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Abstract

Multiview clustering (MVC) aims to reveal the underly-
ing structure of multiview data by categorizing data sam-
ples into clusters. Deep learning-based methods exhibit
strong feature learning capabilities on large-scale datasets.
For most existing deep MVC methods, exploring the invari-
ant representations of multiple views is still an intractable
problem. In this paper, we propose a cross-view contrastive
learning (CVCL) method that learns view-invariant rep-
resentations and produces clustering results by contrast-
ing the cluster assignments among multiple views. Specif-
ically, we first employ deep autoencoders to extract view-
dependent features in the pretraining stage. Then, a cluster-
level CVCL strategy is presented to explore consistent se-
mantic label information among the multiple views in the
fine-tuning stage. Thus, the proposed CVCL method is
able to produce more discriminative cluster assignments by
virtue of this learning strategy. Moreover, we provide a the-
oretical analysis of soft cluster assignment alignment. The
extensive experimental results obtained on several datasets
demonstrate that the proposed CVCL method outperforms
several state-of-the-art approaches.

1. Introduction
Multiview data are usually represented by different types

of features or collected from multiple sources. All views
share the same semantic information contained in the mul-
tiview data. Simultaneously, the data information derived
from multiple views is complementary [6, 36]. The goal of
multiview clustering (MVC) is to divide data samples into
different groups according to their distinct feature informa-
tion.

MVC has attracted increasing attention for many ma-
chine learning tasks, including feature selection [36], scene
recognition [23] and information retrieval [8, 41, 5]. The ex-
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isting literature involving traditional machine learning tech-
niques can be roughly divided into four categories, includ-
ing subspace learning-based methods [5, 26], nonnegative
matrix factorization (NMF)-based methods [32, 9], graph
learning-based methods [6, 11], and multiple kernel-based
methods [16, 17]. These traditional shallow models often
exhibit limited capabilities to conduct feature representation
learning on large-scale datasets [31].

A number of deep learning-based methods have been
proposed to alleviate the above problems [28, 37, 13, 21,
39, 42, 14, 35]. The goal of these deep MVC methods is
to learn a more discriminative consensus representation by
transforming each view with a corresponding view-specific
encoder network. For example, Xie et al. [35] proposed
a deep embedding-based clustering method that simultane-
ously learns feature representations and cluster assignments
using deep neural networks. Li et al. [14] proposed a deep
adversarial MVC method that learns the intrinsic structure
embedded in multiview data. Zhou et al. [42] proposed
an end-to-end adversarial attention network that makes use
of adversarial learning and an attention mechanism to align
latent feature distributions and evaluate the importance of
different modalities. These methods yield significantly im-
proved clustering performance. However, they fail to con-
sider the semantic label consistency among multiple views,
which may lead to difficulty in learning consistent cluster
assignments.

Recently, contrastive learning has been integrated into
deep learning models to learn discriminative representa-
tions of multiple views [12, 7]. Most existing contrastive
learning-based methods attempt to maximize the mutual in-
formation contained among the assignment distributions of
multiple views [37, 30, 3]. For example, Yang et al. [38]
took advantage of the available data pairs as positive sam-
ples and randomly chose some cross-view samples as nega-
tive samples for MVC. In particular, the term “cross-view”
means that any two views among multiple views are in-
volved in the contrastive learning process. Caron et al. [3]
presented an unsupervised visual feature learning method



that enforces consistency between the cluster assignments
produced for different augmentations. Xu et al. [37] pre-
sented a multilevel feature learning (MFL) method to gen-
erate features at different levels for contrastive MVC, e.g.,
low-level features, high-level features and semantic fea-
tures. However, which features play critical roles in con-
trastive feature learning remains unknown [27, 30]. This
still leaves an important open question: ”which representa-
tion should be invariant to multiple views?” Therefore, this
motivates us to develop a cross-view contrastive learning
(CVCL) model to build a more reasonable view-invariant
representation scheme for multiview learning.

In this paper, we present a CVCL method that learns
view-invariant representations for MVC. In contrast with
most existing deep MVC methods, a cluster-level CVCL
strategy is introduced to capture consistent semantic label
information across multiple views. By contrasting cluster
assignments among multiple views, the proposed CVCL
method learns view-invariant representations between pos-
itive pairs for MVC. The cluster assignments derived from
positive pairs reasonably align the invariant representations
among multiple views. Such an alignment flexibly de-
scribes the consistent semantic labels obtained from indi-
vidual views, which are used to measure the intrinsic re-
lationships among the data samples. The K-dimensional
assignment probability represents the cluster assignment of
each sample in the corresponding view. Based on these
view-invariant representations, the contrastive loss of the
proposed CVCL method encourages the K-dimensional
cluster assignments produced for positive pairs to be simi-
lar and pushes the cluster assignments provided for negative
pairs apart. In addition, we provide a theoretical explanation
for the realizability of soft cluster assignment alignment.

Our major contributions are summarized as follows.

• A CVCL model that contains a two-stage training
scheme is proposed to learn view-invariant represen-
tations in an end-to-end manner.

• By contrasting the cluster assignments among multiple
views, a cluster-level CVCL strategy is presented to
explore consistent semantic label information.

• A theoretical analysis of the alignment among the pro-
duced view-invariant representations explains why the
CVCL model is able to work effectively under certain
conditions.

• Extensive experiments conducted on seven multiview
datasets demonstrate the effectiveness of the proposed
CVCL method.

2. Related Work
In this section, we briefly introduce some work related

to the proposed CVCL method, including studies on MVC

and contrastive learning.

2.1. Deep Multiview Clustering

Inspired by recent advances in deep neural network tech-
niques, deep clustering approaches consisting of multi-
ple nonlinear transformations have been extensively stud-
ied [29, 37, 7, 40, 30, 3]. One of the representative deep
MVC methods is based on deep autoencoders with different
regularization terms. These deep autoencoder-based MVC
methods aim to learn a consensus representation by min-
imizing the reconstruction error induced by instances of
multiple views. For example, et al. [35] proposed a deep
embedded clustering (DEC) method using deep neural net-
works. DEC first transforms the input sample into features
with a nonlinear mapping:

fθ : X → Z (1)

where θ is a learnable parameter set. Then the Kull-
back–Leibler (KL) divergence between the soft assignment
qi and the auxiliary distribution pi is defined as follows:

L = KL (P||Q) =
∑
i

∑
j

pij log
pij
qij

. (2)

The KL divergence loss is minimized to improve the cluster
assignment and feature representation effects.

2.2. Contrastive Learning

Contrastive learning has recently achieved significant
progress in self-supervised representation learning [7, 27,
30]. Contrastive learning-based methods are essentially de-
pendent on a large number of distinct pairwise representa-
tion comparisons. Specifically, these methods attempt to
maximize the similarities among positive pairs and simul-
taneously minimize those among negative pairs in a latent
feature space. The positive pairs are constructed from the
invariant representations of all multiview instances of the
same sample. The negative pairs are obtained from the in-
variant representations of multiple views for different sam-
ples. For example, Chen et al. [7] presented a visual rep-
resentation framework for contrastive learning, which max-
imizes the agreement between differently augmented views
of the same example in the latent feature space. Wang et
al. [30] investigated the two key properties of the loss func-
tion of contrastive learning, i.e., the alignment of features
derived from positive pairs and the uniformity of the fea-
ture distribution induced on the hypersphere, which can be
used to measure the resulting representation quality. These
methods are capable of learning good representations based
on data argumentation. However, it remains challenging to
determine invariant representations for multiple views.



Figure 1. The framework of CVCL. Each view contains two modules, including a view-specific autoencoder module and a CVCL module.
The multilayer perceptron (MLP) consists of multiple linear layers. The view-specific autoencoder module contains the encoding part and
the decoding part, i.e.,
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, respectively. The CVCL module is employed to explore

consistent semantic label information by contrasting the cluster assignments among multiple views.

3. The Proposed Method

3.1. Proposed Statement

Given a set of multiview data X ={
X(v) ∈ Rdv×N

}nv

v=1
with nv views and N samples,

X(v) represents the vth view of the multiview data.
Each view X(v) =

[
x
(v)
1 ,x

(v)
2 , ...,x

(v)
N

]
has a total of

N instances, where x
(v)
i (1 ≤ i ≤ N) represents a dv-

dimensional instance. Assume that K is the number of
clusters. The samples with the same semantic labels can be
grouped into the same cluster. Hence, N samples can be
categorized into K different clusters.

3.2. Network Architecture

The goal of the proposed CVCL method is to produce
semantic labels for end-to-end clustering from the raw in-
stances of multiple views. We introduce an end-to-end
deep clustering network architecture by applying contrast-
ing cluster assignments to feature representation learning.
As illustrated in Fig. 1, the proposed CVCL network archi-
tecture consists of two main modules, i.e., view-specific au-
toencoder module and cross-view contrastive learning mod-
ule. The view-specific autoencoder module individually
learns clustering-friendly features among multiple views
under unsupervised representation learning. The cross-view
contrastive learning module achieves the final cluster result
by contrasting cluster assignments. With these two mod-
ules, CVCL simultaneously learns the view-invariant repre-
sentations and produce the clustering result for MVC.

3.3. Cluster-Level CVCL

Let f : X →
{
Z(v) ∈ RN×k

}nv

v=1
be a function that

maps N samples into semantic features. We stack two linear
layers and a successive softmax function on the semantic
features to produce a cluster assignment probability, which

is computed by

f{
W

(v)
h

}nv

v=1

:
{
Z(v)

}nv

v=1
→
{
H(v)

}nv

v=1
(3)

where
{
W

(v)
h

}nv

v=1
is a set of learnable parameters.

Inspired by recently proposed contrastive learning tech-
niques, we employ these techniques on the semantic labels
to explore the consistency information possessed across
multiple views. We can obtain cluster probability matrices{
H(v) ∈ RN×K

}nv

v=1
for all views, which are produced on

the sematic features of the previous layer. Let h(v)
i be the

ith row in H(v), and let h(v)
ij represent the probability that

instance i belongs to cluster j in view m. The semantic la-
bel of instance i is determined by the largest value among
the probabilities in h

(v)
i .

To increase the differences among the cluster assign-
ments, a unified target distribution

{
P(v) ∈ RN×K

}nv

v=1
is

considered to be a good surrogate for
{
H(v)

}nv

v=1
, each el-

ement of which is calculated as follows:

p
(v)
ij =

(
h
(v)
ij

)2/∑N
i=1 h

(v)
ij∑K

k=1

((
h
(v)
ik

)2/∑N
i=1 h

(v)
ik

) . (4)

Let p(v)
j be the jth column of P(v). Each element p(v)ij in

p
(v)
j indicates a soft cluster assignment of sample i belong-

ing to cluster j. Thus, p(v)
j represents a cluster assignment

of the same semantic cluster.
The instances in the different views corresponding to

an individual sample share common semantic information.
The similarity between two cluster assignments p

(v1)
j and

p
(v2)
j of cluster j is measured by

s
(
p
(v1)
j ,p

(v2)
j

)
=
(
p
(v1)
j

)T
p
(v2)
j

(5)



where v1 and v2 denote two distinct views. The cluster
assignment probabilities of the instances among different
views should be similar in the CVCL module since these
instances characterize the same sample. Moreover, the in-
stances in multiple views are irrelevant to each other if
they are used to characterize different samples. Therefore,
there are (nv − 1) positive cluster assignment pairs and
nv (K − 1) negative cluster assignment pairs when consid-
ering p

(v)
j and K clusters across nv views.

The similarities among the intracluster assignments
should be maximized, and those among the intercluster as-
signments should be minimized. We simultaneously cluster
the samples while enforcing consistency among the cluster
assignments. The cross-view contrastive loss between p

(v1)
k

and p
(v2)
k is defined as follows:

l(v1,v2) = − 1

K

K∑
k=1

log
e
s
(
p

(v1)

k ,p
(v2)

k

)/
τ

T
,

T =

K∑
j=1,j ̸=k

e
s
(
p

(v1)
j ,p

(v1)

k

)/
τ
+

K∑
j=1

e
s
(
p

(v1)
j ,p

(v2)

k

)/
τ

(6)

where τ is a temperature parameter,
(
p
(v1)
k ,p

(v2)
k

)
is a pos-

itive cluster assignment pair between two views v1 and v2,
and

(
p
(v1)
j ,p

(v1)
k

)
(j ̸= k) and

(
p
(v1)
j ,p

(v2)
k

)
are the neg-

ative cluster assignment pairs in two views v1 and v2, re-
spectively. The cross-view contrastive loss induced across
multiple views is designed as:

Lc =
1

2

nv∑
v1=1

nv∑
v2=1,v2 ̸=v1

l(v1,v2). (7)

The cross-view contrastive loss explicitly compares pairs of
cluster assignments among multiple views. It pulls pairs
of cluster assignments from the same cluster together and
pushes cluster assignments from different clusters away
from each other.

To prevent all instances from being assigned to a partic-
ular cluster, we introduce a regularization term as follows:

La =

nv∑
v=1

K∑
j=1

q
(v)
j log q

(v)
j (8)

where q
(v)
j is defined as q

(v)
j =

N∑
i=1

p
(v)
ij

N . This term is re-
garded as a cross-view consistency loss in the CVCL model
[37]. Assume that all instances belong to a single clus-
ter j. This implies that p(v)ij = 1 for all i = 1, 2, ..., N

such that q(v)j log q
(v)
j = 0. As 0 ≤ p

(v)
ij ≤ 1, we have

q
(v)
j log q

(v)
j ≤ 0. This means that the following inequality,

q
(v)
j ln q

(v)
j < 0, (9)

holds if each cluster has at least one instance. This encour-
ages more elements to reside in each greater-than-zero row
of P(v) by minimizing La in Eq. (8). Therefore, the net-
work is able to encourage cross-view consistency across
the cluster assignment probabilities of different instances
among the multiple views of each sample with Eq. (8).

3.4. Two-Stage Training Scheme

As illustrated in Fig. 1, we first perform a pretraining
task with a deep autoencoder for parameter initialization.
Then, we employ a fine-tuning step to train the whole net-
work for MVC.

3.4.1 Parameter Initialization via a Pretraining Net-
work

We design a pretraining network that is made up of a view-
specific encoder module f

(v)
e (1 ≤ v ≤ nv) and a corre-

sponding decoder module f
(v)
d for each view. The encoder

module learns the embedded feature representations by

z
(v)
i = f (v)

e

(
x
(v)
i ,W(v)

e

)
(10)

where z
(v)
i is the embedded feature representation of x(v)

i .
The decoder module reconstructs the sample x(v)

i as follows

x̃
(v)
i = f

(v)
d

(
f (v)
e

(
x
(v)
i ,W(v)

e

)
,W

(v)
d

)
(11)

where x̃
(v)
i is a reconstruction of x(v)

i . Each encoder or de-
coder module consists of four or more layers in the pro-
posed CVCL model. The nonlinear rectified linear unit
(ReLU) function is chosen as the activation function in the
deep autoencoder.

For multiple views, the reconstruction loss of the pre-
training network between the input and output is designed
as:

Lpre =

nv∑
v=1

N∑
i=1

∥∥∥x(v)
i − f

(v)
d

(
f (v)
e

(
x
(v)
i ,W(v)

e

)
,W

(v)
d

)∥∥∥2
2

(12)
This is considered to be a pretraining stage for parameter
initialization.

3.4.2 MVC via a Fine-tuning Network

The overall loss of the proposed method consists of three
main components: the reconstruction loss of the pretraining



Algorithm 1 Optimization procedure for CVCL

Input: Data matrices
{
X(v)

}nv

v=1
, the numbers of samples

N and epochs epochs, parameters α and β.
1: Initialize

{
W(v)

}nv

v=1
by minimizing Lpre in Eq. (12);

2: for t = 1 to epochs do
3: Choose a random minibatch of samples;

4: Computing
{
X̃(v)

}nv

v=1
and

{
H(v)

}nv

v=1
via Eqs.

(10) and (3), respectively;
5: Computing

{
P(v)

}nv

v=1
via Eq. (4);

6: Computing
{
W(v)

}nv

v=1
and

{
W

(v)
h

}nv

v=1
by mini-

mizing Lfine in Eq. (13);
7: end for
8: Calculate semantic labels by Eq. (14);

Output: The label predictions Y = [y1, y2, ..., yn].

network, the cross-view contrastive loss and the cross-view
consistency loss, i.e.,

Lfine = Lpre + αLc + βLa (13)
where α and β are tradeoff hyperparameters.

The proposed method aims to learn the common seman-
tic labels from the feature representations, which are gen-
erated from the instances of multiple views. Let q(v)

i be
the ith row of P(v), and let q(v)ij denote the jth element

of q
(v)
i . Specifically, q

(v)
i is the K-dimensional soft as-

signment probability, where
K∑
i=1

q
(v)
ij = 1. Once the training

process of the network is completed, the semantic label of
sample i (1 ≤ i ≤ N) can be predicted by

yi = argmax
j

(
1

nv

nv∑
v=1

q
(v)
ij

)
. (14)

An adaptive momentum-based minibatch gradient de-
scent method [22] is employed to optimize the whole net-
work during the two training stages. The final clustering re-
sults are produced by the deep autoencoder with the CVCL
module. The entire optimization procedure of the proposed
method is summarized in Algorithm 1.

3.5. Theoretical Analysis

3.5.1 Generalization Bound of the Loss Function

We analyze the generalization bound of the loss function in
the proposed method. According to Theorem 1, Lc has a
specific lower bound in Eq. (7). The proof of Theorem 1
can be found in the supplementary material. Assume that
each cluster must have at least one multiview data sample.
This indicates that q(v)ij > 0 in q

(v)
j . A constant c must

exist such that q(v)ij log q
(v)
ij > c in Eq. (8) holds for all

j = 1, 2, ...,K. This shows that La also has a lower bound
in Eq. (8). Therefore, a lower bound is theoretically guar-
anteed to be obtained when minimizing Lfine in Eq. (13).

Theorem 1 Assume that there are N samples and K clus-
ters. Given two views v1 and v2 and l(v1,v2) in Eq. (6), the
following inequality holds:

l(v1,v2) ≥ elog(2K−1)−N/τ .

3.5.2 Realizability of Soft Cluster Assignment Align-
ment

For the sake of discussion, we assume that there are
three clusters with sizes of k1, k2 and k3 and N samples
(N = k1 + k2 + k3). We consider an ideal case in which
all instances in different clusters strictly belong to the re-
spective low-dimensional subspaces in each view. Without
loss of generality, each P(v) can be represented by

P(v) =

 P
(v)
1

P
(v)
2

P
(v)
3

 =


−→
1k1

−→
0k1

−→
0k1−→

0k2

−→
1k2

−→
0k2−→

0k3

−→
0k3

−→
1k3

 (15)

where
−→
1k1 denotes a column vector of all ones with a size

of k1. In particular, we always find a matrix transpose T to
obtain such a matrix P(v) if the arrangement assumption is
violated. For any two views v1 and v2, P(v1) is identical to
P(v2). Hence, the

{
P(v)

}nv

v=1
are invariant to all types of

instances for multiple views.

Definition 1 (Strict Alignment) Given an encoder f , we
have P(v1) = f

(
X(v1)

)
∈ RN×K and P(v2) =

f
(
X(v2)

)
∈ RN×K , where X(v1) and X(v2) represent the

instances of views v1 and v2, respectively. The encoder f
is strictly aligned if the following conditions are satisfied:
∀v1, v2 ∈ {1, 2, ...nv}, v1 ̸= v2; ∀i, j ∈ {1, 2, ...K}, i ̸= j;
and ∀k ∈ {1, 2, ...N},

(1) p
(v1)
i = p

(v2)
i ;

(2) p
(v1)
ik =

{
1, the kth sample belongs to the ith cluster
0, otherwise

;

(3)
〈
p
(v1)
i ,p

(v1)
j

〉
=
〈
p
(v1)
i ,p

(v2)
j

〉
= 0

where p
(v1)
i and p

(v2)
i represent the ith columns of P(v1)

and P(v2), respectively.

For any cluster assignment i (1 ≤ i ≤ 3) in P(v1), one
positive cluster assignment pair and four negative cluster
assignment pairs are produced for the two views v1 and v2.
To illustrate the realizability of similarity alignment, we in-
troduce the definition of strict alignment.



Theorem 2 For nv given views of multiview data, Lc in
Eq. (7) is minimized if f is strictly aligned ∀v1, v2 ∈
{1, 2, ...nv} and v1 ̸= v2.

Theorem 2 shows that a lower bound in Theorem 1 can
be theoretically achieved when strict alignment is satis-
fied according to Definition 1. The proof of Theorem 2
is given in the supplementary material. Strict alignment is
an ideal case, which implies that each cluster assignment i
(1 ≤ i ≤ 3) in P(v) (1 ≤ v ≤ nv) satisfies the conditions in
Definition 1. Specifically, the first condition affects a single
positive cluster assignment pair while the other two condi-
tions are imposed on the four negative cluster assignment
pairs.

In the general case, designing an encoder that is strictly
aligned for multiple views is an intractable problem. Let
p̃
(v)
i be the ith row of P(v), i.e., the feature of the ith in-

stance in the vth view. Considering the cosine similarity
measure, the distance betweem two features p̃(v1)

i and p̃
(v2)
i

is measured as

d
(
p̃
(v1)
i , p̃

(v2)
i

)
=

〈
p̃
(v1)
i , p̃

(v2)
i

〉
∥∥∥p̃(v1)

i

∥∥∥ ∥∥∥p̃(v2)
i

∥∥∥ (16)

where ⟨·, ·⟩ is the dot product operator. The cosine simi-
larity may be inaccurate when two instances of a sample in
views v1 and v2 belong to different domains of multiview
data , e.g., text and image pairs. In addition, the align-
ment sensitivity is insufficient when considering the simi-
larity between two features p̃(v1)

i and p̃
(v2)
i in Eq. (5). For

the proposed CVCL method, P(v) is theoretically invariant
to all types of views. From the point of view of alignment,
the alignment of the cluster assignments exhibits a stronger
ability to perform invariant representation learning than that
of the instance features in MVC.

3.5.3 Complexity Analysis

Let m and s denote the minibatch size and the
maximum number of neurons in the hidden layers
of the proposed network architecture, respectively.
The complexity of the feedforward computation is
O
(
nvmdvs

(r+1) + nvmdvK
)

in the fine-tuning phase.
The complexities of the reconstruction loss, cross-view
contrastive loss and cross-view consistency loss are
O (nvdvm), O

(
m2Knv ((nv − 1) + nv (K − 1))

)
and O (nvK), respectively. Therefore, the over-
all complexity of the proposed CVCL method is
t
(
nvmdvs

(r+1) + n2
vm

2K2 + nvmdvK
)
, where t is

the maximum number of iterations in the pretraining and
fine-tuning phases.

4. Experiments

In this section, we conduct extensive experiments
to evaluate the performance of the proposed CVCL
method. The source code for CVCL is implemented
in Python 3.9. The source code is available at
https://github.com/chenjie20/CVCL. All experiments are
conducted on a Linux workstation with a GeForce RTX
2080 Ti GPU (11 GB caches), an Intel (R) Xeon (R) E5-
2667 CPU and 256.0 GB of RAM.

4.1. Experimental Settings

4.1.1 Datasets

The proposed CVCL method is experimentally evaluated on
seven publicly available multiview datasets. The MSRC-v1
dataset contains 210 scene recognition images belonging
to 7 categories [33]. Each image is described by 5 differ-
ent types of features. The COIL-20 dataset is composed of
1,440 images belonging to 20 categories [19]. Each image
is described by 3 different types of features. The Handwrit-
ten dataset consists of 2,000 handwritten images of digits
from 0 to 9 [1]. Each image is described by 6 different
types of features. The BDGP dataset contains 2,500 sam-
ples of Drosophila embryos [2]. Each sample is represented
by visual and textual features. The Scene-15 dataset con-
sists of 4,485 scene images belonging to 15 classes [10].
Each image is represented by 3 different types of features.
The MNIST-USPS dataset contains 5,000 samples with two
different styles of digital images [1]. The Fashion dataset
contains 10, 000 images of products [34]. Each image is
represented by three different styles.

4.1.2 Comparison Methods

To validate the superiority of the proposed CVCL method,
we compare CVCL with several state-of-the-art methods,
including the efficient and effective incomplete MVC (EE-
IMVC) algorithm, augmented sparse representation (ASR)
algorithm [6], deep safe IMVC (DSIMVC) algorithm [24],
dual contrastive prediction (DCP) algorithm [15], deep safe
MVC (DSMVC) algorithm [25] and MFL [37]. For DCP,
the best clustering result is reported from the combinations
of each pair of individual views in each dataset. In addi-
tion, two extra baselines are included for comparison pur-
poses. Specifically, we first apply spectral clustering [18]
on each individual view and report the best clustering result
obtained among multiple views, i.e., the best single-view
clustering (BSVC) method. Then, we apply an adaptive
neighbor graph learning method [20] to produce a similarity
matrix for each individual view. We aggregate all similarity
matrices into an accumulated similarity matrix for spectral
clustering, which is referred to as SCAgg.



Table 1. Results of clustering performance comparisons conducted on all datasets.
Methods MSRC-v1 COIL-20 Handwritten BDGP Scene-15 MNIST-USPS Fashion

ACC NMI Purity ACC NMI purity ACC NMI purity ACC NMI purity ACC NMI purity ACC NMI purity ACC NMI purity
BSVC 78.57 68.04 78.57 80.21 84.75 80.47 75.35 74.07 75.35 53.68 32.42 54.32 38.05 38.85 42.08 67.98 74.43 72.34 60.32 64.91 63.84
SCAgg 82.71 72.52 82.71 73.13 78.46 73.89 79.85 82.62 83.35 68 55.71 70.72 38.13 39.31 44.76 89 77.12 89.18 98 94.8 97.56

EE-IMVC 85.81 73.76 85.81 75.73 83.52 75.76 89.3 81.07 89.3 88 71.76 87.76 39 33.02 40.27 76 68.04 76.48 84 79.53 84.45
ASR 91.9 84.75 91.9 80.9 87.6 81.5 93.95 88.26 93.95 97.68 92.63 97.68 42.7 40.7 45.6 97.9 94.72 97.9 96.52 93.04 96.52

DSIMVC 79.05 69 79.05 65.55 72.51 66.67 87.2 80.39 87.2 99.04 96.86 99.04 28.27 29.04 29.79 99.34 98.13 99.34 88.21 83.99 88.21
DCP 78.57 74.84 79.43 67.36 78.79 69.86 85.75 85.05 85.75 97.04 92.43 97.04 42.32 40.38 43.85 99.02 97.29 99.02 89.37 88.61 89.37

DSMVC 85.24 76.96 85.24 76.46 84.15 78.19 96.8 92.57 96.8 75.8 61.39 75.8 43 .48 41.11 45.92 96.34 94.27 96.34 89.63 86.81 89.63
MFL 93.33 86.51 93.33 73.19 81.43 75.07 86.55 85.98 86.55 98.72 96.13 98.72 42.52 40.34 44.53 99.66 99.01 99.66 99.2 98 99.2

CVCL 97.62 94.98 97.62 84.65 88.89 85.07 97.35 94.05 97.35 99.2 97.29 99.2 44.59 42.17 47.36 99.7 99.13 99.7 99.31 98.21 99.31

Table 2. Ablation study concerning the main components of the proposed CVCL method on all the datasets.
Methods Lpre Lc La

MSRC-v1 COIL-20 Handwritten BDGP Scene-15 MNIST-USPS Fashion
ACC NMI purity ACC NMI purity ACC NMI purity ACC NMI purity ACC NMI purity ACC NMI purity ACC NMI purity

CVCLfine-tuning ✓ ✓ 82.38 76.17 82.38 66.94 78.96 69.86 88 87.87 88 99.12 96.88 99.12 40.42 39.8 43.81 99.48 98.5 99.48 99.16 97.87 99.16
CVCLLc ✓ ✓ 55.34 50.71 55.34 51.11 70.61 51.39 87.35 90.29 87.7 98.92 96.3 98.92 25.04 30.91 25.04 59.84 81.57 59.84 99.2 97.98 99.2
CVCL ✓ ✓ ✓ 97.62 94.98 97.62 84.65 88.89 85.07 97.35 94.05 97.35 99.2 97.29 99.2 44.59 42.17 47.36 99.7 99.13 99.7 99.31 98.21 99.31

4.1.3 Evaluation Metrics

Three widely used metrics are employed to evaluate the
clustering performance of all competing algorithms, includ-
ing the clustering accuracy (ACC), normalized mutual in-
formation (NMI), and purity [4]. For example, ACC con-
siders the best matching result between two assignments,
i.e., a cluster assignment obtained from an MVC algorithm
and a known ground-truth assignment. For these metrics, a
larger value indicates better clustering performance.

4.1.4 Network Architecture and Parameter Settings

The proposed network architecture consists of an input
layer, hidden layers in the view-specific encoders, an ex-
tra linear layer and a softmax layer. A set of view-
specific autoencoders is contained in the pretraining stage.
The number of hidden layers possessed by the view-
specific encoders or decoders ranges from 3 to 5. For
example, the sizes of the 5 hidden layers are set to
[dv, 256, 512, 1024, 2048, r1], where dv is the dimension-
ality of an instance in the vth view and r1 is the dimen-
sionality of the corresponding feature. Moreover, r2 repre-
sents the size of the extra linear layer. We choose r1 and
r2 from [2000, 1500, 1024, 1000, 768, 512, 500, 256, 200].
The overall loss of the proposed network architecture
has two parameters, α and β, which are chosen from
{0.005, 0.01, 0.05} with a grid search strategy. For a fair
comparison, the best clustering results of these competing
methods are obtained by tuning their parameters.

4.2. Performance Evaluation

The clustering results produced by all competing meth-
ods on the seven multiview datasets are reported in Ta-
ble 1. The best and second-best values of the cluster-
ing results are highlighted in bold and underlined, respec-
tively. The contrastive learning-based methods, including
CVCL, DSMVC, DSIMVC and MFL, often achieve sig-
nificant improvements over the other methods on large-
scale datasets, e.g., the BDGP, MNIST-USPS, Scene-15

and Fashion datasets. Moreover, the CVCL method sig-
nificantly outperforms the other contrastive learning-based
methods, including DSMVC, DCP, DSIMVC and MFL, on
all datasets. This verifies the importance of the cluster-level
CVCL strategy. These results demonstrate the effective-
ness of our proposed CVCL method. The proposed CVCL
method achieves the best clustering results on all datasets.
This is consistent with our theoretical analysis. For ex-
ample, the CVCL method achieves performance improve-
ments of approximately 4.29%, 8.47%, and 4.29% over the
second-best method on the MSRC-v1 dataset in terms of the
ACC, NMI, and purity metrics, respectively. Similarly, the
CVCL method performs much better than the other com-
peting methods on the other datasets. These results demon-
strate the superiority of CVCL over the other methods.

Two reasons explain the advantages and effectiveness of
the proposed CVCL method. First, contrastive learning-
based methods, e.g., CVCL, DSMVC, DSIMVC and MFL,
consider deep representations for multiple views. We ob-
serve that they often achieve significant improvements over
the other traditional methods, especially on large-scale
datasets. Second, the alignment of soft cluster assignments
plays a critical role in contrastive learning. By contrasting
the cluster assignments among multiple views, the proposed
CVCL method is guided to learn view-invariant representa-
tions in unsupervised learning. Consequently, it learns more
discriminative view-invariant representations than the other
contrastive learning-based methods.

4.3. Ablation Studies

According to the overall reconstruction loss in Eq. (13),
three different loss components are included. To verify the
importance of each component in CVCL, we perform abla-
tion studies with the same experimental settings to isolate
the necessity of each component. Specifically, we consider
two special cases: performing MVC in the fine-tuning stage
without pretraining and performing MVC in both stages
without the regularization term of the overall reconstruction
loss La. These versions are referred to as CVCLfine-tuning



(a) MSRC-v1 (b) Fashion

Figure 2. The ACC values yielded by the CVCL method with dif-
ferent α and β combinations on the four representative datasets.

(a) MSRC-v1 (b) Fashion

Figure 3. The NMI values yielded by the CVCL method with dif-
ferent α and β combinations on the two representative datasets.

50 100

Iterations

0

5

10

15

20

25

30

V
a
lu

e

MSRC-v1

COIL-20

Handwritten

BDGP

Scene-15

MNIST-USPS

Fashion

(a) The pretraining stage
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(b) The fine-tuning stage

Figure 4. Convergence results obtained by the CVCL method on
all the datasets.

and CVCLLc, respectively.
Table 2 shows the obtained clustering results in terms of

the three metrics produced with the combinations of differ-
ent loss components. The clustering results in the first two
rows of Table 2 are achieved by the two special cases. As
expected, the best performance can be achieved when all
loss terms are considered and when the two-stage training
scheme is employed in CVCL. Moreover, we can observe
that the clustering performance is significantly improved
when the pretraining stage is employed in CVCL. For ex-
ample, CVCL performs much better than CVCLfine-tuning,
with improvements of approximately 5.24%, 18.81% and
15.24% in terms of the ACC, NMI and purity metrics,
respectively, achieved on the MSRC-v1 dataset. How-
ever, the clustering performance gap narrows as the num-
ber of samples significantly increases. For example, CVCL
achieves 0.08%, 0.22% and 0.15% ACC improvements over
CVCLfine-tuning on the BDGP, MNIST-USPS and Fashion
datasets, respectively. This indicates that an increase in the
number of samples may reduce the significant advantages
provided by the pretraining stage. In addition, the cluster-
ing performance achieved on most datasets dramatically de-
clines when La is ignored in the overall reconstruction loss.
This indicates that effectively guarantees that all instances
can be assigned into clusters. Therefore, each component in
the overall reconstruction loss plays a crucial role in learn-
ing view-invariant representations.

4.4. Parameter Sensitivity Analysis

We conduct experiments on two representative datasets,
i.e., the MSRC-v1 and Fashion datasets, to investigate
the sensitivity of the α and β parameters in the proposed
CVCL method. The α and β parameters are chosen from
{0.001, 0.005, 0.01, 0.05} for CVCL. Figures 2 and 3 show
the clustering performance achieved by the CVCL method
in terms of the ACC and NMI values obtained with different
combinations of α and β. It can be observed that the clus-
tering performance attained by the CVCL method on the
MSRC-v1 dataset seriously fluctuates with different com-
binations of α and β. As the number of samples dramati-
cally increases in the other dataset, the CVCL method can
achieve relatively stable clustering results with most com-
binations of α and β. This indicates that the CVCL method
has stable clustering performance when utilizing a larger
number of samples.

4.5. Training Analysis

We investigate the convergence of the CVCL method.
Two major learning stages are contained in the CVCL
method, including the pretraining and fine-tuning stages. To
validate the convergence of the CVCL method, we compute
the results of the loss functions in Eqs. (12) and (13) dur-
ing these two stages. Figure 4 shows the curves of the loss
function results obtained on all the datasets. The values of
the loss function in Eq. (12) dramatically drop in the first
few iterations and then slowly decrease until convergence is
achieved. We also observe a similar trend in the changes in
the loss function values in Eq. (13) on most datasets, e.g.,
the COIL-20, Handwritten and BDGP datasets. In addition,
the curves of the loss function in Eq. (13) produced on the
other datasets fluctuate slightly after the first few iterations.
These results demonstrate the effectiveness of the conver-
gence property of the CVCL method.

5. Conclusion

In this paper, we propose a CVCL method that
learns view-invariant representations for MVC. A cluster-
level CVCL strategy is presented to explore the consis-
tent semantic label information possessed among multiple
views.CVCL effectively achieves more discriminative clus-
ter assignments during two successive stages. A theoretical
analysis of soft cluster assignment alignment indicates the
importance of the cluster-level learning strategy in CVCL.
We conduct extensive experiments and ablation studies on
MVC datasets to validate the superiority of the model and
the effectiveness of each component in the overall recon-
struction loss.
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1. Additional Experiments

Table 1. Computation times (in seconds) of the other contrastive
learning-based methods on all the datasets.
Methods MSRC-v1 COIL-20 Handwritten BDGP Scene-15 MNIST-USPS Fashion
DSIMVC 676.78 480.59 2368.74 1234.33 1770.68 4236.72 2368.74

DCP 106.69 158.73 265.39 219.8 626.42 509.07 785.25
DSMVC 261.74 886.39 802.22 865.46 1233.89 1164.54 4130.62

MFL 123.81 496.78 688.11 68.31 1430.29 511.67 939.47
CVCL 97.55 149.05 235.69 41.91 605.12 449.78 687.03

1.1. Investigating the Computational Costs

We compare the proposed CVCL method with the other
contrastive learning-based methods in terms of their com-
putational costs. With the enhanced learning capabilities,
the importance of the computational cost may become sec-
ondary to the improved performance achievable by con-
trastive learning-based methods. Table 1 shows the running
times of all the competing algorithms on all the datasets. It
is clear that CVCL performs more efficiently than the other
algorithms. This demonstrates the advantages of the pro-
posed CVCL method in terms of computational efficiency.

1.2. Discussion

The instances of a sample from different views may sit
on different underlying distributions. This means that the
contrastive learning of the high-level and low-level features
may not be reasonable in MFL [1]. For a given sample, the
results of cluster assignments of its instances from multi-
ple views trend to be consistent in CVCL. In contrast with
MFL, CVCL ensures consistency among the cluster assign-
ments produced from multiple views. The semantic label
of each sample can be predicted using Eq. (14). Moreover,
we provide a theoretical analysis for soft cluster assignment
alignment. This explains why CVCL performs significantly
better than MFL on some of the datasets.

*Corresponding author

2. Detailed Proofs

2.1. Proof of Theorem 1

Theorem 1 Assume that there are N samples and K clus-
ters. Given two views v1 and v2 and l(v1,v2) in Eq. (6), the
following inequality holds:

l(v1,v2) ≥ elog(2K−1)−N/τ .

Proof Let p(v1)
j and p

(v2)
j be the jth columns of P(v1) and

P(v2), respectively. The ith elements p
(v1)
ij and p

(v2)
ij in

p
(v1)
j and p

(v2)
j represent the cluster assignment probabil-

ities, i.e., 0 ≤ p
(v1)
ij ≤ 1 and 0 ≤ p

(v2)
ij ≤ 1, respectively,

where 1 ≤ i ≤ N . Thus, we have

0 ≤ s
(
p
(v1)
j ,p

(v2)
j

)
≤ N and e

s
(
p

(v1)
j ,p

(v1)
j

)
≥ 1.
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l = − e
s
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k

)/
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s
(
p

(v1)
j ,p

(v1)

k

)/
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+
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)/
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and we obtain

log l = log

 K∑
j=1,j ̸=k

e
s
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)/
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+
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(
p
(v1)
k ,p

(v2)
k

)/
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≥ log (2K − 1)−N/τ .

Hence,
l(v1,v2) ≥ elog(2K−1)−N/τ .

□



2.2. Proof of Theorem 2

Theorem 2 For nv given views of multiview data, Lc in
Eq. (7) is minimized if f is strictly aligned ∀v1, v2 ∈
{1, 2, ...nv} and v1 ̸= v2.

Proof According to p
(v1)
i = p

(v2)
i and the result of p(v1)ik ,

we obtain

s
(
p
(v1)
i ,p

(v2)
i

)
=

(
p
(v1)
i

)T

p
(v2)
i = ki

where ki equals the number of samples in the ith cluster.
Similarly,

s
(
p
(v1)
i ,p

(v1)
j

)
= s

(
p
(v1)
i ,p

(v2)
j

)
= 0.

Hence,
l(v1,v2) = elog(2K−1)−N/τ .

This shows that Lc in Eq. (7) is minimized. □
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