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Abstract
In this paper, we reveal and study a new challenging problem faced by object Re-IDentification (ReID), i.e., Coupled Noisy
Labels (CNL) which refers to the Noisy Annotation (NA) and the accompanied Noisy Correspondence (NC). Specifically,
NA refers to the wrongly-annotated identity of samples during manual labeling, and NC refers to the mismatched training
pairs including false positives and false negatives whose correspondences are established based on the NA. Clearly, CNL
will limit the success of the object ReID paradigm that simultaneously performs identity-aware discrimination learning on
the data samples and pairwise similarity learning on the training pairs. To overcome this practical but ignored problem, we
propose a robust object ReID method dubbed Learning with Coupled Noisy Labels (LCNL). In brief, LCNL first estimates
the annotation confidences of samples and then adaptively divides the training pairs into four groups with the confidences
to rectify the correspondences. After that, LCNL employs a novel objective function to achieve robust object ReID with
theoretical guarantees. To verify the effectiveness of LCNL, we conduct extensive experiments on five benchmark datasets in
single- and cross-modality object ReID tasks compared with 14 algorithms. The code could be accessed from https://github.
com/XLearning-SCU/2024-IJCV-LCNL.

Keywords Person re-identification · Cross-modality person re-identification · Vehicle re-identification · Noisy labels · Noisy
correspondence

1 Introduction

For a given query, object Re-IDentification (ReID) (Zheng
et al., 2012, 2015; He et al., 2021; Rao et al., 2021; Ye
et al., 2021b; Ge et al., 2020; Luo et al., 2022; Bai et al.,
2017) aims at searching different images of the same iden-
tity from the gallery set, which plays an important role in
the intelligent surveillance system. In the heart of ReID, the
key is matching a specified object across non-overlapping
visible cameras, which is generally formulated as a single-
modalitymatching problem.Although single-modality ReID
has achieved promising performance in a number of scenar-
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ios, it cannot achieve encouraging results at night due to the
degraded performance of the visible camera under low illu-
mination conditions. As a remedy, cross-modality ReID (Ye
et al., 2021a;Wuet al., 2017, 2021;Lu et al., 2020;Choi et al.,
2020; Tian et al., 2021; Shi et al., 2023) associates the identi-
ties across visible and infraredmodalities so that the powerful
capacity of infrared cameras under low-lighting conditions
is exploited. Regardless of the difference in data resources,
most single- and cross-modality ReID methods (Ye et al.,
2021a, b; Ge et al., 2020; Rao et al., 2021; He et al., 2021; Lu
et al., 2020; Choi et al., 2020; Zheng et al., 2022) share the
same technical characteristics. Namely, both of them will
learn the identity-aware discrimination from the annotated
samples,while learning the pairwise similarity from the train-
ing pairs whose correspondences are established based on
the annotations. As a result, the success of both single- and
cross-modality ReID will heavily rely on the quality of data
annotations.

Unfortunately, in practice, it is expensive and even impos-
sible to precisely annotate all the samples due to the view-
point differences across cameras, poor recognizability in the
colorless infrared modality, and so on. As shown in Fig. 1a,
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Fig. 1 Our observation on Coupled Noisy LabeLs (CNL) problem.
CNL refers to the noisy annotation and the accompanied noisy corre-
spondence. a Noisy annotation (NA): it refers to the wrong annotations
of samples. b Noisy correspondence (NC): it refers to the mismatched
pairs including false positive and false negative pairs. Without loss of
generality, taking the cross-modality ReID as an example, two samples
R1
2 and R2

2 with similar poses, which should be of identity 2 and 1
respectively. Due to the over-high similarity, however, they are proba-
bly been wrongly annotated and such a wrong annotation will further
result in the false correspondence because the object pairs are usually
established based on annotations. In the figure, V /R denotes the visi-
ble/infraredmodality, and V i

j denotes the j-th samples of the i-th person

the analogous human poses and low image resolution prob-
ably result in Noisy Annotation (NA) which will degrade
the performance of object ReID in two aspects. On the one
hand, the sample-wise discrimination learning (Fig. 1c) will
fit NA, and thus optimizing ReID models in a wrong direc-
tion. On the other hand, as almost all existing object ReID
methods construct the training pairs using data annotations,
NA will result in another kind of label noise, i.e., Noisy Cor-
respondence (NC, Fig. 1b). As shown in Fig. 1d, the pairwise
similarity learning with NCwould wrongly increase the sim-
ilarities of false positive pairs (FP) while decreasing the ones
of false negative pairs (FN), thus degrading the performance
of ReID models.

Based on the above observations, we reveal and study the
Coupled Noisy Labels (CNL) problem for object ReID tasks
in this paper. Note that, some recent efforts (Ge et al., 2020;
Ye & Yuen, 2020; Yu et al., 2019; Ye et al., 2022) have been
devoted to achieving robustReIDbygenerating pseudo anno-
tations or revising noisy annotations. However, almost all of
them only focus on achieving robustness on NAwhile ignor-

ing the influence of NC. In fact, it is impossible to eliminate
the influence of CNL by only achieving robustness against
NA. To be specific, the ReID dataset usually consists of thou-
sands of identities (categories), thus hindering the accurate
revisions on NA. The inaccurate revisions on NA would still
introduce the NC, which finally degrades the performance.
To verify the above claims, some empirical studies will be
carried out in our experiments.

To conquer the above CNL problem in ReID, we propose
a robust object ReID framework, named Learning with Cou-
pled Noisy Labels (LCNL), which could be generalized to
single and cross-modality scenarios. Specifically, LCNL first
models the annotation confidences by resorting to thememo-
rization effect ofDeepNeuralNetworks (DNNs) (Arpit et al.,
2017), i.e., DNNs will first fit the clean data and then noisy
ones. Based on the estimated confidences, LCNL takes an
adaptive way to divide training pairs into different triplet
combinations with rectified correspondences, i.e., True Posi-
tive pairs (TP)&TrueNegative pairs (TN), TP&FN,FP&TN,
and FP&FN. Finally, to achieve robust ReID, LCNL adopts
a novel CNL-robust objective function which consists of soft
identification loss and adaptive quadruplet loss. In detail,
the soft identification loss has an incentive to penalize NA
by utilizing the estimated confidences. Besides, we propose
an adaptive quadruplet loss which adaptively changes the
optimization directions when encountering different triplet
combinations, thus enjoying robustness against NC. Thanks
to our loss, LCNL takes different optimization properties
w.r.t. different homogeneous combinations (i.e., TP&FN or
FP&TN),which is theoretical provable. In summary, the con-
tributions and novelties of this work are given as follows:

– We reveal a new problem faced by both single- and cross-
modality object re-identification, termed coupled noisy
labels. Different from existing studies on noisy annota-
tion, CNL refers to the noise in the identities (categories)
of samples and the accompanied noise in the correspon-
dence of training pairs. To the best of our knowledge,
the existing robust ReIDmethods only take the NA prob-
lem in single-modality person ReID into consideration.
There are few studies on NA for cross-modality ReID
so far, not to mention the more challenging and practical
CNL problem.

– To solve the CNL problem, we propose a robust object
ReID method (i.e., LCNL) which enjoys the robust-
ness against CNL for both single- and cross-modality
object ReID tasks. The major novelty of LCNL is the
CNL-robust object function which prevents models from
CNL-dominated optimization in two aspects. On the one
hand, it achieves robustness against NA by penalizing
samples of NA based on the estimated confidences. On
the other hand, it achieves robustness againstNCby adap-
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tively changing optimization directions and handling
homogeneous combinations with theoretical guarantees.

– Extensive experiments have been conducted on three
different ReID tasks including single-modality per-
son/vehicleReIDandcross-modality personReID,which
show the importance of the CNL problem and the effec-
tiveness of the proposed LCNL method.

2 RelatedWorks

In this section, we briefly review three topics related to this
work, i.e., deep object ReID, ReID with noisy annotations,
and learning with noisy labels.

2.1 Deep Object ReID

As the two most popular tasks of object ReID, person ReID
and vehicle ReID aim to match person and vehicle across
cameras, respectively. In general, person ReID (Shen et al.,
2018; Suh et al., 2018; Zheng et al., 2017b; Li et al., 2021;
He et al., 2021; Ye et al., 2021a; Wu et al., 2017, 2020)
could be roughly grouped into single- and cross-modality
retrieve tasks. In brief, the single-modality person ReID aims
at learning identity-aware discrimination by enlarging the
inter-identity differences and alleviating the intra-identity
variations caused by viewpoint differences or pose changes.
According to the differences in feature learning, most of
the single-modality person ReID works could be roughly
grouped into the following two categories: (i) the global fea-
ture learning based methods (Wang et al., 2016; Zheng et al.,
2017a; Li et al., 2021; Ye et al., 2021b) which extract the
global embedding for each person image by designing effec-
tive backbones or devising enhanced attention schemes; (ii)
the local feature learning methods (He et al., 2021; Sun et al.,
2018; Hou et al., 2019) which learn part or region aggregated
features to discover the nuances between different identities
through image division or human parsing techniques.

Thanks to the complementarity between visible and
infraredmodalities, cross-modality personReIDhas attracted
increasing attention from the community. The greatest chal-
lenge of this task lies in how to alleviate the modality
discrepancy caused by heterogeneous visible and infrared
cameras. To address the challenge, a number of visible-
infrared person ReID methods have been proposed, which
could be classified into the following three categories, i.e.,
(i) the architecture design basedmethods (Wu et al., 2021; Ye
et al., 2020;Wu et al., 2017; Lu et al., 2020; Choi et al., 2020)
which strive to learn the discriminative representation shared
across modalities; (ii) the metric design based methods (Ye
et al., 2021b, 2018, 2021a) which aim to devise different
metrics or loss functions for learning cross-modality similar-
ity; (iii) the modality transform based methods (Wei et al.,

2021; Hao et al., 2021; Wang et al., 2019a, b) which aim at
designing transformation or augmentation strategies to nar-
row the gap between modalities.

Similar to person ReID, vehicle ReID owns a broad range
of demands in intelligent transportation surveillance systems.
Thanks to the development of different vehicle bench-
marks (Liu et al., 2017; Liu et al., 2016b, a), vehicle ReID has
achieved promising progress during past years, which could
be partitioned into two groups according to the usage of extra
viewpoint information. In brief, the viewpoint-aware based
methods (Chen et al., 2020; Chu et al., 2019; Meng et al.,
2020; He et al., 2021) usually utilize the available orienta-
tion information to eliminate scene bias and learn invariant
features. Besides, the other group of methods (Zhang et al.,
2020; Rao et al., 2021) tries to distinguish the fine-grained
visual differences between vehicles for enlarging the intra-
identity similarity while shortening the inter-identity one.

Although huge success has been achieved during past
years in the ReID community, most of the existing meth-
ods might suffer from performance degradation in some
scenarios. To be specific, almost all existing ReID meth-
ods assume that the identity annotations are faultless and
the training pairs are correctly matched. However, either of
the two assumptions is hard and even impossible to be sat-
isfied in real-world applications due to the extremely-large
identity number and the complex data collection environ-
ment. Therefore, the existing ReID methods probably show
inferior performance when encountering the coupled noisy
labels as discussed in Introduction. To achieve robustness
against CNL, this study formally reveals the CNL problem
and proposes a CNL-robust framework for single- and cross-
modalityReID.To the best of our knowledge, this study could
be one of the first works on CNL-robust ReID.

2.2 Robust Object ReID with Noisy Annotations

With the rapid development of deep ReID, some works (Ye
et al., 2022; Ye & Yuen, 2020; Ge et al., 2020; Yu et al.,
2019) have realized the noisy annotation challenge in single-
modality person ReID and a number of methods have been
proposed to achieve robustness against the NA. In brief, Yu
et al. (2019) first studies the NA problem in person ReID
and proposes modeling the feature uncertainty to alleviate
the negative impacts of noisy samples. Ye et al. (2022); Ye
and Yuen (2020) aim to achieve NA-robust person ReID by
explicitly correcting the annotation with model prediction.
Ge et al. (2020) dives into the study of domain adaption
on person ReID and proposes handling the noise during the
adaption process with a carefully-designed pseudo label gen-
erating strategy.

The major differences between existing NA-robust ReID
methods and this work are given below. First, existing
works only consider the sample-wise NA problem for single-

123



International Journal of Computer Vision

modality person ReID. The achieved robustness is subopti-
mal for the popular ReID paradigm (Ye et al., 2021a, b; Ge
et al., 2020; Rao et al., 2021; He et al., 2021; Lu et al.,
2020; Choi et al., 2020) which simultaneously performs
sample-wise discrimination learning and pair-wise similarity
learning. In contrast, this study reveals the more pragmatic
CNL challenge for ReID tasks and simultaneously achieves
robustness against the NA and NC, i.e., CNL. Notably, there
are few studies on NA for cross-modality ReID, not to men-
tion the CNL challenge. Second, to solve the NA problem,
the existing works mainly focus on revising the annotations,
which is daunting for the ReID datasets of numerous iden-
tities. In contrast, our method enjoys robustness against the
NA by estimating the annotation confidences and designing
robust loss, which ismore accessible than the explicit annota-
tion revision.Notably, this study is also significantly different
from the preliminary conference version [DART (Yang et al.,
2022a)] in the following aspects. On the one hand, DART
focuses on achieving the noise-robust cross-modal person
ReID, whereas this work proposes a unified CNL-robust
framework which could be generalized to both single- and
cross-modality ReID tasks. On the other hand, the loss func-
tions are different and the experimental studies show the
superiority of this study. More specifically, DART would
achieve sub-optimal robustness against the homogeneous
combinations, whereas this work theoretically improves the
robustness of the loss function by designing different recast
functions to transform the similarities of the homogeneous
combinations into desirable ones.

2.3 Learning with Noisy Labels

During the past decade, the efforts on learning with noisy
labels have concentrated on the classification task (Song
et al., 2020). According to the robustness paradigm, the exist-
ing studies on label noise could be roughly divided into four
groups, i.e., (i) robust loss based methods (Ma et al., 2020;
Kim et al., 2021) which aim to design the noise-tolerant
loss functions; (ii) robust architecture based methods (Gold-
berger and Ben-Reuven, 2016; Xiao et al., 2015) which
modify the network architecture to estimate the noise transi-
tion matrix; (iii) sample selection based methods (Han et al.,
2018) which select truly-labeled data from the noisy dataset
for better optimization; iv) Semi-supervised learning based
methods (Li et al., 2020; Nguyen et al., 2019) which partition
the dataset into clean and noisy subsets which are fed into
semi-supervised learning methods (Berthelot et al., 2019).
Besides the noise-robust classification studies, some recent
efforts (Hu et al., 2021;Mandal and Biswas, 2020) have been
devoted to solving the label noise problem for the cross-
modal retrieval task.

Among the aforementioned works, the sample selection
based methods and noise-robust cross-modal retrieve stud-

ies could be most similar to this work while being with the
following differences. First, traditional label noise studies
mainly focus on the sample-wise annotation errors. In con-
trast, this work consider a new label noise paradigm, i.e.,
CNL, which refers to both sample-wise annotation errors
(i.e., NA) and pair-wise correspondencemismatch (i.e., NC).
Besides the difference in the paradigm, the proposed method
is remarkably different from the sample selection based
methods. In brief, the sample selection based methods usu-
ally treat the training data with relatively greater loss value
as noise and discard them, which may eliminate numerous
informative samples. Some of them (Han et al., 2018; Shen
and Sanghavi, 2019) even require taking the noise rate as
a prior. In contrast, our method first estimates the truly-
annotated confidences and utilizes them to penalize the noisy
samples during optimization instead of simply discarding and
requiring additional priors. Besides, based on the computed
confidences, this work further achieves robustness against
the NC. Second, most of the robust cross-modal retrieve
methods (Hu et al., 2021; Mandal and Biswas, 2020) use
the off-the-shelf data pairs and assume that the training pairs
are fully aligned at the instance level. In other words, they
do not need to construct training pairs and assume the cross-
modal correspondences are faultless. In contrast, this work
dives into the object ReID task where the training pairs are
constructed according to the annotations. Once the annota-
tion is false, the NC would be inevitably introduced and the
CNL-robust methods are highly expected.

2.4 Learning with Noisy Correspondence

Learning with noisy correspondence is a recently-rising
topic, which mainly focuses on combating the potential mis-
matched pairs in cross-modal tasks.Yang et al. (2021, 2022b)
studies the false negative problem in contrastive learning and
achieves robust multi-view clustering accordingly. Huang
et al. (2021) first formally studies the noisy correspondence
problem and achieves robust cross-modal matching against
false positive pairs. Following (Huang et al., 2021), some
recent works (Qin et al., 2022; Hu et al., 2023) propose
solving the NC problem in more efficient and diversified
ways, constantly improving the robustness and performance.
Recently, some works extend the scenario of the NC prob-
lem from cross-modal matching to visible-infrared person
ReID (Yang et al., 2022a) and graph matching (Lin et al.,
2023). Different from the existing works, this work not only
extends the definition of noisy correspondence to both false
negative and false positive correspondence but also extends
the setting of NC from cross-modal to both single- and cross-
modal scenarios.
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Fig. 2 The framework of LCNL. It consists of co-modeling, pair divi-
sion, and dually-robust training modules. Specifically, the co-modeling
module first warms up two individually-initialized DNNs with the
vanilla identification loss (Lid ), and then models the annotation confi-
dences by resorting to the memorization effect. After that, the estimated
confidences are passed into the pair divisionmodule in a swappingman-
ner for further usage. In the pair division module, the training pairs will
be partitioned into different groups and the correspondenceswithin each
group will be rectified. As a result, four kinds of triplet combinations
could be obtained, i.e., TP&TN, FP&FN, TP&FN, and FP&TN. To pre-

vent networks B/A from overfitting the NA, the estimated confidences
by network A/B will be used as coefficients in the soft identification loss
Lsid to penalize the noise samples. To achieve robustness against the
NC, the loss Laqdr will adaptively change the optimization directions
when encountering different kinds of divided triplets. Especially, for
different homogeneous triplets (i.e., FP&TN or TP&FN), the loss can
enjoy different optimization properties under the help of the designed
recast functions, thus further improving the robustness with theoretical
guarantees

3 Method

In this section, we elaborate on the proposed LCNL which
is a general framework for achieving robustness against the
CNL encountered in both single- and cross-modality object
ReID.

3.1 Problem Definition

For a given query image, most existing single- or cross-
modality object ReID methods aim at finding images of the
same identities within or across modalities from the gallery.
For ease of representation,we take theVisible-Infrared cross-
modality ReID (VI-ReID) task as a showcase without loss of

generality. Formally, let Dm1 = {
xm1
i , ym1

i

}Nm1
i=1 and Dm2 =

{
xm2
i , ym2

i

}Nm2
i=1 denote the observed visible and infrared

modality datasets collected from K different identities
respectively, where xmi is the image, Nm is the dataset size,
m ∈ {m1,m2} denotes the modality, and ymi is the identity
annotation which is potentially wrong. For achieving cross-
modal individual retrieve, most existing methods (Ye et al.,
2021a, b; Ge et al., 2020; Rao et al., 2021; He et al., 2021; Lu
et al., 2020; Choi et al., 2020) construct cross-modal set S ={
(xm1

i , xm2
j , y pi j ) | y pi j ∈ {0, 1}, i ∈ [1, Nm1 ], j ∈ [1, Nm2 ]

}

based on the annotations, where y pi j is the pairwise cor-

respondence indicating that the pair (xm1
i , xm2

j ) is positive

(y pi j = 1) or negative (y pi j = 0). In other words, y pi j = 1 i.f.f.

ym1
i = ym2

j , and y pi j = 0 otherwise. With the annotated sam-

ples and constructed pairs, the methods usually adopt the
sample-wise discrimination loss (e.g. Cross-Entropy (CE)
loss) on Dm to learn the identity-aware discrimination, and
pair-wise similarity loss (e.g., triplet loss) on S to further
enlarge the inter-identity distinguishability while alleviating
the intra-identity variances.

Unfortunately, as the annotation ymi may be wrong due
to inevitable manual labeling faults (i.e., Noisy Annotation,
NA), the established correspondence y pi j may also be wrong,
thus leading to the so-called Noisy Correspondence (NC).
Note that, the ground-truth annotations and correspondences
are unknown, which are denoted as ŷmi and ŷ pi j respectively.
For simplicity, we refer to the aboveNAand the accompanied
NC as the CNL with the following definitions.

Definition 1 Coupled noisy labels (CNL)For the givenmulti-
modal dataset {Dm1 , Dm2} and the constructed cross-modal
set S, CNL means that the annotations ymi are of NA and the
correspondences y pi j are of NC, and the ground-truth ŷmi and

ŷ pi j are agnostic.

Definition 2 Noisy annotation (NA) For each modality Dm ,
it is with NA when

Nm∑

i=1

I
(
ymi = ŷmi

)
< Nm,∀m ∈ {m1,m2}, (1)

where I(ymi = ŷmi ) equals to 1 i.f.f. ymi = ŷmi , otherwise 0.
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Definition 3 Noisy correspondence (NC) The pairs in cross-
modal setS consist of four types, i.e., True Positive pairs (TP,
y pi j = ŷ pi j = 1), True Negative pairs (TN, y pi j = ŷ pi j = 0),

False Positive pairs (FP, y pi j = 1, ŷ pi j = 0) and FalseNegative

pairs (FN, y pi j = 0, ŷ pi j = 1). NC refers to the mismatched
pairs, i.e., FP and FN.

Note that, the aforementionednotations anddefinitions are
also hold for single-modality ReID cases by simply setting
m1 = m2 and i �= j . To achieve CNL-robust object ReID,
we proposed the LCNL framework in this paper. As shown
in Fig. 2, LCNL consists of co-modeling, pair division, and
dually robust training modules which will be elaborated on
one by one below.

3.2 Co-modeling

Some pioneer works (Arpit et al., 2017) have empirically
found that DNNs are apt to fit simple patterns before fitting
the complex ones, thus leading to relatively small loss values
for the clean (i.e., simple) samples and larger loss values
for the noisy (i.e., complex) samples in the initial training
phase. Motivated by the so-called memorization effect of
DNNs, we estimate the clean confidence of each sample by
fitting the per-sample loss distribution (Li et al., 2020; Huang
et al., 2021). Specifically, we first compute the per-sample
identification (CE) loss of each modality by feedingDm1 and
Dm2 into the given networks respectively. Mathematically,

�{Fm ,C} = {�i }Nm
i=1 = {Lid (

C
(
Fm(xmi )

)
, ymi

)}Nm
i=1, (2)

where Lid is the vanilla CE loss, Fm denotes the modality-
specific encoder for modality m, and C denotes the shared
identity classifier.

Given the above computed per-sample loss, we model the
loss distribution by fitting a two-component Gaussian Mix-
ture Model (GMM) as follows,

p(� | θ) = α1�(� | θ1) + α2�(� | θ2), (3)

where θ denotes the parameters of GMM, {θ1, α1} and
{θ2, α2} denote the parameter and mixture coefficient for
each component, respectively. To optimize the GMM, we
adopt the widely-used EM algorithm. After that, we estimate
the clean confidences of annotations by computing the poste-
rior probability of each sample belonging to the component
with a small mean value based on the memorization effect of
DNNs. In detail, the confidence wm

i is computed by

wm
i = p(θ1 | �i ) = p(θ1)p(�i | θ1)

p(�i )
, (4)

where θ1 and θ2 denote the components with smaller and
larger mean value, respectively.

The estimated annotation confidences would be utilized
for NC detecting and further training. However, our empir-
ical results show that simply training the networks in a
self-modeling manner may have an incentive to accumulate
errors.Hence, to circumvent the self-modeling bias,we adopt
a co-modeling manner. Specifically, we individually train
two sets of network {Fm

A ,CA} and {Fm
B ,CB} with differ-

ent initializations. At each epoch, we estimate the annotation
confidences for network A/B, and use them to detect NC and
further train the other network B/A. Notably, as the mem-
orization effect requires initial training to enlarge the loss
value difference between clean and noisy samples, we pro-
posewarming up the two sets of networks by using the vanilla
CE loss before beginning the co-modeling process.

3.3 Pair Division

Given annotation confidences estimated by the co-modeling
module, the pair division module is designed to parti-

tion the cross-modal set S =
{
(xm1

i , xm2
j , y pi j )

}
into

clean pair subset Sc and noisy pair subset Sn . Formally,

Sc =
{
(xm1

i , xm2
j , y pi j ) | (w

m1
i ≥ γ ) ∧ (w

m2
j ≥ γ )

}
and

Sn =
{
(xm1

i , xm2
j , y pi j ) | ((w

m1
i ≥ γ ) ∧ (w

m2
j < γ )) ∨ ((w

m1
i

< γ ) ∧ (w
m2
j ≥ γ ))

}
, where γ is the criterion threshold and

is fixed to 0.5 in our experiment. Note that, the pairs with
((w

m1
i < γ ) ∧ (w

m2
j < γ )) will be discarded because they

are both unconfident and thus cannot been correctly divided.
Given the clean subset Sc and noisy subset Sn , the cor-

respondences of pairs within the subsets would be further
rectified via the following operation:

ỹ pi j = I(y pi j ∈ Sc) � y pi j , (5)

where � is the xnor operator and ỹ pi j is the rectified corre-
spondence. The above operation is designed for the following
goals. In brief, for the positive pairs fromSc, their correspon-
dence would be rectified as ỹ pi j = 1, thus being regarded as
true positive (TP) pairs; otherwise, they would be regarded
as false positive (FP) pairs with the rectified correspondences
ỹ pi j = 0. Likewise, for the negative pairs fromSc, they would
be treated as true negative (TN) pairs with the rectified cor-
respondences ỹ pi j = 0. Notably, if negative pairs come from
Sn , they cannot be simply considered as false negative (FN)
pairs since xm1

i and xm2
i may derive from different identities,

i.e., TN pairs. Therefore, to recall such TN pairs, we further
revise the correspondences of those negative pairs from Sn

via

ỹ pi j = I(C(Fm1(xm1
i )) = C(Fm2(xm2

j ))). (6)
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With the pair division module, each training pair from S
could be divided into one of TP, FP, TN, or FN, which is
further used for training.

3.4 CNL-Robust Objective Function

With the co-modeling and pair division modules, one can
obtain the estimated annotation confidences of samples and
the rectified correspondences of divided pairs which are
combined with our CNL-robust object function to achieve
robustness against the CNL. Formally, the objective function
is defined as follows,

L = Lsid + Laqdr , (7)

where Lsid and Laqdr are designed for achieving robustness
on NA and NC, respectively. In the following, we will elab-
orate on them one by one.

3.4.1 Robustness Against NA

Given the annotation confidence wm
i for sample xmi of iden-

tity k, we propose the following soft identification loss for
achieving robustness against NA,

Lsid = −wm
i ∗

K∑

j=1

I( j = k) log p( j | xmi ). (8)

The proposed soft identification loss owns the following
merits. First, it has an incentive to penalize the noise during
optimization by utilizing the confidences instead of simply
discarding the noisy samples (Han et al., 2018). Besides, our
loss is more feasible than the existing NA-oriented ReID
methods because it need not to struggle for generating the
pseudo annotations (Ge et al., 2020) or revising the wrong
annotations (Ye & Yuen, 2020; Ye et al., 2022). Considering
the huge identity number, it is daunting and even impossi-
ble to precisely revise the wrong annotations or predict the
pseudo annotations in practice.

3.4.2 Robustness Against NC

Given pairs divided by the pair division module, i.e., TP,
FP, TN, and FN, to alleviate the modality gap and improve
the identity-level discrimination, one could construct triplet
combinations and then compute the triplet loss with the hard
mining strategy (Hermans et al., 2017) on them as most
existing ReID methods (Ye et al., 2021a, b; He et al., 2021;
Rao et al., 2021; Ge et al., 2020; Hermans et al., 2017) do.
Although the vanilla triplet loss has shown its effectiveness in
the object ReID community, it would suffer from the follow-
ing deficiencies. First, the vanilla triplet loss can only handle

the combination of TP&TN and lacks robustness against
other combinations. Second, although the hard mining strat-
egy (Hermans et al., 2017) could improve the discrimination
between identities, it has an incentive to introduce more NC.
In other words, in the presence of NA, the nearest nega-
tive and farthest positive samples chosen by the hard mining
strategy are susceptible to be FN and FP, respectively. There-
fore, it is highly expected to design a NC-robust loss which
can not only handle all the possible triplet combinations i.e.,
TP&TN, FP&FN, TP&FN, and FP&TN, but also in defense
of the superiority of the hard mining strategy.

To this end, we propose the adaptive quadruplet loss. For-
mally, given the triplet combination (xm1

i , xm2
j , xm2

s ), the loss
is in the form of

Laqdr = Latri + Lqdt , (9)

where xm1
i is the anchor sample, xm2

j and xm2
s are the corre-

sponding hardest positive and negative samples constructed
according to the annotations, i.e., y pi j = 1 and y pis = 0. Latri

aims at adaptively achieving robustness on different triplet
combinations and Lqdt is a quadruplet loss term. To be spe-
cific,

Latri = [m + (ỹ pi j ⊗ ỹ pis)[(−1)(1−ỹ pi j )di j + (−1)(1−ỹ pis )dis]
+ (ỹ pi j � ỹ pis)(−1)(1−ỹ pi j )σ (di j , dis)]+,

di j = ‖Fm1(xm1
i ) − Fm2(xm2

j )‖2, (10)

where [·]+ = max(·, 0), m is the margin fixed as a constant
in the experiments, ỹ pi j is the rectified correspondence, ⊗
is the xor operator, di j is the pairwise distance, and σ(·, ·)
is the proposed recast function. Notably, the recast function
is designed for keeping the merit of the hard mining strat-
egy when encountering the homogeneous pair combinations
(i.e., TP&FN or FP&TN), whose principles will be elabo-
rated on later. Clearly, learning on TP&FN or FP&TN with
Latri would only decrease or increase the pairwise distance
monotonously instead of contrastively. To keep the ranking
capacity ofLatri , we propose the following quadruplet term,

Lqdt = (−1)ỹ
p
i j ỹ

p
is (ỹ pi j � ỹ pis)dit , (11)

where dit is the pairwise distance between xm1
i and xm2

t , and
xm2
t is the second hardest sample in the batchwith confidence

w
m2
t ≥ γ .
Besides the visual illustration in Fig. 3, we elaborate on

how the proposed Laqdr enjoys the robustness against the
NC in different situations below:

– TP&TN: for the combination of TP (y pi j = 1, ỹ pis = 1)

and TN (y pi j = 0, ỹ pis = 0), Laqdr would degrade into
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Fig. 3 The adaptive quadruplet loss could adaptively change its opti-
mization directions for handing the four different kinds of triplet
combinations, thus enjoying robustness against the NC

the vanilla triplet loss which encourages to decrease and
increase pairwise distances of TP and TN, respectively.
Formally,

Laqdr = [m + di j − dis]+. (12)

– FP&FN: for the combination of FP (y pi j = 1, ỹ pis = 0)

and FN (y pi j = 0, ỹ pis = 1), Laqdr would adjust its opti-
mization tendency, i.e., increasing and decreasing the
distances of FP and FN, respectively.

Laqdr = [m − di j + dis]+. (13)

– TP&FN: in this case, both TP (y pi j = 1, ỹ pis = 1) and FN

(y pi j = 0, ỹ pis = 1) are positives, and thus the distance
of such homogeneous pairs would be recast by σ(·, ·).
Besides, LCNL would sample the second hardest nega-
tive sample xm2

t (ỹ pi t = 0) for computing. Formally,

Laqdr = [m + σ(di j , dis) − dit ]+. (14)

– FP&TN: similar to the aforementioned homogeneous
case, for the combination of FP (y pi j = 1, ỹ pis = 0) and

TN (y pi j = 0, ỹ pis = 0), their distance would be recast
by σ(·, ·). Then, LCNLwould sample the second hardest

positive sample xm2
t (ỹ pi t = 1). Formally,

Laqdr = [m − σ(di j , dis) + dit ]+. (15)

In the following, we elaborate on the principles of the pro-
posed recast functions σ(·, ·) which endows Laqdr with the
hardmining capacity on the homogeneous pair combinations
(FP&TNor TP&FN). Recalling that the hardmining strategy
will choose the nearest negative and the furthermost posi-
tive samples as discussed above. As a result, TN in FP&TN
would have a smaller distance than FP, while TP in TP&FN
would have a greater distance than FN. It is expected to trans-
form the distances of the homogeneous combination into a
new one for usage in Eq. (10) while keeping the hard min-
ing capacity on them. To this end, given the homogeneous
pairs (xm1

i , xm2
j ) and (xm1

i , xm2
s ), we design the following

five alternative recast functions σ , where y pi j = 1, y pis = 0,

ỹ pi j = ỹ pis = 0 or 1. Mathematically,

σ1 = di j + dis
2

,

σ2 = max(di j , dis),

σ3 = min(di j , dis),

σ4 =
{

max(di j , dis), ỹ pi j = ỹ pis = 1,

min(di j , dis), ỹ pi j = ỹ pis = 0,

σ5 = exp((−1)(1−ỹ pi j )di j )

exp((−1)(1−ỹ pi j )di j ) + exp((−1)(1−ỹ pis )dis)
∗ di j

+ exp((−1)(1−ỹ pis )dis)

exp((−1)(1−ỹ pi j )di j ) + exp((−1)(1−ỹ pis )dis)
∗ dis,

(16)

Under the help of different recast functions, theNC-robust
loss Laqdr would enjoy different optimization properties
when encountering the homogeneous combination TP&FN
or FP&TN. To be specific, we derive the optimization prop-
erties by analyzing the gradient of Laqdr w.r.t. the pairwise
distance as follows.

– σ1: ∂Laqdr/∂di j = ∂Laqdr/∂dis = 1/2. The gradient
value of Laqdr w.r.t. di j equals to the one of Laqdr w.r.t.
dis . As a result, the networks would learn from the homo-
geneous pairs equally.

– σ2: ∂Laqdr/∂di j = 1 and ∂Laqdr/∂dis = 0 if di j > dis ;
otherwise on the contrary. The gradient is only produced
with the pair of greater distance, and thus the networks
will only learn from the corresponding pair.

– σ3: Similarly, ∂Laqdr/∂di j = 0 and ∂Laqdr/∂dis = 1
if di j > dis ; otherwise on the contrary. The gradient is
only produced with the pair of smaller distance, and the
networks would only learn from that pair similarly.
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– σ4: It could be regarded as the synthesis of σ2 and σ3.
When the combination is TP&FN, σ4 would degrade into
σ2, otherwise σ3.

– σ5: For the TP&FN combination, the gradient value pro-
duced with the pair of greater distance is larger; For the
FP&TN combination, the gradient value produced with
the pair of smaller distance is larger.

One could easily prove the properties of σ1, σ2, σ3 and
σ4. For σ5, the property on the TP&FN combination could
be mathematically guaranteed by Theorem 1 and that on the
FP&TN combination could be proved by Theorem 2.

Theorem 1 For the TP&FN combination, the gradient value
of Laqdr with σ5 w.r.t. di j is greater than that w.r.t. dis when
di j > dis .

Proof For the TP&FN combination, ỹ pi j = ỹ pis = 1, the gra-

dient of Laqdr with σ5 w.r.t. di j is in the form of

∂Laqdr

∂di j
= exp (2di j ) + (1 + di j − dis) exp (di j + dis)

(exp (di j ) + exp (dis))2
,

and the gradient of Laqdr with σ5 w.r.t. dis is in the form of

∂Laqdr

∂dis
= exp (2dis) + (1 + dis − di j ) exp (di j + dis)

(exp (di j ) + exp (dis))2
.

Let G be the square difference between the values of
∂Laqdr/∂di j and ∂Laqdr/∂dis , it could be proved that G >

0,∀di j > dis by

G =
∣∣∣∣
∂Laqdr

∂di j

∣∣∣∣

2

−
∣∣∣∣
∂Laqdr

∂dis

∣∣∣∣

2

= exp(2di j ) − exp(2dis) + 2(di j − dis) exp (di j + dis)

(exp (di j ) + exp (dis))2

> 0.

Therefore, the gradient value of ∂Laqdr/∂di j is greater
than ∂Laqdr/∂dis when di j > dis .

Theorem 2 For the FP&TN combination, the gradient value
of Laqdr with σ5 w.r.t. di j is greater than that w.r.t. dis when
di j < dis .

Similarly, Theorem 2 can be proved like Theorem 1 and
the details are presented in Appendix. Besides the above
mathematical analysis, we also visualize the performance
surfaces ofLaqdr withσ5 in Fig. 4 for an intuitive understand-
ing. On the one hand, Theorems 1 and 2 show thatLaqdr with

Fig. 4 The gradient ofLaqdr w.r.t. the pairwise distances. aLaqdr with
σ5 for FP&TN. b Laqdr with σ5 for TP&FN. In the figure, di j and
dis denote the pairwise distance of the homogeneous pairs which are
both negative or positive. From the figure, one could have an intuitive
understanding on Theorems 1 and 2

σ5 would push the pair with greater distance (i.e., TP) more
strongly by assigning a greater gradient, because TP&FN are
both positive. Similarly, Laqdr with σ5 would pull the pair
with smaller distance (i.e., TN) more strongly for the com-
bination TP&FN. As a result, the network optimization will
be benefited.

Based on the above theoretical and visual analyses, one
could have the following conclusions. To be specific, if σ1
is used, each pair in the homogeneous combination would
contribute equally to the network optimization regardless of
their hardness. If σ2 or σ3 is used, only the pair with greater
or smaller distance would contribute to the optimization.
Although σ4 enjoys the advantage of σ2 and σ3, it thor-
oughly ignores the easy pairs and thus being suboptimal. As
a remedy, σ5 could adaptively adjust the gradient according
to the hardness of the pairs, thus maintaining the merits of
the hard mining strategy when learning with NC. Therefore,
our experiments adopt σ5 for its effectiveness.

4 Experiments

To verify the effectiveness of LCNL for achieving CNL-
robust object ReID, we conduct experiments on three dif-
ferent object ReID tasks including single-modality person
ReID (V-ReID), vehicle ReID, and cross-modality visible-
infrared person ReID (VI-ReID). The organization of this
section is as follows. In Sect. 4.1, we elaborate on the exper-
iment settings including the hyper-parameter configurations
and datasets. In Sects. 4.2–4.4, we carry out quantitative and
ablation studies to demonstrate the effectiveness of LCNL for
achieving CNL-robust VI-ReID, V-ReID, and vehicle ReID,
respectively. In Sect. 4.5, we conduct a series of experimen-
tal analyses to show the importance of the CNL-oriented
paradigm.
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4.1 Settings

In this section, we elaborate on the experiment settings of
LCNL including the hyper-parameter configurations and the
used datasets.

Parameter configurations: in our experiments, the warm-
up epochs are fixed as 1, 5, and 10 for the VI-ReID, V-ReID,
and Vehicle-ReID tasks, respectively. In addition, the margin
m for the adaptive quadruplet loss and the threshold γ for the
pair divisionmodule are set as 0.3 and 0.5, respectively. In the
inference stage, we simply average the embeddings output by
models A and B for the evaluation and no complex strategy
is used. All the experiments and evaluations are conducted
on Ubuntu OS with GeForce RTX 3090 GPUs.

Datasets: for the VI-ReID task, we adopt two publicly
available datasets, i.e., SYSU-MM01 (Wu et al., 2017) and
RegDB (Nguyen et al., 2017). For the V-ReID task, we use
two widely-used datasets, i.e., Market-1501 (Zheng et al.,
2015a) and DukeMTMC (Zheng et al., 2017b). As for the
Vehicle-ReID task, we adopt the widely-used VeRi-776 (Liu
et al., 2016b; Liu et al., 2017). Table 1 summarizes the statis-
tics of the above five datasets and the Appendix includes
more details.

For quantitative evaluations, we randomly choose a spe-
cific proportion of samples in each dataset and assign them
with random identities to simulate the noisy annotations. For
comprehensive investigation, the noise ratio varies from 0,
20, to 50%. Following Zheng et al. (2015a), Zheng et al.
(2017b), Hermans et al. (2017), Ye et al. (2021b) and Liu
et al. (2016b), we use two metrics for performance evalu-
ation, i.e., the mean average precision score (mAP) and the
cumulativematching curve (CMC).Besides, for personReID
tasks (VI-ReID and V-ReID), we additionally use the mINP
metric to measure the matching efficiency by following Ye
et al. (2021b).

4.2 Robust Cross-Modality Person ReID

To verify the effectiveness of LCNL, we compare LCNL
with recently-published VI-ReID methods on the noisy VI-
ReID datasets. In addition, we conduct ablation studies to
reveal the importance of each module in LCNL on achieving
robustness.

4.2.1 Comparisons with State of the Arts

To investigate the effectiveness of the LCNL framework, we
employ it to endow the state-of-the-art ADP (Ye et al., 2021a)
with robustness against the CNL. In the investigation, we
adopt ADP’s backbone and train it under the proposed LCNL
framework with our CNL-robust objective function.

Following the commonevaluationprotocol inVI-ReID (Ye
et al., 2021a;Wu et al., 2021; Park et al., 2021), we report the

performance on the SYSU-MM01dataset under themodes of
“All-Search” and “Indoor-Search”. For the RegDB dataset,
we report the mean results of the standard 10 train/test splits
under the modes of “Visible to Thermal” and “Thermal to
Visible”.

The performance of LCNL is compared with six recently-
proposed VI-ReID methods including CrossAGW (Ye et al.,
2021b), DDAG (Ye et al., 2020), LbA (Park et al., 2021),
MPANet (Wu et al., 2021), ADP (Ye et al., 2021a), and
DART (Yang et al., 2022a). Among them, the former five
baselines are the standard VI-ReID methods, and DART is
the only one that could achieve noise-robustVI-ReID. For the
performance of DART, we directly take the results reported
in the original paper. For the other baselines, we refer to the
reported results as the ones with the noise ratio of 0% and
carry out the baselines with careful parameter tuning under
the noise ratio of 20% and 50%. From Tables 2 and 3, one
could observe that LCNL achieves stable performance while
the vanilla methods encounter heavy performance degrada-
tion. Meanwhile, although LCNL is designed for achieving
CNL-robust object ReID including but not limited to the
VI-ReID task, it still shows promising performance improve-
ments compared to DART which is dedicatedly designed for
handling noise inVI-ReID.The above observations imply the
importance of developing CNL-resistant methods for object
ReID. Besides, LCNL outperforms ADP on the SYSU-
MM01 dataset in terms of most metrics, even under the
noise-free setting. The improvement could be attributed to
that the “clean” data are probably contaminated by unre-
vealed noises.

4.2.2 Ablation Studies

To investigate the importance of each module of LCNL, we
conduct ablation studies on the SYSU-MM01 dataset with
20% noise. In detail, we perform LCNL by discarding or
replacing themodules and evaluating the corresponding vari-
ants. More specifically, (i) we train the baseline using the
co-modeling module with two individually networks; (ii) we
add the proposed soft identification loss (Lsid ) for achieving
robustness on the NA; (iii) we add the pair division module
and replace the designed adaptive quadruplet loss (Laqdr )
with the vanilla triplet loss (Hermans et al., 2017). Namely,
LCNL is performedonlyon the clean combination (TP&TN);
(iv) the complete pipeline of LCNL.As shown in Table 4, it is
promising to simultaneously embrace the robustness on both
NAandNC (Row4) instead of only onNA (Row2) or neither
(Row 1). Furthermore, the vanilla triplet loss, which can only
handle the clean combination (i.e., TP&TN) is sub-optimal
for achieving robustness against the CNL (Row 3).
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Table 1 Statistics of the used
datasets

Dataset Modality Object Train Gallery Query

SYSU-MM01 Cross Person 34,167 (395) 301 (96) 3803 (96)

RegDB Cross Person 4120 (206) 2060 (206) 2060 (206)

Market-1501 Single Person 13,387 (751) 15,913 (750) 3368 (750)

DukeMTMC Single Person 16,522 (702) 17,661 (702) 2228 (702)

VeRi-776 Single Vehicle 37,715 (576) 11,579 (200) 1678 (200)

Table 2 Comparisons with state-of-the-art methods on the SYSU-MM01 dataset under the noise ratio of 0, 20 and 50%, respectively

Noise Methods All-search Indoor-search

Rank-1 Rank-10 Rank-20 mAP mINP Rank-1 Rank-10 Rank-20 mAP mINP

0% DDAG (ECCV2020) 54.8 90.4 95.8 53.0 39.6 61.0 94.1 98.4 68.0 62.6

CrossAGW (TPAMI2021) 47.5 84.4 92.1 47.7 35.3 54.2 91.1 96.0 63.0 59.2

LbA (ICCV2021) 55.4 – – 54.1 – 58.5 – – 66.3 –

MPANet (CVPR2021) 70.6 96.2 98.8 68.2 – 76.7 98.2 99.6 81.0 –

ADP (ICCV2021) 69.9 95.7 98.5 66.9 53.6 76.3 97.9 99.5 80.4 76.8

DART (CVPR2022) 68.7 96.4 99.0 66.3 53.3 72.5 97.8 99.5 78.2 74.9

LCNL (Ours) 70.2 96.4 99.0 68.0 55.5 76.2 98.2 99.8 80.3 76.9

20% DDAG (ECCV2020) 14.6 46.6 61.8 14.0 5.6 15.1 50.7 69.3 22.4 18.3

CrossAGW (TPAMI2021) 17.7 56.8 72.5 18.2 8.6 20.8 65.0 82.4 29.8 25.3

LbA (ICCV2021) 9.9 39.5 55.9 10.2 3.8 10.1 44.1 64.5 17.4 14.0

MPANet (CVPR2021) 21.6 63.6 78.7 21.2 – 23.8 70.2 86.4 33.2 –

ADP (ICCV2021) 25.4 67.6 80.9 23.7 11.1 26.6 70.7 85.2 35.0 29.6

DART (CVPR2022) 66.3 95.3 98.4 64.1 50.7 70.5 97.1 99.0 75.9 72.3

LCNL (ours) 67.2 95.1 98.4 64.9 51.7 73.4 97.6 99.5 78.2 74.4

50% DDAG (ECCV2020) 6.7 29.0 43.8 7.5 2.9 8.4 37.9 57.9 15.1 12.3

CrossAGW (TPAMI2021) 7.9 37.6 55.8 9.8 4.4 9.6 47.9 70.5 18.1 15.2

LbA (ICCV2021) 2.7 17.8 30.3 4.2 1.9 4.9 29.4 49.0 11.0 8.6

MPANet (CVPR2021) 7.0 32.8 49.2 8.2 – 8.5 40.7 61.4 15.9 –

ADP (ICCV2021) 8.0 42.6 62.1 10.8 5.2 11.5 53.0 76.8 20.8 17.5

DART (CVPR2022) 60.3 93.4 97.5 58.7 45.3 65.7 95.0 98.2 71.8 68.1

LCNL (ours) 62.4 93.6 97.5 59.8 45.9 67.2 96.4 99.1 73.1 69.0

The best and second best results are highlighted in bold and underline

4.3 Robust Singe-Modality Person ReID

In this section, we apply LCNL on the noisy V-ReID datasets
and compare the performance with several noise-robust V-
ReID methods. Besides, we conduct ablation studies to
investigate the effect of each component of LCNL.

4.3.1 Comparison with State of the Arts

In this section, we endow VisibleAGW (Ye et al., 2021b)
with the robustness against CNL under our LCNL frame-
work. In brief, we adopt the backbone of VisibleAGW (Ye
et al., 2021b) and our learning paradigmwith theCNL-robust
objective function.

The performance of LCNL is compared with five V-
ReID methods including VisibleAGW (Ye et al., 2021b),
CORE(Yeet al., 2022),MMT(Geet al., 2020), PurifyNet (Ye
& Yuen, 2020), DistributionNet (Yu et al., 2019). Among
them, (Ye et al., 2022; Ye & Yuen, 2020; Yu et al., 2019; Ge
et al., 2020) are NA-robust V-ReIDmethods, and our method
is the only CNL-robust approach. As illustrated in Table 5,
as the noise ratio increases, the performance of all the base-
lines remarkably reduces. In contrast, LCNLperforms stably,
which verifies that the robustness against the CNL is more
favorable compared to NA. Besides the superiority of LCNL
in noisy cases, it performs comparably to VisbleAGW (Ye
et al., 2021b) under the noise-free setting.
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Table 3 Comparisons with
state-of-the-art methods on the
RegDB dataset under the noise
ratio of 0, 20 and 50%,
respectively

Noise Methods Visible to thermal Thermal to visible

Rank-1 mAP mINP Rank-1 mAP mINP

0% DDAG (ECCV2020) 69.3 63.5 49.2 68.1 61.8 48.6

CrossAGW (TPAMI2021) 70.1 66.4 50.2 70.5 66.0 51.2

LbA (ICCV2021) 74.2 67.6 – 72.4 65.5 –

MPANet (CVPR2021) 83.7 80.9 – 82.8 80.7 –

ADP (ICCV2021) 85.0 79.1 65.3 84.8 77.8 61.6

DART (CVPR2022) 83.6 75.7 60.6 82.0 73.8 56.7

LCNL (ours) 85.6 78.7 65.0 84.0 76.9 60.9

20% DDAG (ECCV2020) 39.3 25.7 10.0 37.7 25.1 9.6

CrossAGW (TPAMI2021) 47.8 31.4 12.4 47.2 30.9 11.9

LbA (ICCV2021) 36.0 23.5 7.5 36.2 22.8 6.7

MPANet (CVPR2021) 33.8 23.5 – 32.6 22.1 –

ADP (ICCV2021) 50.7 35.9 14.1 50.0 34.8 12.6

DART (CVPR2022) 82.0 74.2 57.9 79.5 71.7 54.5

LCNL (ours) 84.5 76.7 61.6 82.5 74.6 57.3

50% DDAG (ECCV2020) 24.0 14.4 4.3 21.5 13.4 4.3

CrossAGW (TPAMI2021) 21.9 13.4 3.9 21.0 13.0 3.7

LbA (ICCV2021) 11.7 6.7 1.5 10.2 6.3 1.5

MPANet (CVPR2021) 9.5 6.1 – 11.4 6.7 –

ADP (ICCV2021) 17.0 11.3 3.6 20.3 12.3 3.2

DART (CVPR2022) 78.2 67.0 48.4 75.0 64.4 43.6

LCNL (ours) 76.3 65.9 47.9 73.8 63.2 42.9

The best and second best results are highlighted in bold and underline

Table 4 Ablation studies on
SYSU-MM01 with 20% noise

Method variants 20% Noise

Co-modeling Pair division Lsid Laqdr mAP mINP

� 29.8 15.2

� � 62.2 48.5

� � � 63.8 49.8

� � � � 64.9 51.7

The default setting is marked in underline

4.3.2 Ablation Studies

In this section, we carry out ablation studies onMarket-1501
with 20% noise. Similar to Sect. 4.2.2, we investigate the
performances of different variants of LCNL. From Table 6,
one could observe that each module of LCNL plays an insep-
arable role in achieving CNL-robust V-ReID.

4.4 Robust Vehicle ReID

In this section, we perform LCNL on the noisy Vehicle-
ReID datasets compared with some state-of-the-art vehicle
ReID baselines. Moreover, we also carry out ablation studies
accordingly.

4.4.1 Comparisons with State of the Arts

We endow TransReID (He et al., 2021), with the robustness
against CNL under our LCNL framework. In our implemen-
tation, we adopt TransReID’s backbone and train it under the
LCNL pipeline with the CNL-robust objective function.

Besides the vanilla TransReID (He et al., 2021), we
also compare LCNL with two recently-published Vehicle-
ReID methods including PGAN (Zhang et al., 2020) and
PVEN (Meng et al., 2020). As demonstrated in Table 7,
LCNL substantially achieves robustness on CNL under dif-
ferent noise ratios while the baselines all fail.
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Table 5 Comparisonswith state-of-the-artmethods on theMarket1501 andDukeMTMCdatasets under the noise ratio of 0, 20 and 50%, respectively

Noise Methods Market1501 Duke-MTMC

Rank-1 Rank-5 Rank-10 mAP mINP Rank-1 Rank-5 Rank-10 mAP mINP

0% DistributionNet (ICCV2019) 87.3 94.7 96.7 70.8 – 74.7 85.1 88.2 56.0 –

PurifyNet (TIFS2020) 88.4 95.8 97.6 72.1 – 77.8 88.6 92.4 62.0 –

MMT (ICLR2020) 89.2 96.2 97.8 74.1 – 78.2 88.6 92.1 64.0 –

VisibleAGW (TPAMI2021) 95.1 98.2 99.0 87.8 65.0 88.9 95.3 96.7 79.6 45.7

CORE (TIP2022) 89.6 96.4 98.1 74.6 – 78.8 89.4 92.6 64.1 –

LCNL (ours) 94.7 98.4 99.0 87.7 64.5 88.7 94.7 96.4 79.3 43.1

20% DistributionNet (ICCV2019) 77.0 90.6 94.0 53.4 – 62.4 77.4 82.5 40.9 –

PurifyNet (TIFS2020) 83.1 93.3 95.9 63.1 – 74.1 85.6 89.2 55.8 –

MMT (ICLR2020) 79.2 91.8 95.2 57.8 – 70.5 84.9 88.9 54.7 –

VisibleAGW (TPAMI2021) 80.8 93.5 96.3 59.3 20.3 68.4 85.2 89.6 52.2 15.0

CORE (TIP2022) 84.1 93.1 95.5 66.2 – 74.4 85.9 89.7 55.8 –

LCNL (ours) 94.4 97.9 98.9 86.6 61.7 87.7 93.9 96.0 77.6 40.4

50% DistributionNet (ICCV2019) 61.1 81.1 87.1 35.1 – 46.0 63.9 70.9 25.8 –

PurifyNet (TIFS2020) 83.4 94.1 96.3 52.1 – 65.0 79.0 83.9 44.5 –

MMT (ICLR2020) 55.6 76.5 83.1 31.7 – 51.0 67.6 74.4 34.9 –

VisibleAGW (TPAMI2021) 51.2 72.4 79.7 27.1 3.3 42.0 61.7 70.1 26.2 3.4

CORE (TIP2022) 80.1 91.5 94.4 46.2 – 56.9 72.6 77.3 37.5 –

LCNL (ours) 90.9 97.3 98.3 79.7 47.6 83.0 92.1 94.5 71.5 30.9

The best and second best results are highlighted in bold and underline

Table 6 Ablation studies on
Market1501 with 20% noise

Method variants 20% Noise

Co-modeling Pair division Lsid Laqdr mAP mINP

� 66.2 28.3

� � 85.5 58.9

� � � 84.5 57.0

� � � � 86.6 61.7

The default setting is marked in underline

Fig. 5 The ability to detect the NA and NCwith different noise ratios. “Divided ACC” denotes the detection accuracy of NA / NC. “Pair Proportion”
denotes the population statistics of different kinds of pairs
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Table 7 Comparisons with
state-of-the-art methods on the
VeRi-776 dataset under the
noise ratio of 0, 20 and 50%,
respectively

Noise Methods VeRi-776

Rank-1 Rank-5 Rank-10 mAP

0% PGAN (TIFS2020) 96.5 – – 79.3

PVEN (CVPR2020) 95.6 98.4 – 79.5

TransReID (ICCV2021) 97.1 – – 82.0

LCNL (Ours) 96.9 98.4 98.9 81.7

20% PGAN (TIFS2020) 76.6 91.9 95.1 42.3

PVEN (CVPR2020) 76.9 89.6 94.9 47.1

TransReID (ICCV2021) 83.0 93.9 96.5 49.7

LCNL (ours) 97.4 98.7 99.3 81.8

50% PGAN (TIFS2020) 34.6 59.7 70.4 10.5

PVEN (CVPR2020) 54.1 71.6 80.5 21.6

TransReID (ICCV2021) 49.6 69.0 77.4 13.0

LCNL (ours) 96.7 98.3 99.1 79.4

The best and second best results are highlighted in bold and underline

Table 8 Ablation studies on
VeRi-776 with 20% noise

Method variants 20% Noise

Co-modeling Pair division Lsid Laqdr mAP

� 52.5

� � 77.5

� � � 72.6

� � � � 81.8

The default setting is marked in underline

Table 9 The necessity of our
CNL-oriented paradigm

Methods 20% Noise 50% Noise

DA RA mAP DA RA mAP

ADP-DivideMix 94.2 85.8 56.8 82.8 85.6 52.0

ADP-Clean – – 61.6 – – 56.5

ADP-LCNL 98.9 – 64.9 99.7 – 59.8

DA denotes the division accuracy on clean and noise samples,RA denotes the rectified accuracy for DivideMix
Best results are in bold

4.4.2 Ablation Studies

In this section, we conduct ablation studies on the VeRi-776
dataset with 20% noise. Similar to Sect. 4.2.2, we perform
LCNLwith different variants and summarize the correspond-
ing results in Table 8. From the results, one could conclude
that each module of LCNL plays an important role in achiev-
ing robustness on CNL.

4.5 Analysis Experiments

To further analyze the revealed CNL problem and the pro-
posed LCNL framework, we conduct experiments on the
VI-ReID task with the SYSU-MM01 dataset under the all-
search evaluation mode.

4.5.1 Necessity of CNL-Oriented Techniques

In Introduction, we argue that it is impossible to eliminate
the influence of CNL by only achieving robustness against
the NA. In this section, we verify this claim by taking
the cross-modality VI-ReID task as a showcase. As there
is no NA-robust VI-ReID method yet, we take the gen-
eralized approaches as alternatives. Specifically, we adopt
DivideMix (Li et al., 2020) for annotation rectification and
then adopt the ADP (Ye et al., 2021a) on the rectified data.
Furthermore, we report the performance of ADP by only
using the clean data for training. As illustrated in Table 9,
one could have the following observations. First, DivideMix
performs imperfect data division and annotation rectifica-
tion, thus leading to inferior VI-ReID performance. Second,
the inferior performance of ADP-Clean compared to LCNL
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demonstrates that it is inadvisable to simply discard the noisy
sample even using the ground truth partition as prior. The
above experimental results support our claims, showing the
importance of developing the CNL-oriented methods for the
object ReID tasks.

4.5.2 The Detection Ability of CNL

After revealing the importance of CNL-oriented solutions,
we further study the ability of LCNL to detect NA and NC
w.r.t. different noise ratios. To distinguish the clean samples
from the noisy ones, we simply set 0.5 as the confidence
boundary for distinguishing the clean from noisy samples. In
the evaluation on NC, we report the pair construction statis-
tics and investigate the detection ability of the pair division
module. As illustrated in Fig. 5, the detection accuracies on
NA and NC keep relatively stable even with the increasing
noise ratios, which fully demonstrates the effectiveness of
our method.

4.5.3 Fine-Grained Ablation Studies

The importance of all theLCNLmodules has beenwell inves-
tigated in Tables 4, 6 and 8. For a more comprehensive study,
we conduct more ablation studies at a finer-grained level.

Effect of the co-modeling module: to investigate the effect
of the co-modeling module, we replace the co-modeling
module by adopting only one network (i.e., self-trainingman-
ner) or using the teacher-student architecture (i.e., EMAman-
ner (Tarvainen and Valpola, 2017)). As shown in Table 10,
both the self-training and EMA manners probably accu-
mulate the bias during NA modeling, thus degrading the
performance.

Effect of the recast functions: to handle the homogeneous
pair combination, we design different kinds of recast func-
tions [Eq. (16)]. Here, we investigate their roles in Table 11.
One could see that the “LCNL-Weighty” setting achieves
superior performance thanks to the favorable optimization
properties on handling hard-sampling triplets, i.e., Theo-
rems 1and 2.

Effect of the adaptive quadruplet loss: after pair division
and correspondence rectification, the robustness of NC is
guaranteed by the adaptive quadruplet loss [Eq. (9)] which
consists of two loss components. Here, we investigate their
effects and summarize the results in Table 12. The results
demonstrate the importance of the two loss components in
achieving robustness.

4.5.4 Visualization on Robustness

In this section, we qualitatively study the robustness of
LCNL.

Table 10 The effects of different training manners

Manners 20% noise 50% noise

R-1 mAP mINP R-1 mAP mINP

LCNL-selftraining 65.3 62.4 48.4 62.1 58.7 44.1

LCNL-EMA 66.1 62.9 48.9 58.6 55.8 41.0

LCNL-comodeling 67.2 64.9 51.7 62.4 59.8 45.9

Best results are in bold

Table 11 The effects of different recast functions

Functions 20% Noise 50% Noise

R-1 mAP mINP R-1 mAP mINP

LCNL-mean (σ1) 66.3 64.1 50.7 60.3 58.7 45.3

LCNL-max (σ2) 67.4 64.8 51.6 61.0 58.8 45.0

LCNL-min (σ3) 65.2 63.0 49.8 61.3 59.0 45.2

LCNL-maxmin (σ4) 65.5 63.3 50.1 61.7 59.5 45.8

LCNL-weighty (σ5) 67.2 64.9 51.7 62.4 59.8 45.9

Best results are in bold

Table 12 The effect of the two loss components of the adaptive quadru-
plet loss

Laqdr 20% Noise 50% Noise

Latri Lqdt R-1 mAP mINP R-1 mAP mINP

× × 66.3 63.8 49.8 60.9 57.3 42.3

� × 66.7 64.0 50.7 61.7 59.2 45.4

� � 67.2 64.9 51.7 62.4 59.8 45.9

Best results are in bold

Robustness against NA:we visualize the per-sample iden-
tity loss [Eq. (2)] on different stages or settings in Fig. 6. From
the results, one could see that the vanilla identification loss
will overfit the noisy samples (Fig. 6a). In contrast, the pro-
posed soft identification loss [Eq. (8)] not only fits the clean
samples well but also prevents the overfitting on the noisy
samples (Fig. 6d).

Robustness against NC:wevisualize the pairwise distance
distribution of different kinds of pairs w.r.t., ADP and LCNL.
As shown in Fig. 7, ADP will confuse the clean and noisy
pairs, thus overfitting the NC. In contrast, LCNL not only
remarkably distinguishes the pairs but also correctly utilizes
the noisy pairs, i.e., increasing the distance of FP pairs while
decreasing the one of FN pairs.

4.5.5 Robustness and Generalizability of LCNL

LCNL is a generalized framework, which could endow most
existing object ReID methods with robustness against the
CNL. In this section, we verify such generalizability by addi-
tionally developing a robust version of CrossAGW (Ye et al.,
2021b) under the LCNL framework which is denoted as
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Fig. 6 Per-sample loss distribution under different settings

Fig. 7 Pairwise distance distributions of “TP + FP” pairs and “TN +
FN” pairs computed through ADP and LCNL

“CrossAGW+LCNL”. Moreover, we investigate the robust-
ness of “ADP+LCNL” and “CrossAGW+LCNL”with differ-
ent noise ratios by increasing it from0 to 60%with an interval
of 10%. As illustrated in Fig. 8, LCNL not only endows both
CrossAGW and ADP with robustness on the CNL but also
performs quite stably under different noise ratios.

5 Conclusion

In this paper, we reveal a new problem for object ReID, i.e.,
coupled noisy labels, which we refer to as noisy annota-

Fig. 8 Performance comparisons of CrossAGW, ADP, AGW+LCNL
and ADP+LCNL on the SYSU-MM01 dataset with varying noise ratios

tion and the accompanied noisy correspondence. To tackle
this challenge, we propose a CNL-robust framework dubbed
learning with coupled noisy labels. The proposed LCNL
first estimates the truly-annotated confidences and then rec-
tifies the noisy correspondences. After that, it further groups
training pairs into four partitions and achieve CNL-robust
object ReID with a provable CNL-robust objective function.
Extensive experiments on three different ReID tasks ver-
ify the effectiveness of LCNL. As many applications such
as sketch-based image retrieval require to annotate samples
and construct the training pairs using the annotation, they
probably encounter the CNL problem. Therefore, we plan
to explore the characteristic of these tasks and study a more
general solution for the CNL problem in the future.
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Appendix

Proof to Theorem 2

Theorem 2 For the FP&TN combination, the gradient value
of Laqdr with σ5 w.r.t. di j is greater than that w.r.t. dis when
di j < dis .
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Table 13 Ablation studies the
network initialization scheme
under SYSU-MM01 with 20%
noise

Initialization variants 20% Noise

Same Different Relatively different mAP mINP

� 64.9 51.7

� 64.5(↓ 0.4) 51.2(↓ 0.5)

� 65.3(↑ 0.4) 52.3(↑ 0.6)

The default setting is marked in underline. The ↓ and ↑ denote the performance degradation and improvement
compared to the default setting, respectively

Proof For the FP&TN combination, ỹ pi j = 0 and ỹ pis = 0,

the gradient of Laqdr with σ5 w.r.t. di j is in the form of

∂Laqdr

∂di j
= exp (2dis) + (1 + dis − di j ) exp (di j + dis)

(exp (di j ) + exp (dis))2
,

and the gradient of Laqdr with σ5 w.r.t. dis is in the form of

∂Laqdr

∂dis
= exp (2di j ) + (1 + di j − dis) exp (di j + dis)

(exp (di j ) + exp (dis))2
.

Let G be the square difference between the values of
∂Laqdr/∂di j and ∂Laqdr/∂dis , it could be proved that G >

0,∀di j < dis by

G =
∣∣∣∣
∂Laqdr

∂di j

∣∣∣∣

2

−
∣∣∣∣
∂Laqdr

∂dis

∣∣∣∣

2

= 2(dis − di j ) exp (di j + dis) + exp(2dis) − exp(2di j )

(exp (di j ) + exp (dis))2

> 0.

Therefore, the gradient value of ∂Laqdr/∂di j is greater
than ∂Laqdr/∂dis when di j < dis .

Discussion

Due to the hard mining strategy, the pairs are susceptible
to be with noisy correspondence in the presence of noisy
annotation, as discussed in Sect. 3.4.2 in the manuscript.
Therefore, the number of different triplet combinations
would be inevitably inconsistent. Fortunately, thanks to the
proposed adaptive loss Laqdr [Eq. (9)], there is no need to
use additional techniques to balance the triplet combinations.
Specifically, LCNLadopts lossLaqdr to adaptively transform
the noisy combinations (FP&FN, TP&FN, and FP&TN) into
new “clean” combination (TP&TN) for achieving robust-
ness. Thanks to the mechanism of Laqdr , different types of
combinations would be transformed into the new “clean”
combination (TP&TN), thus having the same importance
as each other. As a result, LCNL could achieve robustness
against noisy correspondence under imbalanced triplet com-
binations.

More Experiment Details

In the Appendix, we elaborate on the details of the used five
datasets as follows.

– SYSU-MM01: it is a large-scale VI-ReID dataset where
the images are captured by four visible cameras and two
near-infrared ones under both indoor and outdoor envi-
ronments on the SYSU campus. In the dataset, 22,258
visible images and 11,909 infrared images from395 iden-
tities are used for training, 301 randomly sampled visible
gallery images, and 3803 infrared query images from
another 96 identities are used for single-shot evaluation.

– RegDB: it is a VI-ReID dataset that consists of 8240
images from 412 identities. Each identity has 10 visible
and 10 infrared images captured by a dual-camera (one
visible and one infrared) system. The standard evaluation
protocol is using 10 different training/testing splits. At
each evaluation trial, half of the identities are chosen for
training and the rest are used for evaluation.

– Market-1501: it is a large-scale V-ReID benchmark,
which consists of 32,668 images of 1501 identities
captured by six different cameras. In the dataset, 751
identities are used for training and the rest 750 identities
are utilized for testing. In the standard testing protocol,
3,368 query images are chosen as the probe set to find the
correct matching over 15,913 reference gallery images.

– DukeMTMC: it is a large-scale V-ReID dataset collected
from eight different high-resolution videos. This dataset
consists of 16,522 training images from 702 identities,
2228 query images, and 17,661 gallery images from
another 702 identities.

– VeRi-776: It is a widely-used dataset for vehicle ReID
which is collected in the real-world urban surveillance
scenario. The dataset consists of 37,715 training images
from 576 identities, 11,579 gallery images, and 1678
query images from another 200 identities.

More Experiment Results

To investigate the impact of different network initialization
onourLCNL,we change the initialization difference byvary-
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ing the hyper-parameters of the default initialization scheme.
Accordingly, we conduct experiments with three settings to
investigate the impact of initialization differences on the final
performance. Specifically, we initialize two networks with
(1) the same initialization; (2) different initialization; and (3)
relatively different initialization. The results are summarized
in Table 13, where one could find that moderately varying
the initialization between two networks might benefit the co-
modeling scheme thus slightly improving the performance.
However, over-changing the hyper-parameters of the default
initialization scheme might lead to unstable optimization.
Therefore, in the main experiments, we still initialize net-
works with default hyper-parameters.
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