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Abstract

Open-ended Video question answering (open-ended
VideoQA) aims to understand video content and question
semantics to generate the correct answers. Most of the best
performing models define the problem as a discriminative
task of multi-label classification. In real-world scenarios,
however, it is difficult to define a candidate set that includes
all possible answers. In this paper, we propose a Knowledge-
constrained Generative VideoQA Algorithm (KcGA) with
an encoder-decoder pipeline, which enables out-of-domain
answer generation through an adaptive external knowledge
module and a multi-stream information control mecha-
nism. We use ClipBERT to extract the video-question
features, extract framewise object-level external knowledge
from a commonsense knowledge base and compute the
contextual-aware episode memory units via an attention
based GRU to form the external knowledge features, and
exploit multi-stream information control mechanism to fuse
video-question and external knowledge features such that the
semantic complementation and alignment are well achieved.
We evaluate our model on two open-ended benchmark
datasets to demonstrate that we can effectively and robustly
generate high-quality answers without restrictions of training
data.

Introduction
Open-ended Video Question Answering (open-ended
VideoQA) (Fan et al. 2019) means generating the answer
according to a given video and question from scratch with-
out having to choose from several pre-supplied answers or
fill the missing part of an incomplete answer. To achieve the
freeform answer generation, open-ended VideoQA should
not only understand the video and question well, but also
conduct comprehensive cross-modal reasoning. Therefore,
open-ended VideoQA is more challenging compared with
other types of VideoQA. Many well-performed works treat
the open-ended VideoQA as a multi-label classification task
and solve it using attention mechanisms (Gao et al. 2018;

*Work is done during an internship at Baidu Inc.
†Corresponding author

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An illustration of out-of-domain answer genera-
tion. Our model generates out-of-domain answers (answers
that do not appear in the training set) by combining video
clips, question features and external knowledge features.

.

Li et al. 2019b; Gao et al. 2019), graph networks (Cherian
et al. 2022; Park, Lee, and Sohn 2021; Jiang and Han
2020; Huang et al. 2020) or causal analysis (Li et al. 2022).
This requires to form a candidate set using answers with
the top-k occurrence frequency, and then infer the answer
from the candidate set. Since the candidate set consists of
only answers appearing in the training set, these methods
can only predict in-domain answers, but cannot predict
out-of-domain answers (answers that do not appear in the
training set) at all. Furthermore, due to the structural char-
acteristics of the answers in the training set, the candidate
set basically contains very shot answers with length one or
exceptionally two. Hence, the predicted answers usually
lack rich semantics and details. In contrast, freely generated
out-of-domain answers often contain long and semantically
complete answers with more details. Motivated by this,
some works (Xue, Zhao, and Cai 2017; Zhao et al. 2018b;
Lee et al. 2021) tackle the open-ended VideoQA in a
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generative manner. They rely on not the candidate set but
the entire training set, which nevertheless may still unable
to provide sufficient semantic for generating high quality
out-of-domain answers.

Knowledge is defined as high-level awareness and un-
derstanding of the input information and its surroundings
by (Yu et al. 2022). It contains commonly recognized
facts and regulations that are known as common sense,
which benefits human as well as neural networks in learn-
ing, communicating or reasoning. We deem knowledge can
provide key information to out-of-domain answer genera-
tion with comprehensive details. Consequently, we propose
a Knowledge-constrained Generative VideoQA Algorithm
(KcGA) to introduce implicit semantic constraints and richer
semantic support for out-of-domain answer generation, as
shown in Figure 1. Specifically, this model adopts the tra-
ditional encoder-decoder structure (Sutskever, Vinyals, and
Le 2014), in which the encoder maps the input features to
a group of fixed-sized vectors and the decoder subsequently
maps the vectors to answers. The encoder comprises three
modules. The representation module combines the question
embeddings and video clips to generate video-question fea-
tures. In the meanwhile, the adaptive external knowledge
module extracts entity objects as the visual knowledge from
video frames, which are then fed to an external common-
sense knowledge base (ConceptNet (Speer, Chin, and Havasi
2017)) to obtain the external knowledge. To suppress the
potential noise during knowledge introduction, both the vi-
sual and external knowledge are denoised by CLIP (Rad-
ford et al. 2021), a pre-trained model for image-text match-
ing, which can be used to measure the correlation between
text and images. Then, the multi-stream information con-
trol module forges the external knowledge features into the
video-question features by computing the local attentions
of external knowledge features and video-question features
based on the global attention between the two modes of fea-
tures. Finally, the knowledge video-question features are fed
to a decoder, GPT2 (Radford et al. 2019) in this paper, to
generate the freeform answers. By these means, the KcGA
significantly improves the quality of out-of-domain answer
generation, which has been justified by extensive experi-
ments.

Our contributions are summarized in three aspects. (1)
We first propose an open-ended framework that can effi-
ciently generate out-of-domain answers for VideoQA. (2)
We propose an adaptive external knowledge module and a
multi-stream information control mechanism to introduce
the commonsense knowledge into the generation of the out-
of-domain answer with rich semantics. (3) On two open-
ended benchmark datasets (i.e. NExT-QA (Xiao et al. 2021),
TGIF-QA (Jang et al. 2017)), we conduct extensive experi-
ments and obtain the state-of-the-art results.

Related Work
Video Question Answering
VideoQA requires understanding the question and video
content to predict the answer. In the past few years, many
works have been explored based on the attention mechanism

(Xu et al. 2017; Kim et al. 2018; Zhao et al. 2017). Zhou
et al. (Zhao et al. 2018a) constructed a multi-stream spatio-
temporal attention network for learning joint representations
and context-aware question embeddings for dynamic video
content. In recent years, the in-depth development of graph
networks (Huang et al. 2020; Jiang and Han 2020; Park, Lee,
and Sohn 2021), neural modules (Le et al. 2020), and mem-
ory networks (Kim et al. 2019; Fan et al. 2019) have also
provided more methods for video question answering. Li et
al. (Li et al. 2019a) proposed learnable aggregating net with
diversity learning, which is based on a multi-path pyrami-
dal attention structure and a diversity learning mechanism
to achieve the diversity of attention. All of the above meth-
ods define tasks as multi-label classification task and infer
answers by setting candidate answer set, which only contain
the answers in the train set and cannot predict out-of-domain
answers.

In the generative question answering, there had been some
attempts (Li et al. 2021; Zhao et al. 2018b; Lee et al. 2021),
but these works had problems such as poor model perfor-
mance and simple question format. Xue et al. (Xue, Zhao,
and Cai 2017) proposed sequential video attention and tem-
poral question attention models. This method includes a
module for automatically generating answers, but the overall
focus is on how to use the timing information of videos, and
does not reflect the ability to generate answers outside the
domain. Recently, Yang et al. (Yang et al. 2021) also tried to
use generative methods to generate answers and made some
breakthroughs, but it still needed to construct a set of pos-
itive and negative samples, and fundamentally, it can only
choose from a limited set. The reason these methods do not
generate good out-of-domain answers is that their models
do not provide sufficient semantic support for the generation
process.

Methods
In this section, we propose a knowledge-constrained open-
ended framework to efficiently generate out-of-domain an-
swers. We implement the framework of KcGA, whose archi-
tecture is depicted in Figure 2 where the Video-Text Encoder
(Figure 2 (a)) extracts the video-question features based on
the context information of the video and question, the Adap-
tive External Knowledge Module (Figure 2 (b)) fits the de-
tected video objects to a knowledge base to obtain the Ex-
ternal Knowledge related to video content that provides im-
plicit constraints for answer generation, the Multi-stream In-
formation Control Mechanism (MsICM) (Figure 2 (c)) fuses
the video-question features and external knowledge through
local and global attention to obtain knowledge enhanced
video-question features, which are finally fed to the lan-
guage decoder (Figure 2 (d)) for free form answer genera-
tion.

Feature Representation
We randomly divide the video V of L frames into N clips
C = {c1, ..., cN} of equal length, and embed the question
into Q, a group of 100-dimensional vectors corresponding to
the words, using WordPiece (Wu et al. 2016) that improves
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Figure 2: Overall architecture of our model: (a) The Video-question features are extracted by the Video-Text Encoder, which
contains the context information of the video and the question. (b) We use the adaptive external knowledge module to obtain
External Knowledge, which provides implicit constraints for answer generation. (c) We propose a multi-stream information
control mechanism to fully integrate and complement multi-stream information. (d) The language decoder turned out to generate
the correct answer in the form of free text.

the semantic distinction between different words. Then, we
adopt the baseline model ClipBERT (Lei et al. 2021) as
the video-text encoder to extract the well-performed com-
mon context information of the video and the question. Clip-
BERT are efficient in not only visual and linguistic feature
extraction, but also memory and computation power con-
sumption. The video-question features are represented as:

FV = EClipBERT(C,Q) (1)
where EClipBERT(·) denotes the encoder model.

Adaptive External Knowledge Module
To represent the external knowledge about the videos, we
propose to fit the video frames fi(i = 1, ..., L) to an ex-
ternal knowledge base to query the external knowledge kE

and then construct the knowledge features FK by iteratively
memorizing the focus of attentions existing in kE .

To this end, we first use Faster R-CNN with ResNet-101
(Anderson et al. 2018) to extract video objects from each
frame fi and denote the text descriptions of the objects as
oi. However, irrelevant objects to the video could also be
extracted by the pre-trained model, therefore we further use
CLIP (Radford et al. 2021) to denoise oi by calculating the
similarity between fi and oi to filter off the irrelevant objects.
This process can be formulated as:

kV = {oi|CLIP(fi, oi) > α}Li=1 (2)
where we name the outputted object label set kV as the vi-
sual knowledge, CLIP(·) stands for model CLIP for image-

text matching, and α is a pred-defined threshold, here we set
α = 0.2.
kV is still the knowledge of the entities contained in the

video. To obtain external knowledge, we retrieve a set of
triples < o, r, s > (both o and s are also text labels of ob-
jects, r is the relation between objects) from the common-
sense knowledge base ConceptNet (Speer, Chin, and Havasi
2017) by comparing each object of oi in kV with the o and
s in all the triples and selecting the triples with similar o or
s to oi. We then reorganize the o or s in these triples into oi
and si, and denoise them through CLIP:

kE = {oi ∪ si|CLIP(fi, oi ∪ si) > β}Li=1, (3)

where we reuse oi to represent the objects depicted by the
external knowledge, kE is the denoised external knowledge,
β = 0.19 is a threshold. For further computation, we embed
kE with WordPiece (Wu et al. 2016) to obtain the corre-
sponding vectorized representation:

kE = {oi ∪ si}Li=1 = WordPiece(kE). (4)

To fully exploit the contextual information among adja-
cent frames from kE , we adopt the Attention based GRU
(Kumar et al. 2016) to compute the context aware knowl-
edge representations. In the meanwhile, since the video con-
tains abundant content, we believe the model may focus on
distinct but pivotal content of the video each time it spectates
the video, then form the final perception about the video
after multiple playbacks. The external knowledge could be
perceived in the similar way. To this end, we use a group
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of episodic memory units {m1,m2, ...,mT } to record the
focus of attentions of kE at each time t. Specifically, we
conduct following computations:

m0 = tanh(Wpk
E + bp), (5)

zt = [kE⊙m0,kE⊙mt−1, |kE−m0|, |kE−mt−1|], (6)

gt = softmax(Wg1
tanh(Wg2

zt + bg2
) + bg1

), (7)

etr = gtrGRU(kEr , e
t
r−1) + (1− gtr)e

t
r−1, (8)

mt = ReLU(Wm[mt−1, etR,m
0] + bm) (9)

where zt captures the similarity between the external knowl-
edge and the memory, gt defines the focus of attention each
time the model checks on the knowledge, | · | is the abso-
lute value, ⊙ represents the element-wise product, and et is
the state vector of GRU at time t with e0 = 0. By appro-
priately setting the number of parameters and GRU states,
gt and et have the same size as kE , such that we can com-
pute et element by element through (7) where etr, kEr , and
gtr are the rth element corresponding to the rth state in the
GRU. Subsequently, we update the memory using formula
(8) where etR is the final state of the GRU. After completing
the iteration, the external knowledge features FK are given
by

FK = ReLU(Wf [m
1, ...,mt] + bf ) (10)

where mt is the final episode memory.

Multi-stream Information Control Mechanism
In order to fuse the video-question features and the knowl-
edge features by discovering the mutual complementarity
between them, we design a multi-stream information control
mechanism. First, we compute the global attention FC be-
tween video-question features and external knowledge fea-
tures:

FC = Sigmoid(BN(Wc[F
V ,FK ] + bc)) (11)

where BN indicates the batch normalization. Then, based
on the global attention FC , we compute the local attention
for different features separately, and integrate the local at-
tentions to obtain the knowledge enhanced video-question
features FM :

FM = ReLU(WM [(FC)TFV , (FC)TFK ] + bM ). (12)

Owing to the attention mechanism, the important contents
of videos, questions and external knowledge can be well
alignment, such that the answer generation module can ob-
tain semantically correct feature representations.

To verify the superiority of MsICM we used, we also de-
sign four different multimodal interaction methods based on
some existing multimodal fusion methods (Diao et al. 2021;
Lee et al. 2018), as shown in Figure 3. We will compare
these different multimodal fusion schemes in the experimen-
tal section.

Figure 3: Five different multimodal fusion methods. (a) and
(b) concatenate multimodal features, (c) and (d) achieve
multimodal fusion using attention, (e) is the proposed multi-
stream information control mechanism.

.

Answer Generation and Evaluation
We employ the transformer (Vaswani et al. 2017) as the an-
swer generation module, and use the pretrained model GPT2
(Radford et al. 2019) for parameter initialization, which al-
lows the model to selectively focus on the most relevant
parts of the input features to the answer. This can be depicted
as:

y = DGPT2(F
M ) (13)

where y is our predicted answer and DGPT2(·) is the de-
coder model initialized with GPT2.

Experiments
In this section, we firstly introduce the open-ended bench-
mark datasets (i.e. NExT-QA (Xiao et al. 2021), TGIF-QA
(Jang et al. 2017)) and implementation details, then com-
pare with the state-of-the-art methods and conduct ablation
experiments of the model. Particularly, we evaluate the re-
sult of out-of-domain answer generation.

Datasets
Open-QA Dataset is an originally constructed dataset
from TGIF-QA (Jang et al. 2017) for open-ended Video QA.
TGIF-QA dataset is initially built for evaluating the multi-
label classification-based VideoQA. It contains high propor-
tion of single-word answer but the multi-word answers are
insufficient. Single-word answers cannot reflect well the su-
periority and generalization ability of generative models ow-
ing to the deficient semantic. To this end, we take the text of
correct answer to the muti-label classification as the answer
to the question, and choose 35862, 7317 and 8506 questions
with valid answers (whose frequency of occurrence is more
than 10 times) from TGIF-QA to build the train, validation
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Acc
Methods Overall 1-L(37.73%) 2-L(53.72%) 3-L(6.70%)
STVQA(Jang et al. 2017) 13.43 20.01 10.94 0
HME(Fan et al. 2019) 16.89 28.54 11.40 0
HCRN(Le et al. 2020) 15.45 25.02 11.18 0
*CoMVT(Seo, Nagrani, and Schmid 2021) 19.55 30.88 14.71 0
*HERO(Li et al. 2020) 16.09 24.74 12.58 0
*ClipBERT(Lei et al. 2021) 17.43 27.30 13.29 0
ClipBERT+Decoder(G) 20.36 26.83 15.85 25.79
KcGA (ours) 27.04 31.01 25.32 25.96

Table 1: Comparisons on Open-QA with the state of the art. 1/2/3-L means the question with answer length 1/2/3 words, and
the following percentage indicates the proportion of question with this length of answer. (G) means the decoder is designed to
generate freeform answers. “*” indicates pretrained methods. “Acc” represents the accuracy (%)

Methods Acc
STVQA(Jang et al. 2017) 23.04
HCRN(Le et al. 2020) 23.92
HME(Fan et al. 2019) 24.06
UATT(Xue, Zhao, and Cai 2017) 24.25
HGA(Jiang and Han 2020) 25.18
ClipBERT(Lei et al. 2021) 24.17
KcGA (C) 26.94
KcGA (ours) 28.21

Table 2: Comparisons on NExT-QA with the state of the art.
“Acc” represents the accuracy (%). (C) means the decoder is
replaced by a multi-label classifier.

and test sets of Open-QA Dataset, within which the ques-
tions with answer length of two or more account for 63% of
the total questions.

NExT-QA Dataset is a dataset that focuses on video ex-
ploitability (Xiao et al. 2021), whose fundamental goal is to
evaluate the model’s performance in causal behavioral infer-
ence, temporal behavioral inference, and common-scenario
inference. This requires the model to have higher level of
abstraction and logical reasoning ability about videos and
questions. The dataset contains 3,870 train, 570 validation,
and 1,000 test videos with 37523, 5343 and 9178 open-
ended questions respectively.

Implementation Details
In input representation, we refer to the settings of ClipBERT
(Lei et al. 2021) on VideoQA task to extract video-question
features. In addition to denoising the acquired visual knowl-
edge and external knowledge by CLIP, we exclude some un-
informative knowledge, such as ”people”, ”hair” and ”sky”.
In addition, in retrieving the knowledge base with video
objects, we reserve only three triples with top-3 leading
weights indicating the knowledge confidence, and the re-
trieved objects from knowledge base adds up to 30 for each
video. We extract the external knowledge for videos rather
than for video clips. The dimension of an episodic memory
unit is 768. We use Aadm (Loshchilov and Hutter 2019) to
train our model end-to-end. During the training phase, we set

an initial learning rate of 5e-5 to warm up in the first 10% of
training steps, then let it decay linearly to 0. The batch size
is set to 256 and the dropout rate is set to 0.3. For each task,
we train the model for 50 epochs.

State of the Art Comparison
Open-QA: Table 1 shows the comparison between our
method (KcGA) and some recent state-of-the-arts including
both non-pretrained and pretrained methods on Open-QA
dataset. Our method has a clear improvement over previ-
ous methods on this complex dataset, with a 6.68% improve-
ment in Overall Acc. We believe this is because we introduce
external knowledge from knowledge base to provide much
semantic, and our multi-stream information control mecha-
nism captures both the global and local attention for multi-
modal fusion. For questions with different answer lengths,
our method has significant improvement, which amounts to
9.47% when the answer length is 2. The primary reason is
that the classification method needs to predefine the candi-
date answer set for training, and long answers with low oc-
currence rate often do not appear in the candidate set.

NExT-QA: Table 2 shows the comparison on NExT-
QA dataset between KcGA with the spatial-temporal rea-
soning (Jang et al. 2017), hierarchical conditional rela-
tion network (Le et al. 2020), heterogeneous memory (Fan
et al. 2019), heterogeneous graph (Jiang and Han 2020),
and ClipBERT(baseline) (Lei et al. 2021) methods. Our
method achieves significant 4.04% performance improve-
ment against the baseline. Actually, this is predictable based
on our previous discussion about the experimental results in
Table 1. In addition, the performance of the generative ver-
sion of our method (KcGA) is also improved by 1.27% com-
pared with the classification version (KcGA(C)). The dis-
crimination between KcGA and KcGA(C) lies in only the
decoder.

Ablation Study
In Table 3, we provide an ablation experiment about the
performance of multimodal fusion methods on Open-QA.
In addition to our multi-stream information control mecha-
nism, we also provide four other methods. Cat1 and Cat2 are
simple multimodal concatenation corresponding to Figure 3
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Multimodal Interaction Methods Acc
- Cat1 25.26
- Cat2 25.01
- SRL (Diao et al. 2021) 26.11
- SCA (Lee et al. 2018) 23.04
KcGA (ours) 27.04

Table 3: Ablation study of multimodal fusion methods on
Open-QA. Cat1 and Cat2 are simple multimodal concatena-
tion, SRL and SCA are attention-based multimodal fusions,
KcGA is the proposed method.

Methods Type Acc
ClipBERT (Lei et al. 2021) C 17.43
ClipBERT+Decoder G 20.36
KcGA C 22.97
KcGA (ours) G 27.04

Table 4: Ablation study on Open-QA using different answer
prediction tasks. “Type” means the property of task, “C”
refers to multi-label classification and “G” refers to freeform
generation.

(a) and Figure 3 (b). SRL means similarity representation
learning method proposed by (Diao et al. 2021) (Figure3
(c)), SCA refers to stacked cross attention proposed by (Lee
et al. 2018) (Figure3 (d)), and both methods are based on
attention. KcGA corresponds to Figure3 (e). It can be seen
that Cat1 performs similarly to Cat2, with 0.25% difference.
SRL tends to extract global video-question features from
multimodal information, while SCA focuses more on video
information. This explains why SRL surpassed SCA in this
experiment. As comparison, the proposed multi-stream in-
formation control mechanism yields 0.93% performance im-
provement against SRL and 4% improvement against SCA,
and the reason lies in the joint usage of global and local at-
tention existing in the multimodal features.

Table 4 explores the accuracies of different answer gen-
eration manners on Open-QA, where ClipBERT adopts the
multi-label classification task (C) to achieve answer gen-
eration, ClipBERT+Decoder replaces the classifier with a
text generator (Decoder) to generate the freeform answer
(G) and this scheme is similar to the proposed KcGA. We
can also replace the decoder of KcGA with a classifier
for answer generation. In general, the generative method
has higher flexibility and stronger generalization ability in
multi-word answer generation. ClipBERT+Decocer outper-
forms ClipBERT by 2.93% and KcGA outperforms KcGA
with classifier-based answer generator by 4.07%. This can
similarly be attributed to the independence of the genera-
tive decoder on the pre-defined candidate label set. We also
find that the improvement by applying generative decoder
to KcGA exceeds the improvement by applying generative
decoder to ClipBERT. Therefore, we believe that the abun-
dant semantic implied in the external knowledge benefits the
freeform answer generation more than the multi-label clas-
sification. It is noteworthy that the KcGA with multi-label
classifier exceeds the ClipBERT+Decocer by 2.61, which

Methods Acc
ClipBERT+Decoder (G) 20.36
- No E CLIP 24.91
- No V CLIP 26.55
- No Memory 26.46
KcGA (ours) 27.04

Table 5: Ablation study about CLIP and memory operation
on Open-QA. (G) represents that we use the generative ap-
proach for VideoQA. “No E CLIP” means that we did not
denoise the external knowledge with CLIP, “No V CLIP”
means that we did not denoise the visual knowledge, and
“No Memory” means we remove memory computation from
KcGA.

Methods Out-of-domain
ClipBERT (Lei et al. 2021) -
ClipBERT+Decoder (G) 1.34
KcGA (C) -
- No Memory 4.16
KcGA (ours) 4.55

Table 6: Study about the ability of out-of-domain answer
generation (the answers were not included in the training
set). We use accuracy (%) to evaluate this experiment. “-”
indicates the method tackles a multi-label classification task,
which does not support out-of-domain answer generation.

justifies the effect of the external knowledge.
Table 5 shows the ablation study about CLIP and mem-

ory operation on Open-QA, where “No E CLIP” mean re-
moving the external knowledge denoising from KcGA while
keeping other part unchanged, “No V CLIP” means remov-
ing the visual knowledge denoising from KcGA while keep-
ing other part unchanged, and “No Memory” means we re-
move memory computation from KcGA and feed the ex-
ternal knowledge directly to the next module. If we de-
noise only the visual knowledge, the performance drops
by 2.13% compared with KcGA. If we only denoise the
external knowledge, the performance decrease is 0.49%.
External knowledge denoising tends to play more impor-
tant role because this operation filters off some objects in-
volved in the knowledge base but irrelevant to the video.
”No Memory” means that the external knowledge is di-
rectly passed to the next module without being encoded in
memory. By further optimizing the features with memory
units, the accuracy of our method is improved by 0.58Ta-
ble 6 demonstrates the performance of different methods on
out-of-domain answer generation. ClipBERT cannot predict
out-of-domain answers because it addresses a multi-label
classification task. We substitute the classifier with the de-
coder module to enable it to generate out-of-domain an-
swers (ClipBERT+Decoder), and the performance on out-
of-domain answer generation is 1.34%. Our method (KcGA)
achieves 4.55% accuracy on out-of-domain answer gener-
ation, thanks to the rich semantics provided by the pro-
posed adaptive external knowledge module. Furthermore,
we can see that optimizing the external knowledge through
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Figure 4: Typical results generated by our method (KcGA) on Open-QA dataset. The green texts denote the same out-of-domain
answers as the ground truth ones, and the blue texts denote the semantically similar answers to the ground truth ones.

the memory scheme benefits the out-of-domain answer gen-
eration.

Qualitative Results: In Figure 4, we enumerate some typ-
ical results generated by our method. The upper part shows
the out-of-domain answers (rendered in green) generated by
KcGA that are the same as the ground truth ones. The lower
part shows the answers generated by KcGA that are seman-
tically similar to the ground truth ones. In order to comply
with the current video question answering work, we have to
use the Acc for evaluation, which has obvious limitations.
For example, it can be observed that the generated answer
”Nod head” is semantically identical to the correct answer
”Nod”, but the semantic consistency cannot be reflected by
the Acc. This explains why our results in table 6 are particu-
larly low. Even though we obtain semantically dissimilar re-
sult to the ground truth answer e.g. ”laugh” versus ”smile”,
it still cannot be regarded as a wrong answer either. These
properties are not possessed by the multi-label classification
tasks.

Conclusion
Open-ended VideoQA task needs to generate answer accord-
ing to the video content and target question. We provide a
framework that can efficiently generate out-of-domain an-
swers. The framework follows a traditional encoder-decoder
structure. In the decoding phase, we propose an adaptive ex-
ternal knowledge module and a novel multi-stream informa-
tion control mechanism to use knowledge constraints to op-
timize the feature encoding, and subsequently improve the
quality of answer generation. Our model achieves state-of-
the-art performance on two challenging VideoQA datasets.
Especially, our method is effective to multi-word answer

generation task.
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