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Abstract

In this paper, we study a novel and widely existing prob-
lem in graph matching (GM), namely, Bi-level Noisy Cor-
respondence (BNC), which refers to node-level noisy cor-
respondence (NNC) and edge-level noisy correspondence
(ENC). In brief, on the one hand, due to the poor recog-
nizability and viewpoint differences between images, it is
inevitable to inaccurately annotate some keypoints with off-
set and confusion, leading to the mismatch between two
associated nodes, i.e., NNC. On the other hand, the noisy
node-to-node correspondence will further contaminate the
edge-to-edge correspondence, thus leading to ENC. For the
BNC challenge, we propose a novel method termed Con-
trastive Matching with Momentum Distillation. Specifically,
the proposed method is with a robust quadratic contrastive
loss which enjoys the following merits: i) better exploring
the node-to-node and edge-to-edge correlations through a
GM customized quadratic contrastive learning paradigm;
ii) adaptively penalizing the noisy assignments based on the
confidence estimated by the momentum teacher. Extensive
experiments on three real-world datasets show the robust-
ness of our model compared with 12 competitive baselines.

1. Introduction

Graph Matching (GM) [9, 50] aims to establish corre-
spondences between keypoints of different graphs, which
plays an important role in various applications such as ob-
ject tracking [37, 47], scene graph discovery [5], Simulta-
neous Localization and Mapping [4], and Structure-from-
Motion [33]. The key of GM is to explore and exploit
the bi-level affinities between graphs, i.e., node-to-node
(linear) and edge-to-edge (quadratic) affinity. For this
purpose, existing methods have been devoted to integrat-
ing the bi-level information by designing advanced graph
neural networks [33, 39, 40, 48] or differentiable quadratic
loss [13, 32]. Based on the encoded high-order geometrical
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Figure 1. An illustrative example of Bi-level Noisy Correspon-
dence (BNC). The green and red dots denote the correctly and
wrongly annotated keypoints. The green and red squares denote
the true and false assignments. (a) Keypoint A3 and B1 are
wrongly annotated due to the occlusion caused by the view-point
difference, and the low recognizability, respectively. (b) Given
the keypoints, GM methods construct the graph structure for fur-
ther matching. The matching procedure will inevitably encounter
BNC, which refers to Node-level Noisy Correspondence (NNC)
and Edge-level Noisy Correspondence (ENC). Specifically, NNC
denotes the false matching between nodes, e.g., nodes A1 and B1

are wrongly matched. ENC is accompanied with NNC as the edge
weight is derived from the feature and position of nodes. Once the
node is imperfectly annotated, the edges derived from it and the
edges derived from its counterpart will be wrongly associated. For
instance, the edge between A1 and A5 (marked as A15) is wrongly
associated with that between B1 and B5 (marked as B15).

information, graph matching achieves promising results in
correspondence estimation.

However, the success of existing GM methods highly de-
pends on an implicit assumption, i.e., the annotated key-
point pairs are correctly associated. Unfortunately, in prac-
tice, the manual annotation process is susceptible to poor
recognizability [3] and viewpoint differences between im-
ages [26], which probably results in offset and even false
keypoint annotations (Please refer to Fig. 4 for examples).
As shown in Fig. 1, the inaccurate annotations will in-
evitably lead to Bi-level Noisy Correspondence (BNC)
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problem. Specifically, BNC refers to node-level noisy cor-
respondence (NNC) and accompanied edge-level noisy cor-
respondence (ENC). As shown in Fig. 3a, BNC leads to
serious performance degradation due to two potential is-
sues. On the one hand, BNC would hinder both node-level
and edge-level representation learning. Specifically, repre-
sentation learning on graphs requires information propaga-
tion and aggregation between the nodes and edges, there-
fore, BNC will cause accumulative errors and mislead the
model optimization. On the other hand, GM is subject to
one-to-one mapping constraints, i.e., each keypoint in the
first graph must have a unique correspondence in the sec-
ond graph. Hence, “a slight move in one part may affect the
situation as a whole”, i.e., one single noisy correspondence
pair might result in global alignment failure and even affect
the optimization of correctly annotated pairs.

To the best of our knowledge, such an essential prob-
lem has not been touched so far and it is quite challeng-
ing to solve it due to the following two reasons: i) without
prior engineering like verification labels [21] for noisy cor-
respondence, it is nearly impossible to pre-process them be-
fore training, i.e., correctly distinguish and discard the noisy
correspondence in advance. Hence, it is highly expected
to develop a robust matching method. ii) however, GM is
not a simple one-to-many optimization problem (e.g., clas-
sification) but a many-to-many combinatorial optimization
problem. One cannot solve the BNC challenge by trivially
resorting to label noise learning methods [17,19,22] as they
only enjoy robustness on one-to-many classification tasks.

To explore an effective solution to this challenge, we
propose a novel method termed COntrastive Matching with
MOmentum distillatioN (COMMON). Specifically, COM-
MON is equipped with a robust quadratic contrastive loss
that incorporates both linear and quadratic geometrical in-
formation into the contrastive learning paradigm [6,15,42].
More specifically, this study is motivated by [27] that the
vanilla contrastive loss is equivalent to the linear assign-
ment from the combinatorial optimization theory. In other
words, the quadratic structure information could be incor-
porated into contrastive learning. Based on this motivation,
we endow the contrastive loss with quadratic information
through two novel graph consistency regularizers. To en-
hance the robustness against BNC, the proposed loss adap-
tively penalizes the noisy correspondence through a novel
momentum distillation strategy based on the memorization
effect of deep neural networks [1, 45], i.e., deep networks
apt to learn the simple patterns before fitting the noise. Mo-
tivated by this empirical observation, we keep a momen-
tum version of the GM model by taking the moving average
of its parameters during training. The momentum teacher
model could generate high-quality pseudo-targets as addi-
tional supervision on the quadratic contrastive loss without
resorting to extra verification labels. With bi-level distilla-

tion on both node and edge alignment, the proposed robust
quadratic contrastive loss effectively mitigates the negative
affect of BNC.

The main contributions of this work are:

• We reveal a new challenge for graph matching, termed
bi-level noisy correspondence (BNC). BNC refers to
the noisy correspondence on both node and edge lev-
els, which would lead to serious performance degrada-
tion.

• To tackle the BNC challenge, we propose a robust
quadratic contrastive learning loss that utilizes a novel
momentum distillation strategy to rebalance the noisy
assignment. The proposed contrastive loss explores the
quadratic information through two simple graph con-
sistency regularizers.

• Extensive experiments on real-world data verify the
effectiveness of our method against noisy correspon-
dence. On Pascal VOC, Spair-71k and Willow, we
achieve absolute improvements of 1.6%, 1.4%, and
1.4% compared to the state-of-the-art methods.

2. Related work
In this section, we briefly introduce some recent devel-

opments in deep graph matching and contrastive learning.

2.1. Deep Graph Matching

Deep GM [11, 50] aims at aligning the associated key-
points from different graphs according to node-to-node and
edge-to-edge correlations. To achieve better matching ef-
fects, existing methods mainly focus on utilizing the high-
order information in the graph structures. According to the
choice of exploiting high-order information, most existing
methods could be divided into the following two groups. i)
network-designed based methods [18, 24, 43, 48] which im-
plicitly aggregate the high-order information through GM-
customized networks. For instance, PCA [39] employs
graph convolutional networks to aggregate inner-graph and
cross-graph structure information, and NGM [41] proposes
a matching-aware graph convolution scheme with Sinkhorn
iteration [10]. ii) loss-designed based methods [13, 25, 32]
that explicitly learn the high-order information through dif-
ferent differentiable quadratic loss or optimization strate-
gies. For instance, QCDGM [13] modifies the Frank-
Wolfe algorithm into a differentiable optimization scheme
for quadratic constraint, and BBGM [32] proposes a differ-
entiable combinatorial solver for quadratic assignment.

Although deep GM has achieved promising perfor-
mance, almost all existing methods assume that the node-
to-node and edge-to-edge correspondence is faultless and
correctly associated. However, in practice, the assumption



is daunting and nearly impossible to satisfy as aforemen-
tioned in Introduction, i.e., BNC is inevitable due to poor
annotations. Note that, although some efforts have been de-
voted to achieving robust GM, these methods mainly fo-
cus on the robustness against outliers [29, 32, 33, 38] and
adversarial attack [31], which is remarkably different from
the revealed BNC challenge. To achieve robustness against
BNC, this study proposes a momentum distillation strategy
that rebalances the matching loss in a data-driven way. To
the best of our knowledge, this study could be the first work
on BNC-robust GM.

2.2. Contrastive Learning

As one of the most effective representation learning
paradigms, contrastive learning attempts to align represen-
tations of the data from different views [14,27,28,44,46] by
maximizing the similarity between positive pairs and mini-
mizing that of negative pairs. The major difference between
these works lies in the strategy of constructing positive and
negative pairs. For example, SimCLR [6] constructs posi-
tive samples through data augmentation and takes different
images in the mini-batch as negatives. Moco [15] proposes
a memory bank module that stores a large number of nega-
tives to increase the contrasting effect.

The differences between this study and existing works
are two-fold. On the one hand, most existing methods as-
sume that positive pairs are closely associated, which is
hard to satisfy in practical applications. In contrast, our
momentum distillation solution improves the robustness of
contrastive learning against imperfect correspondence. On
the other hand, as pointed by [27], almost all contrastive
methods only consider instance discrimination problem,
i.e., measuring the alignment between individual pairs of
objects while ignoring the high-order correlation among
these objects. To tackle this problem, we propose a novel
quadratic contrastive learning loss that not only aligns the
objects (node) but also aligns the correlation between ob-
jects (edge) inspired by [27]. Different from the quadratic
loss proposed in [27], our quadratic term is implemented
with the mean square error instead of singular value decom-
position. In addition, our quadratic term exploits the extra
cross-graph quadratic information, whereas [27] does not.
What is more distinct, our loss is designed to achieve the
robustness against the BNC problem, where [27] does not.
Experiments demonstrate that the proposed quadratic loss
improves the performance of contrastive learning.

3. Method

In this section, we first introduce the problem defini-
tion (Section 3.1). Then we delineate how the proposed
quadratic contrastive learning loss better explores the node-
to-node and edge-to-edge correlations (Section 3.2), and

how the designed loss adaptively penalizes the noisy cor-
respondence through momentum distillation (Section 3.3).

3.1. Problem Definition

For two images with n and m keypoints each (n ≤ m),
graph matching aims to build the node-to-node correspon-
dence between two given graphs GA and GB built based on
these keypoints. Let VA ∈ Rn×d and VB ∈ Rm×d de-
note feature matrix of keypoints in GA and GB , respectively,
where each row of VA and VB is a feature vector of a key-
point. FA = VAV

>
A ∈ Rn×n,FB = VBV

>
B ∈ Rm×m

indicate the adjacency matrices which encode the edge in-
formation in graphs GA and GB . Formally, graph matching
seeks to solve,

minLY (Ygt,Y) , (1)

where LY measures the discrepancy between the ground-
truth assignment Ygt and the matching result Y, e.g., cross-
entropy loss [31, 41] and hamming distance loss [23, 32].
The matching result Y is generally obtained by,

argmax
Y

tr
(
Y>FAYFB

)︸ ︷︷ ︸
Quadratic edge affinity

+ tr
(
S>Y

)︸ ︷︷ ︸
Linear node affinity

s.t. Y ∈ {0, 1}n×m, Y1m = 1n, Y
>1n ≤ 1m

(2)
where S = VAV

>
B ∈ Rn×m denotes node-to-node simi-

larity matrix. By combining Eqs. (1) and (2), it shows that
GM encourages to learn better node and edge features that
leads to correct assignment.

However, due to poor recognizability and viewpoint dif-
ference of images, it is extremely hard and time-consuming
to precisely annotate keypoints, leading to incorrect assign-
ment Ygt. As shown in Fig. 1 and Eq. (2), the incorrect
Ygt induces false matching on both node and edge levels,
i.e., bi-level noisy correspondence. Accordingly, the BNC
problem tends to cause false optimization on both node and
edge levels, leading to serious performance degradation. As
aforementioned, it is hard to preprocess the noisy corre-
spondence before training. Therefore, our method attempts
to explore a robust training strategy which could effectively
mitigate the negative impact of BNC.

3.2. Quadratic Contrastive Learning for Graph
Matching

In this section, we propose the quadratic contrastive
learning loss for graph matching. Specifically, based on
the combinatorial optimization theory [27] that contrastive
learning is equivalent to linear assignment, we accordingly
introduce two graph consistency regularizers that endow
contrastive learning with quadratic information.

As pointed by [27], the linear assignment problem (the
second term in Eq. (2)) could be formulated by structured
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Figure 2. Overview of COMMON. In the figure, the green and red dots denote the correctly and wrongly annotated keypoints. The red
and green squares indicate the noisy correspondence and estimated confidence, respectively. By feeding a pair of images into the encoder,
we obtain the node similarity matrix and two edge adjacency matrices. To better explore the bi-level correlations, we propose a quadratic
contrastive loss which consists of three jointly learning objectives, i.e., contrastive learning loss, cross-graph consistency loss, and within-
graph consistency loss. To mitigate the influence of BNC, we further feed the input into the momentum encoder that adaptively rebalances
the noisy correspondence based on the estimated node and edge confidences.

linear loss [36]:

L = max
Y∈Π

tr
(
SY>

)
− tr

(
SY>gt

)
, (3)

where Π denotes a set containing all n×m permutation ma-
trices that follows the constraint in Eq. (2). Note that L ≥ 0
and L = 0 i.f.f. the node similarities produced by the en-
coder lead to the correct assignment. Through minimizing
the objective in Eq. (3), the encoder expected to correctly
assign keypoints from one image to another.

To make the structure linear loss calculable, one could
relax the constraint Π with binary row-stochastic relaxation
([Y]ij ∈ {0, 1} and

∑
j Yij = 1 ∀i) and utilize the com-

mon log-sum-exp approximation [2] on the max function of
Eq. (3). Then the linear assignment loss could be reformu-
lated as the InfoNCE contrastive loss as proved by [27]:

L = −
∑

(i,j)∈Ygt

[S]ij + τ
∑
i

log(
∑
j

exp(
1

τ
[S]ij)), (4)

where τ controls the degree of smoothness. For our case,
we reformulate the equivalence theory between the linear
assignment and contrastive learning (Proposition 2 of [27])
as follows.

Theorem 1 The log-sum-exp [2] smoothed structured lin-
ear assignment loss L with row-stochastic relaxation is
equivalent to the InfoNCE contrastive loss [7, 15].

Notably, the above theorem indicates that contrastive
learning Eq. (4) is a fast and differentiable approximation
to the linear assignment problem thus could be efficiently

used to align the keypoints in deep graph matching directly.
To simply conduct contrastive learning for graph match-
ing, we align the keypoints VA and VB according to Ygt

and only remain the keypoints which have the counterpart
for training, obtaining aligned keypoints PA,PB ∈ Rn×d

for graph GA and GB , respectively. Then we conduct con-
trastive learning on both rows and columns of the node sim-
ilarity matrix S as [30]:

LInfoNCE = H
(
In, ρ

(
PAP

>
B

))
+H

(
In, ρ

(
PBP

>
A

))
,

(5)
where In is the identity matrix, H is the row-wise cross-
entropy function with mean reduction and ρ is the softmax
function applied row-wise such that each row sums to one,
i.e.,

[ρ
(
PAP

>
B

)
]ij =

exp([PA]i[PB ]>j /τ)∑n
k=1 exp

(
[PA]i[PB ]>k /τ

) , (6)

where [PA]i ∈ R1×d is the i-row of PA, and τ is the soft-
max temperature fixed as 0.07.

Although the popular InfoNCE loss might be an effec-
tive solution to the linear assignment problem [27], it ig-
nores another essential perspective in graph matching, i.e.,
edge alignment. In fact, it is generally accepted that con-
sidering the edge information in graphs makes the match-
ing more robust [39]. Nevertheless, contrastive learning can
not sufficiently utilize the graph structure and might obtain
suboptimal results. To this end, we augment the contrastive
loss with two novel graph-geometric consistency regulariz-
ers, namely, with-graph consistency and cross-graph con-
sistency, to further exploit the edge correlation.



Within-graph consistency aims to encourage the align-
ment between edges within each image,

Lwithin =
∥∥PAP

>
A −PBP

>
B

∥∥2

F
, (7)

where ‖ · ‖F is the Frobenius norm. The within-graph con-
sistency is a direct quadratic assignment regularizer.

Cross-graph consistency encourages the alignment of the
edges across two images:

Lcross =
∥∥PAP

>
B −PBP

>
A

∥∥2

F
. (8)

For clarity, we provide a typical example in Fig. 2 to
illustrate the above formulation. Intuitively, Eq. (7) mini-
mizes the difference between the edge in image A and its
counterpart in image B, e.g., A1A3 and B1B3. Apart from
the alignment between within-graph edges, it is also encour-
aged to align the cross-graph edges. Specifically, to better
align the keypoints between graphs, the semantic difference
between objects needs to be eliminated, e.g., the difference
between two kinds of horses. Hence, given two associated
within-graph edges (e.g., A1A3 and B1B3), it is highly ex-
pected that the corresponding keypoints are equivalent and
also exchangeable (e.g., A3 and B3).

Therefore, we establish the cross-graph edges from
within-graph edges by exchanging the counterpart of each
keypoint and then minimize the difference between them
(e.g., A1B3 and B1A3). Mathematically, Eq. (8) makes the
matrix S symmetric to encourage the alignment between
cross-graph edges. Although [33, 39] propose the cross-
graph neural network to encode the information from both
graphs, they only propagate the information from one node
in image A (B) to other nodes in image B (A). In contrast,
our cross-graph consistency offers a more explicit quadratic
supervision to ensure the cross-graph semantic consistency.

Notably, the above two geometric consistency terms are
elegantly implemented as simple regularizers on contrastive
learning and facilitate the matching procedure. Accord-
ingly, the quadratic contrastive loss for graph matching is
given as:

Lquadratic = LInfoNCE + Lwithin + Lcross. (9)

3.3. Momentum Distillation for Robust Matching

As aforementioned, bi-level noisy correspondence
would cause failure on both node-to-node and edge-to-
edge matching, leading to serious performance degradation.
However, different from the traditional noisy label prob-
lem, BNC is a many-to-many combinatorial optimization
problem rather than a one-to-many classification problem.
Therefore, it is inapplicable to distinguish [19, 21] or rec-
tify [22] the noisy correspondence through existing noisy
label classification methods.

Fortunately, Bengio et al. [1] have empirically found the
memorization effect of the deep neural networks, i.e., net-
works apt to fit the simple patterns first. To be specific, pre-
cisely annotated correspondence could be regarded as sim-
ple patterns while noisy correspondence could be treated
as complex ones. Motivated by this effect, we propose to
learn from the high-quality pseudo-target generated by the
momentum encoder as shown in Fig 2. Specifically, the mo-
mentum encoder is a continuously-evolving teacher, which
will keep the memory at the simple patterns to some extent
by taking the exponential-moving-average of the parame-
ters from the base encoder. Formally, denoting the parame-
ters of the base encoder as θq and those of momentum en-
coder as θk, we update θk by:

θk ← tθk + (1− t)θq, (10)

where t is the momentum coefficient fixed as 0.995 in our
experiments. During training, we utilize the matching pre-
diction of the momentum encoder to rebalance the proposed
quadratic contrastive learning loss. Specifically, we propose
a bi-level distillation on both node and edge levels with re-
spect to contrastive loss and graph consistency loss.

Distillation on node level. We first compute the node fea-
tures P̂A and P̂B from the momentum encoder. Then we
introduce a new cross-entropy term into Eq. (5) to match the
alignment results between base encoder and the soft target
of its momentum teacher. Formally,

LRInfoNCE = (1− α)
(
H
(
In, ρ

(
PAP

>
B

))
+H

(
In, ρ

(
PBP

>
A

)))
+ α

(
H
(
ρ
(
P̂AP̂

>
B

)
, ρ
(
PAP

>
B

))
+H

(
ρ
(
P̂BP̂

>
A

)
, ρ
(
PBP

>
A

)))
,

(11)
where α is the distillation temperature. The second term
in Eq. (11) allows the teacher to re-calibrate the keypoint
alignment by replacing the impractical perfect alignment
target In in Eq. (5) with estimated soft-alignment probabil-
ity. To keep the stability in the preliminary training stage,
α is linearly increasing from 0 to 0.4 in the first epoch and
fixed to 0.4 afterward. As shown in Table 6, our method is
insensitive to the choice of α.

Distillation on edge level. As the edge-level noisy corre-
spondence is accompanied with node-level noisy correspon-
dence, we first estimate the confidence of each node and
then estimate that of the edge based on the confidence of its
two vertices. Formally, let s ∈ Rn denote the confidence of
nodes where

si = 1
2

([
P̂AP̂

>
B

]
ii

/∑n
j

[
P̂AP̂

>
B

]
ij

+
[
P̂AP̂

>
B

]
ii

/∑n
j

[
P̂AP̂

>
B

]
ji

)
.

(12)
The confidence of each edge is estimated by accumulat-

ing the confidence of its two vertexes, i.e., W = s⊗s where
⊗ is the outer product. Based on the edge confidence W,
we re-weight the graph consistency loss (Eqs. (7) and (8))



Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbkie Person Plant Sheep Sofa Train Tv Mean

GMN [50] 41.6 59.6 60.3 48.0 79.2 70.2 67.4 64.9 39.2 61.3 66.9 59.8 61.1 59.8 37.2 78.2 68.0 49.9 84.2 91.4 62.4
PCA [39] 49.8 61.9 65.3 57.2 78.8 75.6 64.7 69.7 41.6 63.4 50.7 67.1 66.7 61.6 44.5 81.2 67.8 59.2 78.5 90.4 64.8
NGM [41] 50.1 63.5 57.9 53.4 79.8 77.1 73.6 68.2 41.1 66.4 40.8 60.3 61.9 63.5 45.6 77.1 69.3 65.5 79.2 88.2 64.1
IPCA [40] 53.8 66.2 67.1 61.2 80.4 75.3 72.6 72.5 44.6 65.2 54.3 67.2 67.9 64.2 47.9 84.4 70.8 64.0 83.8 90.8 67.7
LCS [43] 46.9 58.0 63.6 69.9 87.8 79.8 71.8 60.3 44.8 64.3 79.4 57.5 64.4 57.6 52.4 96.1 62.9 65.8 94.4 92.0 68.5
CIE [48] 52.5 68.6 70.2 57.1 82.1 77.0 70.7 73.1 43.8 69.9 62.4 70.2 70.3 66.4 47.6 85.3 71.7 64.0 83.9 91.7 68.9
QC-DGM [13] 49.6 64.6 67.1 62.4 82.1 79.9 74.8 73.5 43.0 68.4 66.5 67.2 71.4 70.1 48.6 92.4 69.2 70.9 90.9 92.0 70.3
DGMC [11] 50.4 67.6 70.7 70.5 87.2 85.2 82.5 74.3 46.2 69.4 69.9 73.9 73.8 65.4 51.6 98.0 73.2 69.6 94.3 89.6 73.2
BBGM [32] 61.9 71.1 79.7 79.0 87.4 94.0 89.5 80.2 56.8 79.1 64.6 78.9 76.2 75.1 65.2 98.2 77.3 77.0 94.9 93.9 79.0
NGM-v2 [41] 61.8 71.2 77.6 78.8 87.3 93.6 87.7 79.8 55.4 77.8 89.5 78.8 80.1 79.2 62.6 97.7 77.7 75.7 96.7 93.2 80.1
SCGM* [23] 62.9 72.9 79.6 79.5 89.3 94.1 89.1 79.2 58.4 79.3 80.5 79.9 79.5 76.8 64.8 98.1 78.0 75.9 98.0 93.2 80.5
ASAR [31] 62.9 74.3 79.5 80.1 89.2 94.0 88.9 78.9 58.8 79.8 88.2 78.9 79.5 77.9 64.9 98.2 77.5 77.1 98.6 93.7 81.1

COMMON 65.6 75.2 80.8 79.5 89.3 92.3 90.1 81.8 61.6 80.7 95.0 82.0 81.6 79.5 66.6 98.9 78.9 80.9 99.3 93.8 82.7

Table 1. Keypoint matching accuracy (%) on Pascal VOC with standard intersection filtering. The best and second-best results are
highlighted and underlined, respectively. * denotes the results are achieved by pretraining on Spair-71k first.

as follows,

LRgraph =
∥∥W ◦ (PAP

>
A −PBP

>
B)
∥∥2

F
+
∥∥W ◦ (PAP

>
B −PBP

>
A)
∥∥2

F
,

(13)
where ◦ is the Hadamard product.

Different from most existing distillation methods that ac-
quire knowledge from a pre-trained model [16,35], our mo-
mentum distillation strategy owns the following two mer-
its: i) enjoying the robustness against BNC by exploiting
the memory effect characteristic of the momentum model,
i.e., exponential-moving-average parameters would resist
overfitting the noise; ii) bootstrapping the matching perfor-
mance without resorting to extra knowledge or models.

Finally, by combining Eqs. (11) and (13), the overall ro-
bust quadratic contrastive learning loss is induced as,

LRquadratic = LRInfoNCE + LRgraph. (14)

4. Experiments
In this section, we carry out extensive experiments on

three widely-used graph matching datasets with the com-
parisons of 12 state-of-the-art deep graph matching ap-
proaches.

4.1. Experimental Settings

Datasets. We conduct experiments on Pascal VOC with
Berkeley annotation [3], SPair-71K [26], and Willow Ob-
ject Class [8]. For extensive evaluation, we report the av-
erage and per-category performance. The objective of all
experiments is to maximize the average matching accuracy.

Implementation details. We implement our method in Py-
Torch 1.10.0 and conduct all evaluations on the Ubuntu-
20.04 OS with an NVIDIA 3090 GPU. For all datasets, we
use the exact same set of hyper-parameters. The encoder
network consists of an ImageNet-pretrained VGG16 [34]

image encoder, a graph neural network SplineCNN [12],
and a two-layer projection head [6]. To optimize the net-
works, we adopt Adam optimizer [20] with the default pa-
rameters and set the initial learning rate as 3e−4. The learn-
ing rate for fine-tuning the VGG network is 2e−5. The batch
size is set to 8 image pairs and the distillation temperature α
is fixed to 0.4. To obtain the permutation matrix Y, we per-
form the Hungarian algorithm on the similarity matrix S ob-
tained from the base encoder following [24, 31, 39–41, 49].

Compared methods. We compare our COMMON with
the following 12 popular deep graph matching methods:
GMN [50], PCA [39], NGM [41], IPCA [40], CIE [48],
DGMC [11], LCS [43], BBGM [32], QC-DGM [13],
NGM-v2 [41], SCGM [23], and ASAR [31]. We conduct
experiments for all methods on the popular open-source
graph matching toolbox ThinkMatch1, for the purpose of
better reproducibility and more fair comparison.

4.2. Results on Graph Matching

Pascal VOC [3] consists of 7,020 training images and 1,682
testing images with 20 classes in total. The number of nodes
per graph ranges from 6 to 23. Following [32], we test
our method by filtering out the non-matched points before
matching. As shown in Table 1, our method outperforms the
counterparts with +1.6% in terms of accuracy. It is worth
pointing out that our method achieves remarkable perfor-
mance improvements on the classes with prominent noisy
correspondence, e.g., table (+6.8%) and sofa (+3.8%).

SPair-71k [26] consists of 70,958 image pairs collected
from Pascal VOC 2012 and Pascal 3D+. Following the
data preparation in [39–41], each object is cropped to its
bounding box and scaled to 256×256. As shown in Ta-
ble 2, our method consistently improves the matching per-
formance (+1.4%).

1https://github.com/Thinklab-SJTU/ThinkMatch

https://github.com/Thinklab-SJTU/ThinkMatch


Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Dog Horse Mbike Person Plant Sheep Train Tv Mean

GMN [50] 59.9 51.0 74.3 46.7 63.3 75.5 69.5 64.6 57.5 73.0 58.7 59.1 63.2 51.2 86.9 57.9 70.0 92.4 65.3
PCA [39] 64.7 45.7 78.1 51.3 63.8 72.7 61.2 62.8 62.6 68.2 59.1 61.2 64.9 57.7 87.4 60.4 72.5 92.8 66.0
NGM [41] 66.4 52.6 77.0 49.6 67.7 78.8 67.6 68.3 59.2 73.6 63.9 60.7 70.7 60.9 87.5 63.9 79.8 91.5 68.9
IPCA [40] 69.0 52.9 80.4 54.3 66.5 80.0 68.5 71.4 61.4 74.8 66.3 65.1 69.6 63.9 91.1 65.4 82.9 97.5 71.2
CIE [48] 71.5 57.1 81.7 56.7 67.9 82.5 73.4 74.5 62.6 78.0 68.7 66.3 73.7 66.0 92.5 67.2 82.3 97.5 73.3
NGM-v2 [41] 68.8 63.3 86.8 70.1 69.7 94.7 87.4 77.4 72.1 80.7 74.3 72.5 79.5 73.4 98.9 81.2 94.3 98.7 80.2
BBGM [32] 75.3 65.0 87.6 78.0 69.8 94.0 87.8 78.3 72.8 82.7 76.6 76.3 80.1 75.0 98.7 85.2 96.3 98.0 82.1
ASAR [31] 72.4 61.8 91.8 79.1 71.2 97.4 90.4 78.3 74.2 83.1 77.3 77.0 83.1 76.4 99.5 85.2 97.8 99.5 83.1

COMMON 77.3 68.2 92.0 79.5 70.4 97.5 91.6 82.5 72.2 88.0 80.0 74.1 83.4 82.8 99.9 84.4 98.2 99.8 84.5

Table 2. Keypoint matching accuracy (%) on SPair-71k for all classes.

(a) Performance with varying noise ratios. (b) Initial distribution of similarity. (c) Similarity distribution after training.

Figure 3. Effectiveness on noisy correspondence.

Willow Object [8] consists of 256 images in 5 categories,
where each target object is annotated with 10 distinctive
landmarks. Following the protocol in [39–41], we train our
methods on the first 20 images and report testing results on
the rest. As shown in Table 3, our method significantly out-
performs baselines (+1.4%).

4.3. Evaluation on Noisy Correspondence

In this section, we evaluate the effectiveness of our
method against noisy correspondence with synthetic noise
experiments, varying viewpoint experiments, ablation stud-
ies, and parameter analysis.

4.3.1 Synthetic Noise Experiment

To explicitly demonstrate the effectiveness of our method
against noisy correspondence, we evaluate models on Wil-
low Object with synthetic noisy correspondence. Con-
cretely, we randomly select some keypoints in the train-
ing set as the noise points by adding displacement to the
location coordinates. The displacement (s, θ) is generated
from uniform distribution: s ∼ U(0.1, 0.2), θ ∼ U(0, 360)
where s is the displacement value and θ is the angle. The
displacement value is further scaled with respect to the size
of the bounding box. The noisy rate η is defined as the per-
centage of noise points.

Varying noise ratios. As shown in Fig. 3a, we conduct ex-
periments by varying the noise rate η from 0 to 0.5 with
an interval of 0.1. From the results, one could observe
that: i) our method significantly outperforms baselines in all
noise rate settings; ii) momentum distillation consistently
improves the robustness against noisy correspondence.

Distribution of similarity scores. We further explore the
similarity scores of bi-level correspondence learned by our
method with noise rate η = 0.3. In Figs. 3b and 3c, we
show the histograms of similarity scores for true pairs and
noisy correspondence separately. The initial similarity of
these two kinds of pairs is confused and hardly distinguish-
able. After training, the similarity of noisy correspondence
is 0.6 on average, while that of true pairs is 0.95 on average
and ranges into [0.7, 1.0]. In other words, our method pre-
vents noisy correspondence from dominating the network
optimization, thus eliminating the negative impact of noisy
correspondence.

4.3.2 Evaluation with Different Viewpoint Difficulty

Spair-71k contains images with diverse variations in view-
point and divides image pairs into easy, medium, and hard
ones. In practice, we find that noisy correspondence such
as occlusion is more likely to occur in hard image pairs.
In other words, with the increment of viewpoint difficulty,



Figure 4. Examples of noisy correspondence in Pascal VOC and SPair-71k. The red line indicates wrongly annotated correspondence.

Method Car Duck Face Mbike Wbottle Mean

GMN [50] 67.9 76.7 99.8 69.2 83.1 79.3
NGM [41] 84.2 77.6 99.4 76.8 88.3 85.3
PCA [39] 87.6 83.6 100 77.6 88.4 87.4
CIE [48] 85.8 82.1 99.9 88.4 88.7 89.0
IPCA [40] 90.4 88.6 100 83.0 88.3 90.1
SCGM [23] 91.3 73.0 100 95.6 96.6 91.3
ASAR [31] 92.5 84.0 100 95.4 99.0 94.2
LCS [43] 91.2 86.2 100 99.4 97.9 94.9
DGMC [11] 98.3 90.2 100 98.5 98.1 97.0
BBGM [32] 96.8 89.9 100 99.8 99.4 97.2
NGM-v2 [41] 97.4 93.4 100 98.6 98.3 97.5
QC-DGM [13] 98.0 92.8 100 98.8 99.0 97.7

COMMON 97.6 98.7 100 100 99.0 99.1

Table 3. Keypoint matching accuracy (%) on Willow Object.

Method Viewpoint difficulty AllEasy Medium Hard

BBGM [32] 84.7 78.9 73.6 82.1
ASAR [31] 86.5 79.1 72.5 83.1

COMMON 86.6 (+0.1) 81.4 (+2.3) 76.4 (+2.8) 84.5 (+1.4)

Table 4. Keypoint matching accuracy (%) on SPair-71k grouped
by levels of difficulty in the viewpoint of the matching pair.

there might be more noisy correspondence. As shown in
Table 4, our method consistently improves the matching re-
sult, particularly for the image pairs with high viewpoint
difficulty (+2.8% for hard pairs). This experiment high-
lights the ability of our method against noisy correspon-
dence.

4.3.3 Ablation Studies and Parameter Analysis

To evaluate our framework, we conduct comprehensive ab-
lation studies by separately investigating each component.
As shown in Table 5, all modules are inseparable and bring
substantial performance gains. Notably, the momentum dis-
tillation strategy remarkably improves the performance by
alleviating the negative impact of bi-level noisy correspon-
dence. Besides, both two graph consistency terms play in-
dispensable roles in learning quadratic correlations and our
loss outperforms the quadratic regularization [27]. Follow-
ing, we present the parameter sensitivity analysis on the dis-
tillation temperature α in Table 6. As shown, the distillation

Method Pascal VOC SPair-71k

COMMON (FULL) 82.67 84.54
- w/o graph consistency 81.95 83.83
- w/o distillation 81.77 83.94

- InfoNCE and within-graph consistency 81.70 83.75
- InfoNCE and cross-graph consistency 81.63 83.50
- InfoNCE 81.33 83.38

- InfoNCE and quadratic regularization [27] 81.67 83.66

Table 5. Ablation study of COMMON in terms of accuracy. De-
fault settings are marked in gray .

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ACC 81.90 82.34 82.69 82.62 82.67 82.50 82.59 82.62 82.66 82.41

Table 6. Parameter analysis of COMMON with the increase of
the distillation parameter α on Pascal VOC. Default settings are
marked in gray .

strategy indeed improves the performance and our method
is insensitive to the choice of α.

4.4. Visualization on Noisy Correspondence

In this section, we identify some noisy correspondence
pairs predicted by our model with the lowest matching sim-
ilarity in Fig. 4.

5. Conclusion
This paper reveals a new problem for graph matching,

i.e., bi-level noisy correspondence, which refers to wrongly
annotated node-to-node correspondence and accompanied
edge-to-edge correspondence. To tackle this challenge, the
proposed COMMON introduces two contributions: i) a
novel quadratic contrastive learning loss for graph match-
ing, which endows contrastive learning with high-order ge-
ometrical information; ii) momentum distillation, inspired
by the memorization effect of deep neural networks, which
rebalances the quadratic contrastive loss to mitigate the in-
fluence of BNC. Notably, BNC might appear in not only
two-graph matching problems but also multi-graph and
hyper-graph matching. Our work potentially provides a
novel insight into the community and may inspire some fur-
ther exploration.
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