRUNet [60], and SwinIR [22].
Following conventions, we calculate the quantitative results
of these methods on the Y channel of YCbCr color space.

The results are shown in Tab. 4, from which one could
observe that our method obtains the second-best results in
most cases, and achieves the best tradeoff between effi-
ciency and effectiveness. For example, our method outper-
forms DRUNet with at most 0.02dB/0.0003 and 0dB/0.0003
in PSNR/SSIM on Classic5 and LIVE1, respectively, while
having its ∼37% parameters and ∼31% FLOPs. Note that
although our method obtains inferior results than SwinIR,
our method achieves the second-best results through much
fewer FLOPs and/or parameters than SOTAs, i.e., SwinIR,
DRUNet, and RDN.



Table 4. Quantitative results of JPEG compression artifact reduction on benchmark datasets. The best and second-best results are
colored by red and blue, respectively. q refers to the compression level, of which a smaller value denotes a higher compression level.

Method ARCNN [4] DnCNN-3 [62] QGAC [6] RNAN [66] RDN [67] DRUNet [60] SwinIR [22] Ours
#Params 0.11M 0.56M - 8.96M 22.12M 32.64M 11.43M 12.18M
FLOPs 3.49G 18.22G - 248.13G 724.92G 71.71G(+319%) 373.02G(+1656%) 22.44G

Classic5

q = 10 29.03/0.7929 29.40/0.8026 29.84/0.8370 29.96/0.8178 30.00/0.8188 30.16/0.8234 30.27/0.8249 30.13/0.8225
q = 20 31.15/0.8517 31.63/0.8610 31.98/0.8850 32.11/0.8693 32.15/0.8699 32.39/0.8734 32.52/0.8748 32.36/0.8731
q = 30 32.51/0.8806 32.91/0.8861 33.22/0.9070 33.38/0.8924 33.43/0.8930 33.59/0.8949 33.73/0.8961 33.61/0.8951
q = 40 33.32/0.8953 33.77/0.9003 - 34.27/0.9061 34.27/0.9061 34.41/0.9075 34.52/0.9082 34.43/0.9078

LIVE1

q = 10 28.96/0.8076 29.19/0.8123 29.53/0.8400 29.63/0.8239 29.67/0.8247 29.79/0.8278 29.86/0.8287 29.79/0.8281
q = 20 31.29/0.8733 31.59/0.8802 31.86/0.9010 32.03/0.8877 32.07/0.8882 32.17/0.8899 32.25/0.8909 32.16/0.8901
q = 30 32.67/0.9043 32.98/0.9090 33.23/0.9250 33.45/0.9149 33.51/0.9153 33.59/0.9166 33.69/0.9174 33.59/0.9168
q = 40 33.63/0.9198 33.96/0.9247 - 34.47/0.9299 34.51/0.9302 34.58/0.9312 34.67/0.9317 34.58/0.9313

4.5. Analysis Experiments

To investigate the efficiency and effectiveness of our
CODE, we conduct analysis experiments on the two neural
blocks, i.e., CA and DA, and the factor n in the channel-
wise slice and merge mechanism. Due to space limitations,
additional experiments would be presented in the supple-
mentary material.
Table 5. Analysis experiments on Set12 with the noise level of
50. Note that Swin Attention has the same parameters and FLOPs
as Local Attention, because the shift operation in Swin Attention
consumes almost no parameters and computations.

Ablation #Params FLOPs PSNR SSIM

Local Attention [49] 14.05M 40.48G 27.90 0.8077
Swin Attention [22] 14.05M 40.48G 27.90 0.8079

Channel Attention [56] 14.05M 50.58G 27.91 0.8060
CA (ours) 12.18M 22.44G 27.93 0.8083

Vanilla FFN [22] 11.44M 17.93G 27.74 0.8001
DA (ours) 12.18M 22.44G 27.93 0.8083

Table 6. Ablation study for the factor n in the channel-wise slice
and merge mechanism of CA.

Factor #Params FLOPs PSNR SSIM

n = 2 11.61M 22.37G 27.90 0.8072
n = 4 12.18M 22.44G 27.93 0.8083
n = 8 13.33M 22.59G 27.92 0.8079

For CA, we replace it with three existing effective at-
tention mechanisms, i.e., local attention [49], shift window
attention [22], and channel attention [56]. The results are
shown in Tab. 5. From the table, one could see that CA ob-
tains the best PSNR and SSIM values with fewer parameters
and FLOPs compared with the existing attentions, which
demonstrates not only its efficiency and effectiveness, but
also the significance of our proposed paradigms for captur-
ing the superpixel-wise global dependency. To be specific,
compared with the channel attention, CA obtains 0.02dB
and 0.0023 higher values in PSNR and SSIM while 1.87M
and 28.14G lower values in parameters and FLOPs, respec-
tively. Compared to the swin and the local attentions, CA
obtains 0.03dB/0.03dB and 0.0004/0.0006 gains in PSNR

and SSIM, respectively, with 1.87M and 18.04G fewer pa-
rameters and FLOPs.

For DA, we compare it with the vanilla FFN [22] in an
MLP fashion and show the results in Tab. 5. From the ta-
ble, one could see that DA performs significantly better than
the vanilla FFN with slightly more parameters and FLOPs,
because the vanilla FFN cannot effectively distribute the
superpixel-wise globality into pixels for better pixel-wise
restoration. Namely, DA could encapsulate the globality
from superpixels into pixels in an efficient and effective
way, and thus better cooperating with our CA.

As for the influences of the factor n in the channel-wise
slice and merge mechanism, we change it from 2, 4, to 8,
and show the results in Tab. 6. According to the results,
a larger n could enhance the performance, as the channel
slices increase the flexibility of features at each channel.
Meanwhile, an overlarge n cannot obtain the best results,
as too many slices cause lots of feature redundancies, mak-
ing the attention hard to attend informative features. In our
method, we experimentally find n = 4 is a suitable value.

5. Conclusions
In this paper, we propose a novel efficient image restora-

tion Transformer that obtains the pixel-wise global depen-
dency by first capturing the global dependency at the super-
pixel level, and then transferring the globality from super-
pixels to pixels. To achieve this end, two neural blocks are
proposed. In brief, CA implements a three-step paradigm
to efficiently capture the global dependency at the super-
pixel level. DA takes a novel dual-way structure to adap-
tively encapsulate the globality from superpixels into pixels.
Thanks to the two complementary neural blocks, our CODE
enjoys the advantage of capturing the pixel-wise global de-
pendency, while embracing high computational efficiency.
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