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Abstract
This paper studies a new learning paradigm for noisy labels, i.e., noisy correspondence (NC). Unlike the well-studied noisy
labels that consider the errors in the category annotation of a sample, the NC refers to the errors in the alignment relationship
of two data points. Although such false positive pairs are common especially in the data harvested from the Internet, which
however are neglected by most existing works. By taking cross-modal retrieval as a showcase, we propose a method called
learning with noisy correspondence (LNC). In brief, the LNC first roughly obtains the clean and noisy subsets from the
original data and then rectifies the false positive pairs by using a novel adaptive prediction function. Finally, the LNC adopts
a novel triplet loss with soft margins to endow cross-modal retrieval the robustness to the NC. To verify the effectiveness of
the proposed LNC, we conduct experiments on six benchmark datasets in image-text and video-text retrieval tasks. Besides
the effectiveness of the LNC, the experimental results show the necessity of the explicit solution to the NC faced by not only
the standard model training paradigm but also the pre-training and fine-tuning paradigms.

Keywords Noisy labels · Cross-modal retrieval · Multimodal learning · Misalignment

1 Introduction

In machine intelligence, the correspondence (alignment rela-
tionship) between two data points plays a crucial role in var-
ious tasks and applications including cross-modal retrieval
(Xu et al., 2017; Yang et al., 2017; Deng et al., 2018; Lee et
al., 2018), visual question answering (Zhao et al., 2017; Wu
et al., 2017b), visual caption (Anderson et al., 2018; Li et
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al., 2019; Wu et al., 2017a), object re-identification (Zheng
et al., 2012; Ye et al., 2021), and so on.

In practice, it is expensive even impossible to collect a
large number of data pairs that are well aligned. In fact, it
is common that some negative pairs are wrongly treated as
positive, especially when more and more works are trying to
leverage the data pairs harvested from the Internet. For exam-
ple, Conceptual Captions (CC) (Sharma et al., 2018) uses
the web images and the associated Alt-text HTML attributes
to form data pairs. Similarly, HowTo100M (Miech et al.,
2019) collects billions of video-caption pairs by treating
the associated subtitles of the video as the descriptive cap-
tions. However, such easily accessed data from the Internet
inevitably contain mismatched data pairs (i.e., false positive
pairs), even with various rigorous filtering rules. According
to the expert evaluations (Sharma et al., 2018; Miech et al.,
2019), there are still about 3–20% mismatched image-text
pairs in the CC and about 50% mismatched video-caption
pairs in HowTo100M. Although several works have realized
the existence of the noisy pairs, there are few studies have
been conducted to explore how to endow neural networks
with robustness to such noise.

To the best of our knowledge, this work is one of the first
studies on the noisy correspondence (NC) which is remark-
ably different from the vanilla noisy labels. For better clarity,
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Fig. 1 Noisy Annotation vs. Noisy Correspondence. We study a new
paradigm for noisy labels in multimodal learning, i.e., noisy corre-
spondence. As shown in the figure, the noisy and clean samples are
highlighted in red and green colors, respectively (Color figure online)

we denote the vanilla noisy labels by noisy annotations (NA)
in the following as it usually focues on the category-level
annotation errors. Specifically, on the one hand, the corre-
spondence denotes the matching relationship between two
givendata samples,whereas thewell-studied annotation indi-
cates the category for a given data point. On the other hand,
the difference lies in these two types of labels lead to differ-
ent applications, e.g., cross-modal instance retrieval usually
aims to build the mapping between two points using the cor-
respondence, whereas the classification task often build the
mapping between the point and the accompanied annota-
tion. For a visual understanding of the difference between the
two learning paradigms, Fig. 1 presents some examples. As
shown, a typical example of noisy annotation is that “Dog”
is wrongly assigned to the cat image. Differently, an example
of noisy correspondence is that “A young elephant is eating
grass while another elephant is behind.” is matched to the
image of two giraffes eating leaves but treated as positive.

To study the influence of noisy correspondence, we take
a typical correspondence-based application as an evalua-
tion showcase, i.e., cross-modal retrieval which leverages
the correspondence between cross-modal data to retrieve the
related sample from another modality. In such an evaluation
scenario, we propose a novel method for achieving robust
cross-modal retrieval, termed Learning with Noisy Corre-
spondence (LNC). In brief, the LNC consists of three stages.
In the first stage, it warmups two individual models with a
momentum regularization and randomly noise abandon tech-
nique that are used to avoid noise over-fitting. Then, the LNC
divides the given data into two subsets, i.e., the “noisy” and
“clean” subsets by leveraging the per-sample loss difference.
In the second stage, the LNC designs a prediction module for

correspondence refinement to further identify the false and
true positives from the clean and noisy subsets, respectively.
In the last stage, the LNC adopts a novel matching loss by
recasting the rectified correspondence as the soft margins of
triplet loss to achieve robust cross-modal retrieval.

The major contributions of our work are summarized as
follows:

• This paper shows a new learning paradigm termed noisy
correspondence. The NC could be regarded as a member
of the noisy label family but with significant differences.
In brief, the NC refers to the matching errors in data pairs
rather than the category annotation errors of a sample. As
far as we know, this work is one of the first studies on
this untouched problem.

• In the scenario of cross-modal retrieval, we propose a
novel method that could adaptively detect the false pos-
itive pairs and rectify them. Besides the aforementioned
novelty in the learning setting, the major technical nov-
elty of LNC is that the soft rectified correspondence is
recast as the soft margins of thematching loss for training
so that robust cross-modal retrieval is achieved.

• Extensive experiments on six benchmark datasets in
terms of two cross-modal retrieval tasks, i.e., image-text
and video-text retrieval, demonstrate the effectiveness
of LNC in handling the synthesized and real-world
noisy correspondence. Furthermore, the comparisons and
analysis with big models pre-trained on massive data
demonstrate the necessity of the NC-specified solution,
especially in the era of foundation models.

2 RelatedWork

In this section, we review the recent progress in noisy anno-
tations and cross-modal retrieval.

2.1 Noisy Annotations

In recent years, huge success has been achieved in handling
the noisy annotations (Liu & Tao, 2015; Han et al., 2018;
Feng &An, 2019; Song et al., 2020; Bai et al., 2021). In gen-
eral, most of the existing works resort to designing robust
network architecture, adding a regularization to the loss,
weighting different loss terms, or identifying the clean from
noisy samples. In this paper, we mainly review the last two
types of methods which are more related to this study.

As one typical method of loss re-weighting, Patrini et al.
(2017) proposes modeling the noise process using a label
transition matrix, and thus the underlying noise transition
pattern is discovered for correcting the loss. Reed et al.
(2014) eliminates the negative impact from the noisy anno-
tations with a well-designed bootstrapping loss. Differently,
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the clean sample identifying methods aims to identify the
most probable clean samples from the noisy data for training
by using the memorization effect of neural networks (Arpit
et al., 2017), i.e., neural networks are apt to fit the simple
patterns first and then gradually fit to the noisy samples.
By using such a working mechanism, Arazo et al. (2019)
proposes treating the small-loss samples as the clean ones.
Moreover, to avoid the self-selection bias in the single net-
work, Co-teaching (Han et al., 2018; Yu et al., 2019) leverage
two individual networks to filter out the noises in an alter-
native fashion. Recently, DivideMix (Li et al., 2020) adopts
the MixMatch technique (Berthelot et al., 2019) to further
boost the classification performance by treating the clean
and noisy samples as the labeled and unlabeled data in a
semi-supervised learning framework.

Different from the above studies, this work considers
another different problem, i.e., some unrelated data pairs
are wrongly treated as positive. Moreover, our method is
different from the above methods in the technical aspect.
Specifically, it is impractical and even impossible to over-
come the noisy correspondence challenge by directly using
these existing noisy annotation algorithms due to the fol-
lowing two reasons. On the one hand, most existing noisy
annotations works focuses on the NA problem and take the
classification as the evaluation scenario. These method pro-
pose to rectify the noisy annotations by using the prediction
of a classifier. As the retrieval models usually only output
the similarity of given pairs, there are many challenges to
rectify the noisy correspondence with the similarity, e.g.,
how to adaptively distinct the true positives from the data
by using the similarity only. On the other hand, even if
the noisy correspondence could be well rectified, almost
all existing matching models are incompatible with the soft
rectified correspondence which are real-valued instead of
binary (positive or negative pair). To overcome these task-
specific challenges, we propose a prediction function that
could adaptively predict and rectify the correspondence of
the given pairs. Moreover, to leverage the rectified soft cor-
respondence, the LNC recasts the soft correspondence into
the soft margins of the matching loss function in an elegant
manner.

2.2 Cross-Modal Retrieval

Cross-modal retrieval aims to project different modalities
into a common space wherein the cross-modal data are
aligned and comparable. In other words, the cross-modal
samples are adjacent if and only if they are similar in seman-
tics, and vice versa. In general, there are two types of cross-
modal retrieval methods: (i) Coarse-grained Cross-modal
Retrieval, which leverages multiple networks to represent
different modalities and jointly learns the global feature
embedding (Kiros et al., 2014; Wang et al., 2016; Faghri et

al., 2017; Torabi et al., 2016). To further improve the retrieval
performance, VSE++ (Faghri et al., 2017) employs the hard
negatives mining techniques to enhance the discrimination
performance in the triplet loss. (ii) Fine-grained Cross-modal
Retrieval, which aims to preserve the fine-grained semantic
similarity for cross-modal retrieval (Lee et al., 2018; Li et
al., 2019a; Diao et al., 2021). For example, SCAN (Lee et
al., 2018) learns the latent semantic correspondence between
image regions andwords at the feature level using the bottom-
up attention (Anderson et al., 2018) and GRU respectively.
CT-SAN (Yu et al., 2017) detects the key concept words from
the videos using a semantic attention mechanism. JSFusion
(Yu et al., 2018) leverages the hierarchical attention mech-
anisms to learn the common representations in a bottom-up
manner. SGRAF (Diao et al., 2021) proposes to reason the
similarity on the constructed similarity graph while elimi-
nating the meaningless cross-modal correspondence using
an attention filtration technique.

Although these methods have achieved promising results,
they highly rely on the well-matched cross-modal pairs that
are extremely expensive and time-consuming to collect. In
real-world applications, a huge number of data pairs are har-
vested from the Internet (Sharma et al., 2018; Jia et al., 2021)
and some of them are mismatched. Shekhar et al. (2017)
introduces a FOIL-COCO dataset by incorporating one mis-
take word in the caption (foil words), to assess the robustness
of vision-language models. The investigation reveals that
these models exhibit a deficiency in robustness when con-
fronted with the foil dataset. Some works (Sharma et al.,
2018; Jia et al., 2021) have realized the existence of these
mismatched pairs, however they neglect the corresponding
influence and believe that the robustness could be achieved
with more data. In other words, there is no work to explicitly
study this problem and this paper shows the necessity of a
noisy correspondence oriented algorithm.

3 Learning with Noisy Correspondence

In this section, we elaborate on the implementation details of
our method LNC. For ease of presentation, we first formu-
late the noisy correspondence problem in Sect. 3.1. Then we
elaborate on the co-dividemodulewhich is designed todistin-
guish the clean samples from the noisy data in Sect.3.2, along
with a novel warmup step including a momentum regulariza-
tion and a randomly noise abandon technique. In Sect. 3.3,
we elaborate on how to use the co-rectify module to rectify
the relationships of the false positive pairs. Then, in Sect. 3.4,
we introduce how to integrate the above co-divide and co-
rectifymodules so that the cross-modal retrieval model could
be endowed with the robustness against the NC. At last, we
will discuss the difference between this work and the prelim-
inary version NCR (Huang et al., 2021).
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Fig. 2 Overview of LNC. a LNC training pipeline. LNC leverages two
individual cross-modal retrieval networks (A, B) similar to co-teaching.
In brief, a warmup step is processed on the noisy data by combing
the triplet loss Lw and the momentum regularization. Then, at each
epoch, LNC obtains relatively clean and noisy subsets by using the loss
difference of data w.r.t. network A and B, i.e., S A = (S A

c ,S A
n ) and

SB = (SB
c ,SB

n ), where S A
c and SB

c denote the clean subsets obtained
by using network A and B, and S A

n and SB
n denote the noisy subsets

obtained by using network A and B. Then, LNC rectify the correspon-

dence of {S A,SB} by using the designed prediction function, yielding

the rectified data {Ŝ A, ŜB}. Finally, LNC train the network B and A by

using Ŝ A and ŜB in a swapping manner. bRobust cross-modal retrieval
model. We first use the modal-specific networks f and g to embed both
visual and textual data into a common space. Then, we compute the
cosine similarity S(·) on the visual and textual embeddings, i.e., f (·)
and g(·). Finally, we adopts a novel matching loss Lso f t to achieve
robust training

3.1 Problem Formulation

For a given query, cross-modal retrieval methods aim to
seek the relevant instance from the gallery across modal-
ity, of which the key is to learn a common space wherein
the semantic-relevant cross-modal pairs keep adjacent.With-
out loss of generality, we take image-text retrieval as an
example and first introduce the used mathematical notations
for clarity. Formally, for the paired image-text training data
D = {(vi , ti , yi )}Ni=1, we use vi and ti to denote the i-th
image and associated text, and yi ∈ {0, 1} to indicatewhether
the corresponding pair is matched (positive) or not (nega-
tive). In the traditional cross-modal retrieval, it assumes all
image-text training pairs are trulymatched, i.e., true positive.
Differently, we assume that the existence of noisy correspon-
dence will lead to false positive cases, i.e., some samples of
yi = 0 are wrongly annotated as yi = 1.

The framework of LCNL is shown in Fig. 2. To achieve
robust cross-modal retrieval, LNC adopts a retrieval model
that consists of two modal-specific networks f , g and a
similarity function S. The two networks f and g are used
to compute the visual and textual embeddings of v and t,
respectively. After that, the similarity function S computes
the semantic similarity S( f (v), g(t)) (denoted by S(v, t) for
simplicity in the following) across modalities (Fig. 2).

3.2 Co-Divide

Some pioneer works Arpit et al. (2017) have experimentally
shown that neural networks are apt to learn simple samples in
the early training period and then gradually fit the noisy ones
with further training. Such a so-called memorization effect
implies that the clean samples have relatively low losses than
the noisy ones in the early training stage. Based on this prop-
erty, we propose to treat the data pairs with small loss as
the clean samples and the pairs with larger loss as the noisy
samples similar to (Han et al., 2018; Yu et al., 2019; Arazo
et al., 2019; Li et al., 2020). This premise is founded on the
assumption that the network optimization process will pri-
marily focus on the clean samples, thereby considering the
larger-loss samples as noisy pairs. Specifically, by feeding
the noisy data into a given retrieval model ( f , g, S), we first
obtain the per-sample loss by

�( f ,g,S) = {�i }Ni=1 = {Ltr i (vi , ti )}Ni=1, (1)

where Ltr i (vi , ti ) is the vanilla triplet loss defined by

Ltr i (vi , ti )) =
∑

t̂

[α − S(vi , ti ) + S(vi , t̂)]+

+
∑

v̂

[α − S(vi , ti ) + S(v̂, ti )]+,
(2)
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where (vi , ti ) is a positive image-text pair, α > 0 is a posi-
tive margin, and [x]+ = max(0, x). Specifically, in the loss
function, the first term enforces that the given positive pairs
have larger affinity than the negatives by taking v as queries
and all other text t̂ as negatives. Similarly, the second term
takes t as queries and all other images v̂ as negatives.

With the computed per-sample losses, we adopt a two-
component Gaussian Mixture Model (GMM) to fit the loss
distribution:

p(�|θ) =
∑2

m=1
βmφ(�|m), (3)

where φ(�|m) and βm are the probability density and the
mixture coefficient of them-th component in the GMM opti-
mized by the EM algorithm. To distinct the noisy samples
from the clean ones, we first compute the posterior probabil-
ity as the clean confidence of i-th data pair wi = p(m|�i ) =
p(m)p(�i |m)/p(�i ), where m denotes the component with
lower mean (small loss) in GMM. Then, one could easily
split the data into clean and noisy partitions by thresholding
{wi }Ni=1. For simplicity, the threshold is fixed to 0.5 in our
experiments.

Following Han et al. (2018), to avoid the error accumula-
tion in noisy/clean division from the single network,we adopt
the co-teaching paradigm to divide the training data. Specifi-
cally, we individually train two networks A = { f A, gA, SA}
and B = { f B, gB, SB} with different initial network param-
eters and training batches. At each epoch, we model the
per-sample loss distribution computed by using the network
A or B, and split the original dataset into clean and noisy
subsets to train the other network, i.e., co-divide. Notably,
the memorization effect works in the initial training period
of neural works, hence we use the vanilla triplet loss Ltr i to
warmup the networks before performing co-divide.

In the warmup period, neural networks would eventually
fit the noisy ones with further training, thus degrading the
performance of co-divide. To alleviate this noise overfitting
issue, we propose a novel momentum regularization (MR)
for the warmup training loss and a noise discard technique.
To be specific, the MR is designed to prevent the overfitting
of noisy pairs by augmenting the loss contribution from the
true positives. More specifically, the MR is defined by

Lmr = 1

N
‖P(vi , ti ) − γ i‖2, (4)

where P(vi , ti ) is the model prediction of the given pair
(vi , ti ) which will be introduced in the next section. γ i is
the i-th value in γ which is computed by the past model pre-
dictions. In detail, let Pτ

i be the model predictions of the i-th
pair (vi , ti ) at epoch τ , γ τ

i is computed by:

γ τ
i = βγ τ−1

i + (1 − β)Pτ
i , (5)

where β is a momentum factor, γ 0
i = 1. To understand why

the regularization could avoid the noisy over-fitting, we first
review the memorization effect of the vanilla triplet. To be
specific, in the early memorization stage, the randomly ini-
tialized networks treat the noisy and clean samples equally,
then gradually fit the clean samples and then the noisy ones.
As a result, after a few optimization steps, the model will fit
the clean samples well and the corresponding gradient will
approximate to zero, while the noisy pairs tend to dominate
the gradient. In such a situation, the model will eventually
over-fit to the noisy pairs. Our momentum regularization will
penalize the gradients from the noisy samples while enlarg-
ing the clean ones even the network is already converged to
the clean samples. Han et al. (2019) proposed a similar strat-
egy which leverages both the original labels and the pseudo
labels produced in a self-learning manner for model train-
ing. Note that even our momentum regularizer share some
similar characteristics to Han et al. (2019), they are differ-
ent in the objective and formulation. First, our regularizer is
proposed to avoid noise overfitting in the warmup period by
balancing the loss contribution of the clean and noisy sam-
ples while the work Han et al. (2019) aims to improve the
model performance by optimizing the model with the pseudo
labels predicted in a self-learning fashion. Second, the for-
mulations of two works are different. Our regularizer aims to
minimize the �2 loss between the model output and the given
target, whereas (Han et al., 2019) adopts a cross-entropy loss
function. Third, our regularizer enforces the model predic-
tion closer to the target that is updated by the past model
predictions with momentumwhile (Han et al., 2019) directly
uses the model predictions as the target.

With these losses together, our warmup loss is defined as,

Lw = Ltr i + λLmr , (6)

where λ is a balance factor. Besides the above momentum
regularization, we propose discarding the confident noisy
pairs with low confidence w to further avoid noise over-
fitting during warmup. In detail, the proposed Randomly
Noise Abandon (RNA) strategy discards half of the pairs
which are detected as noisy one by both two networks (A, B)

at the same time, i.e.,

{(v j , t j )|wA
j < 0.5, and wB

j < 0.5,∀ j ∈ N }, (7)

where wA
j and wB

j are the clean confidence of j-th pair esti-
mated by network A and B respectively.

3.3 Co-rectify

After obtaining the “clean” subset Sc = {(vci , tci , yci , wi )}Nc
i=1

and “noisy” subset Sn = {vni , tni }Nn
i=1 by the co-divide mod-

ule, the co-rectify module is used to further rectify the
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correspondence to recall the true positive pairs in Sn and dis-
card the false positives in Sc. In detail, the co-rectify module
will rectify the correspondence of {Sc,Sn} by combining the
clean confidence wi and the predictions from the model k
through

{ ∀(vci , t
c
i , y

c
i , w

c
i ) ∈ Sc, ŷ

c
i = wi y

c
i + (1 − wi )P

k(vci , t
c
i ),

∀(vni , t
n
i ) ∈ Sn, ŷ

n
i = (PA(vni , t

n
i ) + PB(vni , t

n
i ))/2,

(8)

where k ∈ {A, B}, PA(v, t) and PB(v, t) are the predictions
from network A and B.

The above co-rectifymodule is designed to achieve the fol-
lowing goals. In brief, for Sc whose most pairs are probably
true positive, Eq. 8 uses the original correspondence yci and
the model prediction P(vci , t

c
i ) for rectifying the correspon-

dence. For Sn whose most pairs are probably false positive,
Eq. 8 will discard the unreliable correspondence and correct
it by combing the predictions from both network A and B,
i.e., PA(vni , t

n
i ) and PB(vni , t

n
i ).

Different from the classification, cross-modal retrieval
outputs the similarity for ranking and cannot directly predict
the correspondence. Hence, to predict the correspondence
using the retrievalmodel,we propose a novel prediction func-
tion P(v, t) as below:

s = S(v, t) −
⎛

⎝1

b

∑

t̂

S(v, t̂) + 1

b

∑

v̂

S(v̂, t)

⎞

⎠ /2,

P(v, t) = 	(s)/τ,

(9)

where s is the similarity margin from (v, t) to the average
similarity of all negative pairs in a batch, b denotes the batch-
size, 	(s) clamps s into [0, α], and τ is the average s of top
10% pairs with largest s in a batch. The value of τ takes
the assumption that there are at least 10% clean pairs in the
data for anchoring the positive correspondence. Intuitively,
we treat the correspondence of the pairs as 1 when s is larger
than τ , otherwise [0, 1).

3.4 Robust Cross-Modal Matching

Exiting cross-modal retrieval models assume that the given
pairs are either positive or negative (y ∈ {0, 1}), which
are incompatible with the soft correspondence (y ∈ [0, 1])
obtained by LNC. To leverage the soft correspondence for
achieving robust cross-modal retrieval, we propose recast-
ing the rectified correspondence as the soft margins in the
matching loss. Mathematically,

Lso f t = [α̂i − S(vi , ti ) + S(vi , t̂h)]+
+ [α̂i − S(vi , ti ) + S(v̂h, ti )]+,

(10)

Fig. 3 The Vanilla Triplet versus Our Soft-margin based Triplet. The
proposed loss could adaptively assign different margins to the pairs
according to the soft rectified correspondence. Specifically, Lso f t will
pull the true positive sample closer to the anchor until they are closer
than the negative with a largemargin α̂1. For the positive samples,Lso f t
will pull it closer to the anchor with a small margin α̂2

where v̂h = argmaxv j �=vi S(v j , ti ) and t̂h = argmaxt j �=ti
S(vi , t j ) are the most similar negatives to ti and vi in a batch,
respectively. The soft margin α̂i is adaptively determined by
the rectified correspondence ŷi with a recasting function as
α̂i = 
(ŷi ).

To achieve robust retrieval, the function 
 is designed to
preserve the uncertainty of the soft rectified correspondence
into margins, i.e., enforcing that the confident positive pair
(y close to 1) is closer than the negatives with a large mar-
gin, while the confident negative pair (y close to 1) closer
than the negatives with a small (even zero) margin. A toy
example is shown in Fig. 3. For this purpose, we design four
alternative recasting functions for
 to transform the rectified
correspondence to margins as below,


1 = ŷi × α,


2 = 10 ŷi − 1

10 − 1
× α,


3 = (sin(π × ŷi − π/2)/2 + 1/2) × α,


4 = sigmoid((10 + 100 ∗ (div − 0.5)) ∗ (ŷi − div)) × α,

(11)

where ŷi is the rectified correspondence, and div is the aver-
age value of the rectified correspondence to divide noisy
subset and clean subset. All the above recasting functions
are designed to assign a large margin to the pairs with higher
ŷi (close to 1), and a small one otherwise. We provide a visu-
alization of the four recasting functions on the Flickr30K
with 50% noise in Fig. 4 (α = 1 for better visualization),
including 
1 (linear), 
2 (exponential), 
3 (sin), and 
4

(sigmoid). As shown, the first function is straightforward by
directlymultiplyingmargins by the rectified correspondence.
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Fig. 4 A visualization of four correspondence recasting functions on Flickr30K with 50% noise

Such a strategy is too simple andmight ignore the distribution
diversity of the clean and noisy data. As shown in Fig. 4a,
most noisy pairs are located in the left area while the clean
ones are in the right area. To leverage such characteristics for
boosting performance, we design three non-linear functions
as follows: (i) 
2 is designed to restrain the margins of pairs
with small y and enlarge that of pairs with higher y. As shown
in Fig. 4c, the margins of noisy pairs (red) are shifted to the
left (close to 0). In other words, the margins of noisy pairs
are restrained; (ii) 
3 is designed to restrain the confident
noisy pairs (y < 0.5) and amplify the confident clean pairs
(y > 0.5); (iii) similar to 
3, 
4 aims at restraining the con-
fident noisy pairs and amplifying the confident clean pairs
but with a flexible boundary (div) of clean and noisy pairs.
The flexible boundary div is adaptively determined by aver-
age values of noisy and clean subsets obtained by co-divide.
However, a key question is whether the given boundary (0.5
or div) of 
3 and 
4 is matched to the real data distribu-
tion. As shown in Fig. 4d–e, the given boundary does not
split the data well, demonstrating the difficulty in boundary
selection in the real world. A quantitative comparison of the
four recasting functions is provided in the experiment.

3.5 Discussions

This paper extends our workNCR (Huang et al., 2021) which
was published at NeurIPS 2021 as oral. The extensions are
in the following aspects. In detail, (i) To avoid the noise
over-fitting, we propose a novel momentum regularization.
Specifically, the memorization effect shows that neural net-

works will first fit the simple samples and eventually over-fit
to the noisy samples. Such a noisy over-fitting issue will
inevitably affect the performance of our co-dividemodule. To
prevent the memorization of noises, we propose the regular-
ization to amplify the contribution of confident clean samples
w.r.t loss and restrain that of noisy samples. (See Eqs. 4–5 in
Sect. 3.2) (ii) To further eliminate the negative impact from
the noisy pairs, we design a randomly noise abandon strategy
to improve the co-divide module. Specifically, the strategy
first identifies the confident noisy samples based on themem-
orization effect and then randomly discards half of the most
confident noisy sample identified by both two networks. (See
Eq. 7 in Sect. 3.2) (iii) To verify the effectiveness of our
method inwider scenarios, we extend the application ofNCR
from the image-text to the video-text retrieval. Moreover, we
verify the effectiveness of LNC on three benchmark video
datasets includingMSR-VTT, LSMDC, and YouCook2 with
various noise ratios. The experimental results demonstrate
the effectiveness of the proposed method in handling the NC
in video-text data. (See Sect. 4.2) (iv) To reveal the wide
influence and existence of noisy correspondence, we inves-
tigate the proposed method in the pre-training paradigm. In
brief, we provide new discussions and experimental com-
parisons of LNC with two pre-training settings, i.e., besides
the fine-tune period, we examine the influence of NC on the
pre-training period. The experimental results demonstrate the
superiority of the proposed LNC even compared with the big
models pre-trained on billions of data. (See Sect. 4.4) (v)
We carry out new experiments to show the noise detection
capacity of LNC with various noise ratios (See Sect. 4.5.2)
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(vi) We conduct new analysis on four margin recasting func-
tions for achieving robust cross-modal retrieval on Flickr30K
with 50% noise. (See Sects. 3.4 and 4.5.2)

4 Experiment

In this section, we present quantitative and qualitative exper-
iment results to verify the effectiveness of the proposed
method for robust cross-modal retrieval. In the experiments,
we take image-text retrieval and video-text retrieval as the
showcase for evaluation. Specifically, we evaluate the pro-
posed method on six benchmark datasets including the
image-caption datasets Flickr30K (Young et al., 2014), MS-
COCO (Lin et al., 2014), Conceptual Captions (Sharma et
al., 2018) and video-caption datasets YouCook2 (Zhou et
al., 2018), MSR-VTT (Xu et al., 2016), LSMDC (Rohrbach
et al., 2017) to show the effectiveness of our method for
handling the possible noisy correspondence. Moreover, to
investigate the effectiveness of ourmethod in the pre-training
model for handling theNC in fine-tune or pre-training period,
we conduct two comparison experiments including (i) NC in
fine-tuning: we conduct the comparison to CLIP (Radford et
al., 2021) that is pre-trained on millions of image-text pairs
on the noisy MS-COCO data and (ii) NC in pre-training:
we conduct the comparison to the model pre-trained on the
large-scale video dataset HowTo100M (Miech et al., 2019)
on the MSR-VTT data. For a comprehensive evaluation, we
report R@1, R@5, and R@10 for all experiments as in Lee
et al. (2018).

4.1 Image-Text Retrieval

In this section, we conduct experiments on the image-text
retrieval task. Image-text retrieval aims to retrieve related
images or captions with a given query text or image. We first
verify ourmethod on the two benchmark datasetsMS-COCO
and Flickr30K with synthetic noisy correspondence com-
pared to the state-of-the-art. Thenwe conduct the experiment
on a subset of Conceptual Captions with noisy correspon-
dence from the wild.

4.1.1 Experiment Settings

Implementation details: LNC is a general framework of
learning with the noisy correspondence to endow the cross-
modal retrieval model with robustness against the NC. For
evaluation, we choose the SOTA method SGR (Diao et al.,
2021) for extending the robustness to show the effectiveness
of LNC. Specifically, we use a fully connected layer (i.e., f )
and a bidirectional gated recurrent unit (Schuster & Paliwal,
1997) (i.e., g) to embed the image and sentence into a shared
space. Then we compute the affinity S of the given image

and text by combining the local and global embeddings with
a similarity reasoning method used in Kuang et al. (2019).
Following Lee et al. (2018), to extract the local representa-
tions for each image, we use the detector of Faster-RCNN
(Ren et al., 2015) from Anderson et al. (2018) to extract a
2048-dimensional feature for each top 36 region proposals.
We adopt the Adam optimizer (Kingma & Ba, 2014) for net-
work optimization. The training batch-size is fixed to 128.
The initial margin α is set to 0.2 through all experiments. For
fair evaluation, we keep the network f and g unchanged as in
SGR (Diao et al., 2021). In the testing stage, we compute the
average similarity by using both the outputs from network A
and B to retrieve related samples. As for the correspondence
recasting function, we apply the 
2 in all following experi-
ments. More details about the implementation are provided
in the supplementary material.

Datasets: We verify our method on three benchmark
datasets. Specifically, Flickr30K contains 31,000 images and
each has 5 associated textual descriptions. Following the
data partition in Lee et al. (2018), there are 29,000 images
for training, and the rest for validation and testing (1000
images for each). MS-COCO contains 123,287 images and
each has 5 associated textual descriptions. Following the data
partition in Lee et al. (2018), there are 113,287 images for
training, and the rest for validation and testing (5000 images
for each). Since the Flickr30K and MS-COCO are carefully
labeled without noise, here we randomly shuffle a specific
percentage of the textual descriptions of images in the train-
ing data to simulate the noisy correspondence. The shuffle
percentage is denoted as the noise ratio. Conceptual Captions
(CC) (Sharma et al., 2018) contains 3.3M images with sin-
gle caption each. Because CC is collected from the Internet
without human annotation, there are about 3% ∼ 20% mis-
matched pairs according to the expert evaluation (Sharma
et al., 2018). In our experiments, due to the computation
resource limitation, we only use a subset dataset CC152K
fromCC. Specifically, CC152K contains 150,000 image-text
pairs for training, 1000 for validation and 1000 for testing.
The training samples are selected from the training split in
CC, and the validation and testing ones are selected from the
validation split in CC.

Baselines:We conduct comparison between the proposed
method LNC to the followingmethods including SCAN (Lee
et al., 2018), VSRN (Li et al., 2019a), IMRAM (Chen et al.,
2020), SGRAF (Diao et al., 2021) (including two different
models SGR and SAF). In Flickr30K and MS-COCO, we
conduct experiments with various NC ratios (0%, 20%, and
50%). Moreover, we report the performance of SGR which
is only trained on the clean data (denoted by SGR-C). Note
that, since the used training data for SGR-C have no noisy
correspondence, SGR-C is a strong baseline for showing the
effectiveness of LNC. In the non-noise case, we directly
report the original results in the references. In the experi-
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Table 1 Image-text retrieval results on Flickr30K and MS-COCO 1K

Noise Method Flickr30K MS-COCO
Image → Text Text → Image Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

0% SCAN 67.4 90.3 95.8 48.6 77.7 85.2 69.2 93.6 97.6 56.0 86.5 93.5

VSRN 71.3 90.6 96.0 54.7 81.8 88.2 76.2 94.8 98.2 62.8 89.7 95.1

IMRAM 74.1 93.0 96.6 53.9 79.4 87.2 76.7 95.6 98.5 61.7 89.1 95.0

SAF 73.7 93.3 96.3 56.1 81.5 88.0 76.1 95.4 98.3 61.8 89.4 95.3

SGR 75.2 93.3 96.6 56.2 81.0 86.5 78.0 95.8 98.2 61.4 89.3 95.4

SGRAF 77.8 94.1 97.4 58.5 83.0 88.8 79.6 96.2 98.5 63.2 90.7 96.1

NAAF 81.9 96.1 98.3 61.0 85.3 90.6 80.5 96.5 98.8 64.1 90.7 96.5

NCR 77.3 94.0 97.5 59.6 84.4 89.9 78.7 95.8 98.5 63.3 90.4 95.8

LNC 77.4 93.7 97.5 59.6 84.1 89.6 78.7 96.0 98.6 63.9 90.4 95.7

20% SCAN 59.1 83.4 90.4 36.6 67.0 77.5 66.2 91.0 96.4 45.0 80.2 89.3

VSRN 58.1 82.6 89.3 40.7 68.7 78.2 25.1 59.0 74.8 17.6 49.0 64.1

IMRAM 63.0 86.0 91.3 41.4 71.2 80.5 68.6 92.8 97.6 55.7 85.0 91.0

SAF 51.0 79.3 88.0 38.3 66.5 76.2 67.3 92.5 96.6 53.4 84.5 92.4

SGR* 62.8 86.2 92.2 44.4 72.3 80.4 67.8 91.7 96.2 52.9 83.5 90.1

NAAF 65.7 88.7 93.9 53.8 80.6 87.2 69.0 92.9 96.6 58.1 85.3 90.7

SGR-C 74.7 92.2 95.6 54.8 81.3 88.3 75.4 95.2 97.9 60.1 88.5 94.8

NCR 75.0 93.9 97.5 58.3 83.0 89.0 77.7 95.5 98.2 62.5 89.3 95.3

LNC 76.3 93.7 96.9 58.4 83.8 89.8 78.2 95.8 98.5 62.6 89.4 95.4

50% SCAN 27.7 57.6 68.8 16.2 39.3 49.8 40.8 73.5 84.9 5.4 15.1 21.0

VSRN 14.3 37.6 50.0 12.1 30.0 39.4 23.5 54.7 69.3 16.0 47.8 65.9

IMRAM 9.1 26.6 38.2 2.7 8.4 12.7 21.3 60.2 75.9 22.3 52.8 64.3

SAF 30.3 63.6 75.4 27.9 53.7 65.1 30.4 67.8 82.3 33.5 69.0 82.8

SGR* 36.9 68.1 80.2 29.3 56.2 67.0 60.6 87.4 93.6 46.0 74.2 79.0

NAAF 23.3 49.2 60.8 6.8 18.5 26.0 51.0 80.9 88.8 38.1 70.8 78.1

SGR-C 69.8 90.3 94.8 50.1 77.5 85.2 71.7 94.1 97.7 57.0 86.6 93.7

NCR 72.9 93.0 96.3 54.3 79.8 86.5 74.6 94.6 97.8 59.1 87.8 94.5

LNC 73.0 92.5 96.1 54.1 80.5 87.2 75.8 94.9 97.9 59.8 88.1 94.6

The best and second best results are highlight in bold and underline
∗Indicates the adding a warmup process to SGR

ments with NC, we report the best results from three times
training the baseline models with default settings. Note that,
we experimentally found SGR is sensitive to the NC. Thus
we add a warmup process to SGR (denoted by SGR*) by
training the network with the vanilla matching loss for a few
epochs, which shows reasonable results in our experiments.

4.1.2 Results on Flickr30K andMS-COCO

In Table 1, we provide the comparison results of LNC com-
pared to the baselines on the Flickr30K and MS-COCO
datasets. As shown, in the non-noise case, LNC achieves
competitive retrieval performance even compared to the cur-
rent SOTA SGRAF. Such a result shows that LNC could
achieve SOTAperformance in the clean data even though it is
proposed to handle the NC. In the noisy cases, LNC achieves

the performance and shows a large performancemargin to all
baselines even the SGR-C that is only trained on clean data.
Specifically, compared to SGR-C, LNC improves R@1 (I2T,
T2I) by (3.5%, 2.0%) and (3.2%, 4.0%) in Flickr30K with
20% and 50% noise, and (2.8%, 2.5%) and (4.1%, 2.8%) in
MS-COCO with 20% and 50% noise. In brief, the experi-
mental results demonstrate the robustness of LNC against
the noisy correspondence with various ratios.

4.1.3 Results on CC152K

In Table 2, we provide experimental results on the subset
of CC data, i.e., CC152K. As shown, the proposed method
LNC consistently outperforms the baselines by a large mar-
gin in both image and text retrieval. Specifically, compared to
the best baseline (except the preliminary versionNCR), LNC
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Table 2 Image-text retrieval results on CC152K

Method Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10

SCAN 30.5 55.3 65.3 26.9 53.0 64.7

VSRN 32.6 61.3 70.5 32.5 59.4 70.4

IMRAM 33.1 57.6 68.1 29.0 56.8 67.4

SAF 31.7 59.3 68.2 31.9 59.0 67.9

SGR 11.3 29.7 39.6 13.1 30.1 41.6

SGR* 35.0 63.4 73.3 34.9 63.0 72.8

NAAF 32.5 59.1 69.5 33.0 61.0 70.4

NCR 39.5 64.5 73.5 40.3 64.6 73.2

LNC 39.5 64.0 73.1 40.6 64.8 73.5

The best and second best results are highlight in bold and underline
∗Indicates the adding a warmup process to SGR

improves R@1 by 4.5% and 5.7% in text and image retrieval,
respectively. Moreover, SGR* outperforms SGRwith a large
performance margin, showing the sensitivity and unreliabil-
ity of triplet loss with hard negatives to the NC.

4.2 Video-Text Retrieval

In this section, we conduct experiments on the video-text
retrieval task to show the effectiveness of LNC. Video-text
retrieval aims to retrieve related video clips with given query
text.Weverify ourmethodon the three public datasets includ-
ingMSR-VTT,LSMDC, andYouCook2with synthetic noisy
correspondence similar to the image-text retrieval task.

4.2.1 Experiment Settings

Implementation: For video-text retrieval, following to
Miech et al. (2019), we first use the 2D and 3D CNNs
to obtain the frame-level and video-level representations.
Specifically, we extract the 2D features by a pre-trained
Resnet-152 (He et al., 2016) on ImageNet with one frame
per second rate; and extract the 3D features by a pre-trained
ResNeXt-101 16-frames model (Hara et al., 2018) on Kinet-
ics (Carreira & Zisserman, 2017). For the text, we use the
word2vec embedding model (Mikolov et al., 2013) pre-
trained on GoogleNews to obtain the text representations.
Similar toMiech et al. (2019), we adopt the embedding func-
tion used in Miech et al. (2018) to embed the video clip
and text into a shared. Then we compute the cosine affinity
between the video clip and captions for retrieval. We adopt
the triplet loss with the Adam optimizer for network opti-
mization.

Datasets: MSR-VTT (Xu et al., 2016) collects 200k
unique video clips with human-annotated captions from
YouTube. FollowingXu et al. (2016), we take the testing data
of MSR-VTT retrieval for evaluation. LSMDC (Rohrbach et

al., 2017) contains 101kuniquevideo clip-captionpairs about
movies. We take the testing data (1000 pairs) of LSMDC for
evaluation. YouCook2 (Zhou et al., 2018) contains 14k video
clips along with human-annotated captions about cooking.
We take the 3.5k validation pairs for evaluation. As MSR-
VTT, LSMDC and YouCook2 are well annotated, similar to
the images, we randomly shuffle the captions of video clips
for a specific ratio.

4.2.2 Results on MSR-VTT, LSMDC and YouCook2

Table 3 shows the quantitative results on the three video
datasets with various noise ratios including 20% and 50%.
As shown, LNC generally outperforms the baselines on three
datasets. Specifically, LNC improves R@1 (20% and 50%
noise) by (1.8%, 2.8%), (1.2%, 0.2%) and (0.9%, 0.1%)
progress in MSR-VTT, LSMDC and YouCook2 than the
baseline respectively. Moreover, similar to the image-text
retrieval, LNC still achieves competitive performance in the
noise-free case.

4.3 Comparison to the Noisy Annotation Learning
Method

To empirically show the effectiveness of ourmethod,we have
added the comparisons with DivideMix (Li et al., 2020) for
dealing with noisy correspondence. As the standard noisy
annotation methods cannot be directly used to address the
NC challenge as demonstrated in the Sect. 2.1, we take a
two-stage pipeline by employing DivideMix to filter out the
noisy samples and use the remaining clean samples to train
the state-of-the-art cross-modal matching model, i.e., SGR
(Diao et al., 2021). Table 4 shows the experiments on the
Flickr30K dataset with 20% noise. One could observe that
our method outperforms the DivideMix by 5.2% and 4.9%
in terms of R@1 on image retrieval and text retrieval, which
verifies the effectiveness of the proposed method and the
necessity of NC-specific methods.

4.4 Comparison to the Large-Scaled Pre-trained
Models

We conduct comparison experiments between LNC and the
large-scaled pre-trained models in two different settings, i.e.,
NC in the fine-tune period and NC in the pre-training period.
For the first setting, we assume the noisy correspondence
existed in the fine-tuning data thus degrading the downstream
tasks. To show the superiority of LNC in such an NC setting,
we compare it to the recently proposed large-scale pre-trained
model CLIP (Radford et al., 2021) on the image-text retrieval
task. We directly apply the released pre-trained CLIP model
(ViT-B/32) on the NoisyMS-COCO (i.e., with 20% and 50%
noisy correspondence). For the second setting, we assume
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Table 4 Comparison with DivideMix on Flickr30K

Methods Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10

DivideMix+SGR 71.1 91.1 94.8 53.5 78.1 85.8

LNC 76.3 93.7 96.9 58.4 83.8 89.8

Bold indicate the default setting

the noisy correspondence existed in the pre-training data. To
show the effectiveness of LNC in handling the NC in the pre-
training, we compare our method to the large model H100M
(Miech et al., 2019) on the video-text retrieval task. H100M
is pre-trained on the billions of video clips that are reported
to have many wrongly-matched video-captions pairs.

4.4.1 NC in the Fine-Tuning

CLIP is a largemodel pre-trained onmassive image-text pairs
collected from the Internet in which a large number of mis-
matched image-text pairs are wrongly treated as positive.
CLIP proposes using hundreds of million data to alleviate
the influence of the noisy pairs. In contrast, we believe that
anNC-specific algorithm (i.e., LNC) is essential for handling
the NC problem in the pre-training era.

In the following experiments, we compare the LNC to the
CLIP by using the MS-COCO for evaluation. The exper-
iments are conducted on two settings, i.e., Zero-shot and
Fine-tune. In detail, in zero-shot, we directly perform infer-
ence on MS-COCO by using the released pre-trained CLIP
(compared to the LNC trained on the original MS-COCO).
In fine-tune, we first fine-tune the released CLIP model on
MS-COCO and perform the inference on the testing data
(compared to LNC trained on Noisy MS-COCO). Because
the authors only released some CLIP models and the test-
ing script, we adopt the non-official training script 1 to
fine-tune the released CLIP in the fine-tune setting. Note
that CLIP (ViT-L/14†) is unreleased and we only report the
results from the original paper (Radford et al., 2021) in the
zero-shot setting and compare it to the LNC trained on the
original MS-COCO. As shown in Table 5, although CLIP
usesmassive training data for pre-training (about 400million
pairs), the noisy correspondence will inevitably degrade the
performance during fine-tuning. Conversely, NCR achieves
better matching performance compared to CLIP in the noisy
MS-COCO data, showing the necessity and importance of
algorithm design for handling the NC problem.

1 https://github.com/Zasder3/train-CLIP-FT
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Table 5 Comparison with CLIP
on MS-COCO 5K

Noise Ratio Methods Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10

0%, Zero-Shot CLIP (ViT-L/14†) 58.4 81.5 88.1 37.8 62.4 72.2

CLIP (ViT-B/32) 50.2 74.6 83.6 30.4 56.0 66.8

0%, Fine-tune CLIP (ViT-B/32) 56.2 82.2 89.7 45.3 73.5 83.0

LNC 58.2 84.6 91.6 41.9 71.0 81.6

20%, Fine-tune CLIP (ViT-B/32) 21.4 49.6 63.3 14.8 37.6 49.6

LNC 57.3 83.9 90.9 41.1 69.8 80.4

50%, Fine-tune CLIP (ViT-B/32) 10.9 27.8 38.3 7.8 19.5 26.8

LNC 53.8 81.5 89.4 38.5 67.0 78.0

Table 6 Video-text retrieval on
MSR-VTT with pre-trained
model on HowTo100M

Noise Method MSR-VTT
R@1 ↑ R@5 ↑ R@10 ↑ MR ↓

No Pre-training Random 0.1 0.5 1.0 500

Torabi et al. (2016) 4.2 12.9 19.9 55

Kiros et al. (2014) 3.8 12.7 17.1 66

Kaufman et al. (2017) 4.7 16.6 24.1 41

Yu et al. (2017) 4.4 16.6 22.3 35

Yu et al. (2018) 10.2 31.2 43.2 13

Miech et al. (2019) 12.1 35.0 48.0 12

LNC 13.4 35.9 47.7 12

Pre-training: Zero-shot Miech et al. (2019) 7.5 21.2 29.6 38

LNC 8.5 21.8 29.4 34

Pre-training: Finetune Miech et al. (2019) 14.9 40.2 52.8 9

LNC 17.3 40.7 55.7 8

The best results are highlight in bold

Fig. 5 a The Retrieval performance of LNC and LNC-SCAN on Flickr30K. b The visualization of loss distribution and GMM fitting results. c The
visualization of the rectified correspondence

4.4.2 NC in the Pre-training

HowTo100M (Miech et al., 2019) is a large-scale dataset that
consists of 136million video clips collected fromYoutube. In
general, the videos describe over 23k different visual tasks.
Specifically, the data are collected by searching for YouTube
videos related to the given task with a query about how to
proceed with the task. The associated subtitles are treated

as the corresponding caption of the video clips. As pointed
out by Miech et al. (2019), as the captions of HowTo100M
are automatically generated through the narration, the dataset
inevitably contains weakly/wrongly paired data. The authors
have evaluated some sampled pairs from the dataset and
found that about 51% are at least weakly related. In other
words, there are about 50% NC in HowTo100M.
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To show the effectiveness of the proposed method on
such a large-scale dataset from the wild, we directly use our
LNC to endow the model (Miech et al., 2019) with robust-
ness against the noisy correspondence. Specifically, we first
pre-train the model (Miech et al., 2019) under the LNC
framework on the billions of video clips with correspond-
ing captions and then evaluate it on the MSR-VTT for the
video-text retrieval task. The experimental results are shown
in Table 6. One could observe that our extension outperforms
the baseline in both zero-shot and fine-tune settings. Such
a result demonstrates the effectiveness of the LNC and the
necessity in explicitly handling the noisy correspondence in
the pre-training era.

4.5 Analysis Experiment

In this section, we conduct analysis experiments to provide
a comprehensive evaluation on the proposed method.

4.5.1 Robustness & Generalization

To show the robustness of LNC in handling various noise
ratios, we evaluate LNC on Flickr30K with different noise
ratios including 0%, 10%, . . ., 60%. Moreover, to demon-
strate the generalizability of LNC to other retrieval models,
we also extend the well-known method SCAN (Lee et al.,
2018) by LNC, denoted by LNC-SCAN. As shown in Fig. 8,
LNC and LNC-SCAN achieve more stable performance
than the baselines SGR and SCAN with increasing noise
ratio from 0% to 60%, demonstrating the capacity of LNC
for handling in various noise ratios. Moreover, LNC-SCAN
remarkably outperforms SCAN in all cases, showing the gen-
eralizability of LNC to different models.

4.5.2 Ablation Study

In this section, we investigate the influence of different mod-
ules in LNC. First, to show the effectiveness of co-divide and
co-rectify, we visualize the loss distribution and the model
predictions of the training data in Flickr30Kwith 50% noise.
For simplicity, here we only present the visualization result
from LNC-SCAN and provide the visualization of LNC in
the supplementary material. As shown in Fig. 5b, after a few
training epochs, noisy samples have a larger loss value than
the clean ones, verifying the memorization effect of DNNs.
Moreover, the data are successfully divided into “clean” and
“noisy” subsets by using theGMM.Fig. 6b visualizes the rec-
tified soft correspondence obtained by the co-rectify module.
As shown, the correspondence of clean samples are roughly
rectified to [0.4, 1] and those of noisy ones are roughly rec-
tified to [0, 0.6], showing the effectiveness of the co-rectify
module in LNC. In addition, we also conduct the quantity
experiment to investigate the performance of co-divide mod-

Fig. 6 Noisy and clean samples detection

ule. The experiment results are shown in Table 7. In the
experiment, we report the noise recall, precision and F1-
Score on the detected noisy correspondence by our method
after warmup. Notably, the F1-scores for noise detection are
about 88% ∼ 91%, indicating that our method effectively
identifies nearly all noisy pairs, regardless of whether the
noise constitutes 20% or 50% of the dataset.

Besides the visualization, we carry out the ablation study
to further investigate the roles of different modules on the
proposed method.We conduct experiments on the Flickr30K
with 20% noise. Specifically, we provide the results by
removing or replacing the modules in LNC including (1)
Removing the warmup step; (2) Removing the co-divide
module; (3) Removing the co-rectify module; (4) Using Ltr i

for warmup; (5) UsingLw for warmup; (6) Using RNA tech-
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Table 7 Noisy correspondence
identification

Dataset Noise ratio (%) Recall (%) Precision (%) F1-Score (%)

Flickr30K 20 83.04 94.22 88.28

50 87.04 96.35 91.46

MS-COCO 20 99.20 80.57 88.92

50 85.01 99.46 91.67

Table 8 Ablation studies on
Flickr30K with 20% noise

Method Image → Text Text → Image
Warmup Co-divide Co-rectify R@1 R@5 R@10 R@1 R@5 R@10
Vanilla MR RNA

� � 0.1 0.4 1.0 0.1 0.4 0.9

� � 72.0 90.8 94.6 53.4 78.4 84.9

� � 70.3 90.3 95.0 53.7 78.5 85.4

� � � 75.0 93.9 97.5 58.3 83.0 89.0

� � � 75.4 93.4 97.6 58.0 83.6 88.9

� � � 75.7 93.6 96.9 58.3 82.5 89.0

� � � � 76.3 93.7 96.9 58.4 83.8 89.8

The best and second best results are highlight in bold and underline

Table 9 Ablation studies on
four margin recasting functions
on MS-COCO

Noise Ratio Label ŷ → Margin α̂ Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10

20% 
1—Linear 75.4 93.1 97.1 57.7 83.1 88.8


2—Exponential 76.3 93.7 96.9 58.4 83.8 89.8


3—Sin 75.8 93.5 96.8 57.3 82.7 88.9


4—Sigmoid 76.5 93.7 97.2 57.1 82.7 89.2

50% 
1 - Linear 72.8 91.7 95.6 53.7 79.5 87.0


2—Exponential 73.0 92.5 96.1 54.1 80.5 87.2


3—Sin 70.7 91.1 95.7 53.2 80.3 86.7


4—Sigmoid 71.2 91.3 95.3 53.7 79.8 86.8

The best results are highlight in bold

nique for warmup; (7) Using bothLw and RNA technique for
warmup (i.e., LNC); As shown in Table 8, all the proposed
modules are crucial for the proposed method LNC to obtain
encouraging performance.

To investigate the noise detection power of LNC, we con-
duct experiments on Flickr30K with various noise ratios and
report the noisy and clean detection performance in terms of
the recall metric. As shown in Fig. 6, the proposed method
LNC consistently identifies most of the clean samples in
various noise ratios. For noise detection, LNC generally
degrades with the increasing noise ratio. Moreover, with
increasing epochs, the noise detection performance gener-
ally decreases as the neural network gradually fits the noisy
samples, demonstrating the memorization effect of DNNs.
Furthermore, with the powerful noisy/clean sample detec-
tion capacity, LNC could be a pluggable module to other
methods in various tasks to enable robustness to NC.

Moreover, we also investigate the proposed four margin
recasting strategies in the co-rectify module as discussed in
Sect. 3.3. We conduct experiments on the Flickr30K data
with 20% and 50% noise and report the results in Table 9.
From the table, one could observe that the 
2 (Exponential)
achieves the best performance, demonstrating the effective-
ness of restraining the probable noisy samples in Eq. 10. In
addition, although
3 and
4 are designed for restraining the
margins of pairs with small ŷ and amplify that of the pairs
with large ŷ, the performance is sub-optimal as the estimated
noisy/clean boundary is unmatched to the real data distribu-
tion. Note that, the different margin recasting functions could
be adaptively used for handling difference noise distributions
in the real-world applications as shown in Fig. 4. In general,

1 has no specific action formargin recasting as it transforms
it linearly; 
2 and 
3 both restrain the probable noisy sam-
ple and amplify the clean samples but with a slight difference
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Fig. 7 Performance of 
2 with various m on MS-COCO with 20%
noise

in the noise/clean boundary; 
4 aims to restrain almost all
the possible noise samples which is suitable for indiscover-
able noise by the co-divide module. Moreover, the different
noise ratios exert minimal impact on the performance of the
various 
 functions. This can be attributed to the fact that
all 
 functions adhere to the same underlying principle of
assigning an adaptive margin based on the rectified labels.

In addition, we have conducted additional sensitivity
experiments on the selected 
2 function to examine its per-
formance and stability. Note that 
2 can be written by:


2 = mŷi − 1

m − 1
× α,m > 1

So we varied the value of m in 2, 5, 10, 20, 100 and evalu-
ated the results. The experiment outcomes are displayed in
Figure 7. As illustrated, LNC exhibits consistent and stable
performance across different values of m in 
2.

4.5.3 Case Study

Fig. 8 provides some mismatched image-text pairs identi-
fied by LNC from CC152K. The detected image-text pairs
are unrelated in semantics according to the EME score and
are successfully identified by LNC. The EME is a quantita-
tive metric designed to assess the level of correspondence
between cross-modal pairs which will be introduced in
Appendix A. Moreover, we conduct the experiment on MS-
COCO to showcase the co-rectify ability to recall clean pairs
from the “noisy” subset, as illustrated in Fig. 9. Our results
demonstrate that our approach is capable of detecting clean
pairs that are wrongly divided into noisy subset. Notably,
even in cases where the original correspondence was nega-
tive (the last image-text pair framed in red), we were able to
rectify the correspondence to a score of 0.88 by considering
the related concepts shared between the image and caption,
which can be considered a weakly matched pair.

5 Conclusion

This paper studies a new problem in multi-modal learning,
i.e., noisy correspondence which is a new learning paradigm
for noisy labels. To address this problem, we propose a novel
method termed learning with noisy correspondence which
first distinct the noisy pairs from the clean ones and then rec-
tifies the false positive correspondence. With a novel triplet
loss, LNC endows the cross-modal retrieval model with
robustness against false positive pairs. Extensive experiments
on six benchmark datasets demonstrate the effectiveness of
the proposed method LNC. Furthermore, this study shows
that the noisy correspondence expects an explicit solution,
especially in the pre-training model era.
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Appendix A: Exactly Matched Element (EME)

To quantify the noise in the correspondence, here we intro-
duce the exactly matched element (EME) score which
evaluates the similarity of image and text pairs based on how
many elements they share in common. Formally,

EME = 1

2NI

∑

ei

E(ei , T ) + 1

2NT

∑

et

E(et , I ) (A1)

where ei and et are meaningful elements extracted from the
image I and the text T respectively, NI and NT are the
number of elements in I and T respectively, the function
E(ei , T ) is an indicator function that outputs 1 if the element
ei is accurately described in T , and 0 otherwise. Similarly,
E(et , I ) is an indicator function that outputs 1 if the element
et is depicted in I , and 0 otherwise. EME could be consid-
ered as the correspondence label of cross modal pairs. To
obtain EME score, we have two main approaches. Firstly,
we can compute the EME score with human annotations to
ensure accuracy. Alternatively, we can leverage advanced
techniques such as semantic segmentation or object detec-
tion on images to extract all visual elements, and employ text
segmentation methods on text to extract all textual elements.
Subsequently, we can calculate EME by utilizing a visual-
language model as the indicator (i.e., the function E(ei , T )

and E(et , I )), such as CLIP. Such an indicator helps iden-
tify whether the extracted elements from one modality are
described in the other modality.

The EME degree ranges from 0 to 1, where higher val-
ues indicate higher similarity between image and text pairs.
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Fig. 8 Some noisy examples correctly detected by LNC in the Conceptual Captions dataset

Fig. 9 Some clean pairs that are correctly detected by LNC from “noisy” subset divided by the Co-divide module

Fig. 10 An example of the process for calculating the EME score

For example, if an image and a text are completely unre-
lated, their EME degree will be 0. If they are partially related,
their EME degree will be between 0 and 1. If they are fully
related, their EME degree will be 1. A toy example is illus-
trated in Fig. 10 to show how to calculate the EME score of
an image-text pair. Note that, the calculation of EME is con-
tingent upon the quantity of shared content across various
modalities. Thus EME score primarily estimates the level of
cross-modal semantic completeness and lacks the capability
to assess other intricate relationships, such as contradictions
or complements.

Appendix B: Algorithm

Here we provide the detail algorithm of LNC in Algorithm 1.
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Algorithm 1: The algorithm of LNC

Input: Training data D with datasize N , retrieval models A = ( f A, gA, SA) and B = ( f B , gB , SB)

// Network Warmup
1 DW = D;
2 for n=1:warmup_epochs do
3 for k={A, B} do

// for each network
4 Train the network k on DW by optimizing Lw;
5 end

// Clean confidence

6 W A = {wA
i }Ni=0 ← GMM(B,D);

7 WB = {wB
i }Ni=0 ← GMM(A,D);

8 Dd = {(v j , t j )|wA
j < 0.5, and wB

j < 0.5,∀ j ∈ N }; // Detected noisy data from A and B

9 Dw = D − RandomSelection(Dd ,
1
2 |Dd |); // Randomly abandon half noisy data

10 end
// Network Training

11 for n=1:training_epochs do
// Clean confidence

12 W A = {wA
i }Ni=0 ← GMM(B,D);

13 WB = {wB
i }Ni=0 ← GMM(A,D);

14 for k ∈ {A, B} do
// Co-divide data

15 Sk
c = {(Ii , Ti , yi , wi )|wi ≥ 0.5,∀(Ii , Ti , yi , wi ) ∈ (D,Wk)} ;

16 Sk
n = {(Ii , Ti )|wi < 0.5,∀(Ii , Ti ) ∈ (D,Wk)} ;

17 for j=num_steps do
18 Sampling Mini-batch: (Bc

j ,Bn
j ) ← (Sk

c , Sk
n );

19 Rectifying the correspondence using Eq. 8–9: (B̂c
j , B̂n

j ) ← (Bc
j ,Bn

j );

20 Optimizing Network k by minimizing Lsof t on the rectified data (B̂c
j , B̂n

j ).

21 end
22 end
23 end

Result: Retrieval models (A, B)

Appendix C: Additional Experiments

C.1 Evaluation on theMS-COCO 5K Testing Set

Here we provide the additional comparison results on the
5K testing set of MS-COCO. As shown in Table 10, LNC
achieves SOTA results in the non-noise case. In the caseswith
noisy correspondence, LNC remarkably outperforms all the
baselines. Specifically, in the noisy setting, LNC improves
R@1 by 3.9%, 2.7%, 3.7%, and 3.1% in text and image
retrieval compared to the best baseline SGR-C.

Table 10 Image-text retrieval on MS-COCO 5K

Noise Methods Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10

0% SCAN 44.7 75.9 86.6 33.3 63.5 75.4

VSRN 53.0 81.1 89.4 40.5 70.6 81.1

IMRAM 53.7 83.2 91.0 39.7 69.1 79.8

SAF 53.3 – 90.1 39.8 – 80.2

SGR 56.9 – 90.5 40.2 – 79.8

SGRAF 57.8 – 91.6 41.9 – 81.3

NAAF 58.9 85.2 92.0 42.5 70.9 81.4

NCR 58.2 84.2 91.5 41.7 71.0 81.3

LNC 58.2 84.6 91.6 41.9 71.0 81.6

20% SCAN 42.4 72.1 82.6 22.8 52.3 66.3

VSRN 8.9 26.5 40.2 5.7 20.3 31.4

IMRAM 44.3 75.5 85.7 34.1 63.1 74.5

SAF 42.7 73.8 83.7 31.6 60.8 72.9

SGR* 44.6 73.5 83.7 31.4 60.4 72.4

NAAF 44.6 75.8 85.5 37.1 65.7 76.1

SGR-C 53.4 81.5 89.3 38.4 67.8 78.8
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Table 10 continued

Noise Methods Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10

NCR 56.9 83.6 91.0 40.6 69.8 80.1

LNC 57.3 83.9 90.9 41.1 69.8 80.4

50% SCAN 18.5 44.5 58.9 2.2 6.2 9.6

VSRN 8.3 25.4 37.7 4.8 18.1 29.2

IMRAM 5.0 23.0 38.5 8.1 26.0 38.3

SAF 10.4 32.8 48.2 15.2 38.3 51.9

SGR* 36.4 64.8 77.1 26.0 52.9 64.3

NAAF 26.8 56.2 68.9 18.2 44.1 57.5

SGR-C 50.1 77.4 86.8 35.4 64.5 76.0

NCR 53.1 80.7 88.5 37.9 66.6 77.8

LNC 53.8 81.5 89.4 38.5 67.0 78.0

The best and second best results are highlight in bold and underline

C.2 Case Study

In this section, we show some qualitative results of LNC. The
example image-text retrieval results are shown in Fig. 11 and
Fig. 12. As shown in Fig. 11 (1)–(4) and Fig. 11 (1)–(5),
LNC could successfully retrieve the corresponding samples
with given queries. Moreover, we provide some failure cases
from LNC in Fig. 11 (5)–(6) and Fig. 12 (6). Interestingly,
the retrieved image from LNC is fit to the query compared
to the ground truth in Fig. 12 (6).

Fig. 11 Some retrieved images by the LNC from CC152K. The left
images are the ground truth while the right are the retrieved ones. The
successfully retrieved images and the failure cases are highlighted by
green dashed boxes and red dashed boxes, respectively (Color figure
online)

Fig. 12 Some retrieved captions by the LNC from CC152K. The top
sentence is the ground truthwhile the rest are the retrieved top3 captions.
The successfully retrieved images and the failure cases are highlighted
by� and�, respectively

C.3 Co-divide and Co-rectify from LNC

In this section, we conduct analysis experiments to further
study the influence of co-divide and co-rectifymodules. First,
we provide the visualization on co-divide and co-rectify from
LNC in Fig. 13. As one could observe, the noisy and clean
pairs are well divided and rectified by our method.

Besides, to evaluate the impact of our confidence estima-
tion, we performed an ablation study by setting wi to 1 for
clean samples and 0 for noisy samples, based on the ground
truth labels. We denote this method as LNC (wc

i = 1, wn
i =

0). The results are shown in Table 11. Interestingly, our
LNC achieved better results than LNC (wc

i = 1, wn
i = 0),

despite the latter having access to the ground truth labels.
This indicates that our confidence estimation can effectively
capture the uncertainty of data correspondence, including
fully-matched, partially-matched, and unmatched image-text
pairs, and thus improve the cross-modal matching perfor-
mance.
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Fig. 13 a The visualization of loss distribution and GMMfitting results
from LNC. b The visualization of the rectified correspondence from
LNC

Appendix D: Implementation Detail

D.1 Image-text Retrieval

Here we detail how LNC adopts SGR for cross-modal
retrieval.

Specifically, for images, the visual features of K local
regions are extracted by the Faster R-CNN (Ren et al.,
2015). Then we obtain the local embeddings {v1, . . . , vK }
by embedding the above visual features by a fully con-
nected layer f . The global embeddings are obtained via the
self-attention mechanism (Vaswani et al., 2017). Moreover
specifically, we aggregate all the local embeddings to obtain
global embedding v̂ by treating the average local embeddings
as query. For captions, the caption is spited into L words
and are further represented by the 300-dimensional features
withword embedding technique. Then the 1024-dimensional
local embeddings {t1, . . . , tL} are obtained by a Bi-GRU
(Schuster & Paliwal, 1997) g(T ). The global embeddings
t̂ of captions are computed similar to the image.

With the extracted visual and textual embeddings, we
compute the similarity vector for given pairs. In detail, the
similarity vector is computed by:

s(v1, v2;W) = W|v1 − v2|2
W‖v1 − v2‖2 (D2)

where W denotes a learnable matrix. Then we compute the
similarity of global visual and textual embeddings as:

sg = s(v̂, t̂;Wg) (D3)

and the similarity of local visual and textual embeddings:

slj = s(av
j , t j ;Wl)

av
j =

K∑

i=1

αi jvi
(D4)

where av
j denotes aggregated embeddings, αi j denotes the

attention coefficient:

αi j = exp(λĉi j )∑K
j=1 exp(λĉi j )

(D5)

Table 11 Ablation study on
co-divide module by using
MS-COCO

Noise Ratio Method Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10

20% LNC (wc
i = 1, wn

i = 0) 77.2 95.4 98.2 61.6 89.2 95.1

LNC 78.2 95.8 98.5 62.6 89.4 95.4

50% LNC (wc
i = 1, wn

i = 0) 74.0 94.5 97.8 59.1 87.8 94.4

LNC 75.8 94.9 97.9 59.8 88.1 94.6
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Table 12 Experiment parameters

Dataset Warmup Epoch Epoch LR Update Batch Size

Flickr30K 3 40 30 128

MS-COCO 10 20 10 128

CC152K 5 30 10 128

where ĉi j denotes the cosine similarity between the i-th
image region and j-th word in a given image-text pair.

Once the similarity vectors N = {sl1, sl2, · · · , slK } are
obtained, we treat them as the similarity graph nodes and
compute the graph edges as:

e(sp, sq ;Win,Wout ) = exp((Winsp)(Wout sq))∑
q exp((Winsp)(Wout sq))

(D6)

whereWin andWout are the learnable matrixes to transform
the incoming and outgoing similarity. Finally, we aggregate
all the similarities by updating the similarity of nodes and
edges by

ŝnp =
∑

q

e(snp, s
n
q ;Wn

in,W
n
out ) · snq

sn+1
q = ReLU (Wn

r ŝ
n
p)

(D7)

where Wn
in , W

n
out and Wn

r are learnable matrixes, s0p and s0q
are the initial nodes from N at step n = 0. Specifically, it
iteratively updates the similarity for N steps, and treats the
global node as the reasoned similarity. Finally, we use a fully
connected layer to compute the final similarity as S(I , T ) in
LNC.

Here we provide the used parameters for training LNC in
Table 12 including the number of epochs for warmup, the
number of epochs for training, the number of learning rate
update intervals (LR Update) and batch size.

D.2 Video-Text Retrieval

In the video-text retrieval experiment, we take the model
proposed by Miech et al. (2019) as an example and extend it
to be robust again noisy correspondence. Specifically, with
the given video clip and caption (v, t), we adopt the class
of non-linear embedding functions to obtain the visual and
textual features, i.e.,

f (v) = (
W v

1 v + bv
1

) ◦ σ
(
W v

2

(
W v

1 v + bv
1

) + bv
2

)

g(t) = (
Wt

1t + bc1
) ◦ σ

(
Wc

2

(
Wc

1 t + bc1
) + bc2

) (D8)

whereW v
1 ,W

t
1,W

v
2 , andW

t
2 are the learnable weight, b

v
1, b

t
1,

bv
2, and b

t
2 are the learnable bias vectors, σ is an element-wise

sigmoid activation and ◦ is the element-wise multiplication.

In all experiments, we embed the clip and caption into 4096-
dimensional space.

For all video-text experiments, we adopt the Adam opti-
mizer with a learning rate of 0.0001 and set the batch size
to 256. For the pre-training on HowTo100M data, we follow
the default settings in Miech et al. (2019). The number of
warmup epochs is fixed to 3 for all video datasets.
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