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MetaQ: fast, scalable and accurate metacell
inference via single-cell quantization

Yunfan Li 1, Hancong Li2,3, Yijie Lin1, Dan Zhang 4, Dezhong Peng 1,
Xiting Liu 5, Jie Xie 6, Peng Hu1, Lu Chen 4, Han Luo 2,3 & Xi Peng 1,7

To overcome the computational barriers of analyzing large-scale single-cell
sequencing data, we introduce MetaQ, a metacell algorithm that scales to
arbitrarily large datasets with linear runtime and constant memory usage.
Inspired by cellular development, MetaQ conceptualizes each metacell as a
collective ancestor of biologically similar cells. By quantizing cells into a dis-
crete codebook, where each entry represents a metacell capable of recon-
structing the original cells it quantizes, MetaQ identifies homogeneous cell
subsets for efficient and accurate metacell inference. This approach reduces
computational complexity from exponential to linear while maintaining or
surpassing the performance of existing metacell algorithms. Extensive
experiments demonstrate that MetaQ excels in downstream tasks such as cell
type annotation, developmental trajectory inference, batch integration, and
differential expression analysis. Thanks to its superior efficiency and effec-
tiveness, MetaQ makes analyzing datasets with millions of cells practical,
offering a powerful solution for single-cell studies in the era of high-
throughput profiling.

The rapid advancements in single-cell capture and sequencing tech-
nologies give rise to a continuously increasing number of profiled
cells1,2, exhibiting advantages in revealing cell heterogeneity3 and
reconstructing developmental trajectories4. On the flip side, this surge
in large-scale sequencing data poses a significant computational hur-
dle for downstream analyses. For instance, a typical single-cell data
analysis pipeline5—encompassing data integration, clustering, visuali-
zation, and differential expression analysis—requires about 16 h to
process half a million cells on a standard desktop6. When the cell
number slightly increases to 600,000, the above pipeline can crash
due tomemory exceeding, even on a professional computing platform
with 512 GB RAM6. To handle large-scale data, several scalable and
efficient single-cell analysis tools have been developed for down-
stream tasks such as imputation7,8, integration9–11, clustering12–14, and

cell type annotation15,16. Nonetheless, these methods are commonly
tailored for specific tasks and cannot be easily integrated into well-
established frameworks5,17, leading to additional learning and deploy-
ment challenges.

Instead of exhaustively scaling up various analysis tools, a more
direct and general solution is to compress the sequencing data,
thereby energizing all commonly used methods to handle arbitrarily
large datasets once and for all. As a specific implementation, metacell
algorithms18 propose merging homogeneous cell subsets into meta-
cells to reduce redundancy, given that biologically similar cells are
often repeatedly sampled during high-throughput profiling. The
inferred metacells act as proxies of the original cells, which could be
analyzed using existing tools without any modification while enjoying
the following two merits. On the one hand, metacells decrease the
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computational expense by reducing the cell number. On the other
hand, metacells alleviate data sparsity by aggregating the features of
similar cells. However, despite the promising application prospect, it
remains challenging to accurately and efficiently infer metacells. For
example, the state-of-the-artmethod SEACell19 requiresmore than one
day to compute metacells for 100,000 cells, struggling to handle lar-
ger datasets due to significant memory overhead, which makes it less
practical. Recently, MetaCell V220 improved algorithmic scalability by
leveraging a divide-and-conquer strategy, albeit at the cost of achiev-
ing local optima. SuperCell6 employs the efficient Walktrap commu-
nity detection algorithm21 to expedite metacell inference. However,
like SEACell and MetaCell V2, SuperCell still requires exponentially
increasing running time with respect to cell number, limiting its scal-
ability to larger datasets.

The suboptimal scalability and performance of existing methods
could be attributed to their identical focus on mining local neighbor-
hoods where cells are similar to each other. Consequently, all existing
methods resort to constructing and partitioning pair-wise similarity
graphs, which are computationally expensive and limited by the
reliability of nearest neighbors. In this work, we introduce a perspec-
tive on metacells by drawing an analogy to the hierarchical nature of
cell differentiation in multicellular organisms. Specifically, cells
develop from a single, low-differentiation state, progressing through
various stages. For instance, in the hematopoietic system, pluripotent
hematopoietic stem cells differentiate through several stages into
mature B cells, including intermediate forms like pro-B cells, pre-B
cells, and immature B cells22. Uponmaturation, B cells further diversify
into subtypes with distinct functions in the immune system23. Such
differentiation is driven by characteristic gene expressions that define
the primary cell type and function, while specific feature expressions
further refine these cells into subtypes with distinct roles. Similarly,
metacells can be viewed as representing a common state of speciali-
zation among closely related cells. Analogous to an ancestor in the
developmental pathway, each metacell functions as a collective entity
that aggregates multiple specialized cells, capturing their shared fea-
tures. In other words, a subset of biologically similar cells can be
effectively derived from a single metacell.

By conceptualizingmetacells in thismanner, we present MetaQ, a
fast, scalable, and accurate metacell algorithm based on single-cell
quantization. Unlike existing methods that laboriously mine neigh-
borhood structures, MetaQ quantizes all cells into a codebook with a
limited number of entries,where each entry corresponds to ametacell.
By viewing each metacell as a collective ancestor of a subgroup of
specialized cells, MetaQ encourages each codebook entry to recon-
struct all the cells it quantizes. To achieve better reconstruction, the
model would naturally quantize biologically similar cells into the same
entry, inherently achieving cell grouping for metacell inference. This
simple yet effective design of MetaQ allows it to process various types
of count data in a fully unsupervised manner. More importantly,
MetaQ exhibits linear time complexity with respect to the number of
cells, while retaining a constant memory consumption. This makes
MetaQ a metacell algorithm that scales to arbitrarily large datasets,
setting it apart from existing methods6,19,20 that suffer from exponen-
tial time or memory complexity. Furthermore, while existing metacell
algorithms are designed for uni-omics data, MetaQ supports metacell
inference from paired multi-omics data by extending the reconstruc-
tion target, making it versatile for comprehensive single-cell analysis.
Notably, different from previous single-cell clustering and classifica-
tionmethods12–16, MetaQ pursues homogeneity within fine-grained cell
subsets in a generative manner instead of mining discriminative het-
erogeneity between different cell types.

Extensive experimental results demonstrate the superiority of
MetaQ in various downstream tasks, including cell type annotation,
developmental trajectory inference, batch integration, clustering, and
differential expression analysis. Moreover, MetaQ scales to arbitrarily

large datasets, requiring linearly increasing running time and constant
memory costs relative to the cell number. In summary, the proposed
MetaQ simultaneously enjoys efficiency, scalability, and accuracy for
metacell inference, whichmakes it a promising single-cell analysis tool
in the high-throughput single-cell profiling era with a continuously
growing number of cells and omics.

Results
MetaQ infers metacells via single-cell quantization
MetaQ is a deep learning-based metacell algorithm that infers meta-
cells through cell quantization in a generative manner. As depicted in
Fig. 1, MetaQ builds upon an auto-encoder framework enhancedwith a
cell quantization mechanism. Specifically, given a raw count matrix as
input, MetaQ first learns cell embeddings with the encoder network. In
the embedding space, MetaQ quantizes cells into a discrete codebook
with learnable entries, where the number of entries corresponds to the
user-definedmetacell number. During quantization, each cell would be
assigned to its nearest codebook entry, while each entry is responsible
for reconstructing all the cells it quantizes via the decoder network.
Such a design is predicated on our perspective of viewing each
metacell as a collective ancestor of a subgroup of specialized cells,
allowing similar cells to be effectively derived from a single entry. The
embedding, quantization, and reconstruction processes are simulta-
neously performed in an end-to-end fashion. To improve the recon-
struction performance, the model tends to quantize biologically
similar cells into the same codebook entry, encapsulating compressed
information about those cells. In other words, the cell quantization
process essentially identifies homogeneous cell subsets. In addition to
the joint optimization with encoder and decoder networks, the code-
book entries are further adjusted based on their historical usage, to
stabilize the optimization and prevent cells from collapsing into a few
entries. Notably, MetaQ naturally supports metacell inference for
paired multi-omics data. In brief, MetaQ incorporates multi-omics
features in cell embeddings and requires the quantized cell embed-
dings to reconstruct original count matrices across all modalities.
When the training converges, MetaQ infers metacells by averaging the
original count values of cells quantized into each codebook entry. The
resulting metacell count matrix provides a condensed representation
of the original cell population, preserving dense features while sig-
nificantly reducing the number of cells. These inferred metacells can
then be directly used for downstream analyses, acting as an efficient
and representative substitute for the original single-cell data.

MetaQ effectively and efficiently infers prototypical metacells
for cell type annotation
To evaluate the scalability and performance of MetaQ, we first
applied it to the human fetal atlas dataset consisting of 433,395 cells
across 54 types. Figures 2a and 2c show UMAP visualizations of the
original cells and the metacells inferred by four methods, each
metacell labeled by the majority type of original cells it represents.
The results indicate that MetaQ effectively separates different cell
types while preserving the structure of similar cells. For instance, one
could observe a clear grouping of retina cells, including retinal pro-
genitors and Muller glia, photoreceptor cells, and retinal pigment
cells, mirroring the original cell groupings (highlighted with red
boxes). In contrast, the metacells inferred by the other three meth-
ods resulted in a confounded grouping of retina cells with other cell
types. We visualized the density maps of the original cells and
metacells inferred by MetaQ in Supplementary Figs. 3a and 3c.
Overall, the metacell density aligns with that of the original cells,
namely, they are denser in areas with a high density of single cells and
vice versa. Such a density consistency enables themetacells to reflect
the underlying cell type distributions more accurately. Additionally,
the metacell assignments depicted in Supplementary Fig. 3b show
that the features of original cells, including those rare cell types, are
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effectively covered by MetaQ metacells. Beyond intuitive visual
comparisons, we quantitatively assessed the compactness and
separation of metacell inferred by different algorithms. As shown in
Figs. 2e and 2f, MetaQ consistently achieves the highest median
scores of compactness and separation across various metacell
numbers. Supplementary Fig. 3e also reveals that MetaQ exhibits
larger differences between within- and between-metacell cell simi-
larities than baseline methods. These results collectively underscore
the superior performance of MetaQ in aggregating homogeneous
cells and distinguishing between heterogeneous ones.

In addition to direct comparisons, we further evaluated the
metacell quality through a downstream cell type classification task.
Specifically, we trained a classifier using metacells to categorize the
original cells, where each metacell is labeled according to the most
prevalent cell type among its constituent cells. To accurately classify
the original cells, the metacells used for training are expected to
exhibit both high purity and high prototypicality. High purity ensures
that each metacell predominantly contains cells of the same type,
leading to reliable annotations. High prototypicality guarantees that
the metacells capture representative features, enhancing the gen-
eralization ability of the classifier to original cells. In other words, the
downstream classification performance reflects the overall quality of
metacells. We evaluated MetaQ and three baseline methods with
varying metacell numbers, presenting the results in Fig. 2b. To
demonstrate the effectiveness of metacells, we also included a naive
baseline by randomly sampling the same number of cells from the
original data. From 500 to 4000 metacells, the classification model
trained by MetaQ metacells consistently outperforms other baselines
in terms of average accuracy, showcasing the superior performance of
MetaQ. To further elucidate the performance gap, we illustrated the
confusion matrix of the predicted labels in Fig. 2d, with full cell type
names provided in Supplementary Fig. 2 due to the space limitation.
As shown, the model trained with MetaQ metacells better dis-
criminates between cell types, especially rare ones such as thymic

epithelial cells, leading to the highest balanced classification accuracy
(88.04% compared with the second-best 83.63% by SEACell). Besides
classifying original cells by training a classifier on metacells, we alter-
natively assigned each original cell the majority cell type of its corre-
sponding metacell. The balanced accuracy of this majority-voted
prediction, as shown in Supplementary Fig. 3f, also underscores
MetaQ’s superior performance (92.91% compared with the second-
best 83.78% by SEACell). Furthermore, we visualized the cell type
purity of metacells in Supplementary Fig. 3g, which shows that MetaQ
is the only method capable of identifying PAEP_MECOM positive cells
(with a proportion of 0.0597%) originating from placental tissue2 and
epithelial cells from the thymus (with a proportion of 0.0662%), the
two rarest cell types. These results collectively demonstrate that
MetaQ metacells preserve the information of both common and rare
cell types more effectively than baseline methods.

The main purpose of metacell algorithms is to alleviate the
substantial computational burden in single-cell analyses as pre-
viously discussed. Thus, in addition to the metacell quality, we were
also concerned about the efficiency of metacell algorithms. To this
end, wemeasured the (logged) running time andmemory costs of all
methods on datasets ranging from 50 thousand to 1 million cells. As
shown in Fig. 2e, MetaQ exhibits linearly increasing running time and
constant memory usage relative to the number of cells, theoretically
scaling to arbitrary data sizes (see Supplementary Note 2 for more
details). Although SuperCell is efficient on relatively small subsets of
less than 200,000 cells, it requires exponentially increasing time and
linearly increasing memory, leading to limited scalability for larger
datasets. Moreover, as shown in Fig. 2b, SuperCell achieves inferior
classification performance compared to other methods, even worse
than the naive random sampling baseline with 4,000 metacells. Due
to the exponential memory costs, SEACell and MetaCell V2 exceed
512 GB memory—a common configuration for computational servers
—when processing 200,000 and 433,000 cells, respectively. Notably,
compared to the most competitive baseline SEACell in metacell
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quality, the proposed MetaQ achieves approximately a 100 times
speedup when processing 100,000 cells (0.3 hours versus
26.7 hours). We further investigated the influence of the metacell
number on computational expenses. As shown in Fig. 2f, MetaQ and
SuperCell are insensitive to the number of metacells, MetaCell V2
favors larger metacell numbers to activate its divide-and-conquer
strategy, and SEACell requires linearly increasing time relative to the

metacell number. Notably, one could enable SEACell on the full
dataset by inferring metacells in a hierarchical fashion, namely, first
inferring metacells within each sample and then performing a sec-
ondary metacell aggregation across samples. Supplementary Fig. 4c
indicates that hierarchical SEACell achieves performance on par with
MetaQ. However, this improvement comes at a significant compu-
tational cost. Supplementary Fig. 4d reveals that hierarchical SEACell
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on full data took over a week to complete, whereas running MetaQ
only requires about an hour. Such a dramatic improvement in com-
putational efficiencymakesMetaQmore favorable in practical use. In
summary, the proposed MetaQ not only infers accurate and proto-
typical metacells, but also offers the best computational scalability
for large datasets, making it an effective and efficient tool for
metacell analysis.

MetaQ supports multi-omics analysis and preserves cell devel-
opmental trajectory
Advances in single-cell technologies have enabled the simultaneous
profiling of cells across multiple layers24–26, taking advantage of the
pairing information in multi-omics analyses. However, existing meta-
cell methods are all designed for uni-omics data. In this case, com-
puting metacells independently for each modality would result in the
loss of pairing information between metacells of different modalities.
In contrast, the proposed MetaQ can directly infer paired metacells
from multi-omics data, by reconstructing inputs across all modalities
using the quantized cell embeddings. Further details are provided in
the handling multi-omics data subsection and Supplementary Fig. 1.

To evaluate the multi-omics metacell inference performance of
MetaQ, we applied it to the human bone marrow CITE-seq dataset27

which includes 30,672 cells with RNA and antibody-derived tag (ADT)
data. The original twomodalities are visualized inFig. 3a. As shown, the
ADT modality excels in identifying subsets of T and natural killer (NK)
cells, while the RNA modality more effectively distinguishes other
marrow cells, including progenitors, myeloid cells, and B cells. For
comparisons, since existing methods are not tailored for multi-omics
data, we reorganized the inputs based on the API interface of different
methods to produce pairedmetacells. Specifically, we constructed the
kernel on the concatenated PCA-reduced RNA and ADT data for SEA-
Cell. For MetaCell V2 and SuperCell, we normalized the count data in
each modality and concatenated them as the input. Given the paired
multi-omics metacells, we then utilized WNN to compute the joint
embedding. As depicted in Fig. 3b, MetaQ and SuperCell better pre-
serve the original structure than the other twomethods, especially for
hematopoietic precursors.

For further validation, we applied PAGA28 trajectory inference on
MetaQ metacells. Figs. 3e and 3f depict the developmental trajectory
from hematopoietic stem cells (HSCs) to plasmablasts. The analysis of
gene expression dynamics along this trajectory reveals a decrease in
markers associated with immature B cells, such as VPREB1 and MME,
coupled with an increase in markers associated with mature follicular B
cells, includingMS4A1 and CD19. Thesemature follicular B cells reside in
the lymphoid follicles of the spleen and lymph nodes, comprising both
mature-naive (CD27−) and memory (CD27+) B cells29. Upon antigen
activation, B cells rapidly proliferate, undergo immunoglobulin class-
switch recombination (IGHA2, IGHG4), and differentiate into short-lived
plasmablasts. These plasmablasts, characterized by elevated levels of
MZB1 and SDC1, produce antibodies and function as effector cells in the
early antibody response. Additionally, we recapitulated the dendritic cell
(DC) maturation process, identifying two distinct differentiation

trajectories: one leading to plasmacytoid dendritic cells (pDCs) and the
other to classical dendritic cells (cDCs), as shown in Supplementary
Fig. 5a. Along the pDC developmental path, there is a notable upregu-
lation of pDC lineage genes, such as IL3RA30 and IRF731, in a subset of
Prog_DC, suggesting differentiation towards the pDC phenotype. Simi-
larly, in the cDC2 trajectory, cDC maturation markers CLEC10A and
CD1C32 exhibit progressive upregulation. Moreover, Supplementary
Fig. 5b demonstrates that MetaQ effectively captures the erythroid
lineage evolution, from HSCs and progressing to progenitor red blood
cells (Prog_RBC). Throughout this progression, CD34 expression gra-
dually decreases while the expression of hemoglobin complex genes,
including human alpha-like (HBA2, HBA1) and delta-like (HBD) globin
genes33, increases. The above results demonstrate that the metacells
inferred byMetaQ successfully preserve the developmental trajectories.

To demonstrate the superiority of MetaQ in multi-omics metacell
inference, we quantitatively comparedmetacell purity across different
cell types. The purity metric is defined as the frequency of the most
represented cell typewithin themetacell, with higher values indicating
better metacell membership. Based on the cell type discriminability of
the two modalities, we broadly categorized all cell types into two
superclasses in Fig. 3d, with the top and bottom panels corresponding
to RNA- and ADT-informative cells, respectively. According to the
overall metacell purity for the two superclasses illustrated in Supple-
mentary Fig. 5c, MetaQ achieves comparable metacell purity to the
best competitor SEACell for RNA-informative cell types (93.5% to 92.5%
on average with T-test p-value of 0.325, degrees of freedom = 662, 95%
confidence interval = [−0.0095, 0.0288]). On ADT-informative cell
types, however, MetaQ significantly outperforms SEACell (93.0% to
90.0% on average with T-test p-value of 0.005, degrees of freedom =
560, 95% confidence interval = [0.0092, 0.0518]), particularly on CD8
memory and effector T cells. These results indicate that MetaQ better
integrates information from both modalities during the metacell
inference. Moreover, we evaluated the compactness and separation of
metacells in both RNA and ADT modalities. As depicted in Fig. 3c,
MetaQ and SEACell outperform MetaCell V2 and SuperCell in average
performance metrics. Additionally, MetaQ and MetaCell V2 demon-
strate superior stability in metacell quality, as evidenced by the more
concentrated distributions in the boxplot.

In addition to evaluating MetaQ on CITE-seq RNA+ADT data, we fur-
ther tested its efficacy using the 10x multiome mouse kidney dataset34,
encompassing 14,527 cells with paired gene expression and chromatin
accessibility profiles. Alongside the three previous baselines, we also
incorporated EpiCarousel35, a recent metacell algorithm specifically
designed for scATAC-seq data for comparisons. We first compared the
performance of MetaQ against baseline methods on the scATAC-seq uni-
omics peakdata. As depicted in Supplementary Fig. 6a,MetaQ andSEACell
exhibit superior information retention on rare cell types compared to
MetaCell V2, SuperCell, and EpiCarousel. Such a result is further corrobo-
rated by the cell type classification results in Supplementary Fig. 6b, where
cells are assigned to the predominant type within each metacell. A higher
balanced classification accuracy indicates better metacell purity. Notably,
MetaQ with Poisson distribution modeling achieves performance on par

Fig. 2 | MetaQ effectively and efficiently infers prototypical metacells. a UMAP
visualization of the original 433,495 cells from the human fetal atlas. The red box
highlights retina cells. b Classification accuracy of cell classifiers trained with
[500, 1000, 2000, 4000] metacells inferred by MetaQ, SEACell, MetaCell V2,
SuperCell, and random sub-sampling on five random experiments. Each boxplot
ranges from the upper and lower quartiles with the median as the horizontal line
and whiskers extend to 1.5 times the interquartile range. Two-sided T-test results:
*0.01 < p ≤0.05, **0.001 < p ≤0.01, ***0.0001 < p ≤0.001, ****p ≤0.0001. c UMAP
visualization of 4000metacells inferred by the four methods, with cell type colors
matching those in b. Retina cells are markedwith red boxes. d Agreement between
the ground-truth annotations and the labels predicted by classification models
trained with 500 metacells. Matrices with a clearer diagonal structure indicate

better classification performance. e Compactness of [500, 1000, 2000, 4000]
metacells inferred by differentmethods on five randomexperiments. Each boxplot
ranges from the upper and lower quartiles with the median as the horizontal line
and whiskers extend to 1.5 times the interquartile range. Two-sided T-test results:
****p ≤0.0001. f Separation of [500, 1000, 2000, 4000] metacells inferred by dif-
ferent methods on five random experiments. Each boxplot ranges from the upper
and lower quartiles with the median as the horizontal line and whiskers extend to
1.5 times the interquartile range. g Running times (logged) and memory cost for
inferring 1000 metacells from different numbers of original cells. h Running times
(logged) and memory cost for inferring different numbers of metacells from
100,000 cells. Source data are provided as a Source Data file.
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with SEACell, while delivering approximately threefold time savings. In
comparison, metacells inferred by the other two methods collapse into a
small number of the most frequent cell types. Subsequently, we applied
MetaQ to the paired RNA+ATAC multi-omics data. As shown in Supple-
mentaryFig.6c,whenmodelingpeakdatawithPoissondistribution,MetaQ
consistently outperforms thebaselinemethods.Moreover, we investigated
thecorrelationbetweengeneexpressionandchromatinaccessibilitywithin
each metacell, leveraging peak-to-gene correspondences identified by
Signac36. Supplementary Fig. 6d shows that MetaQ metacells achieve the

highest Pearson correlation across the two omics, underscoring MetaQ’s
superior performance in aggregating and collaborating information from
bothomics.TheseresultscollectivelyhighlightMetaQasapowerful tool for
scATAC-seq data analysis.

MetaQ facilitates single-cell batch integration
In addition to handling pairedmulti-omics data, we demonstrated that
MetaQ is also effective in processing multi-batch data. Specifically, we
evaluatedMetaQon the humanpancreas dataset37–41, which consists of
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results on original cells and 613 metacells (a 50-fold reduction) inferred by MetaQ,
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Source data are provided as a Source Data file.
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14,767 cells from five different sources using four scRNA-seq protocols
as visualized in Fig. 4a. Following the standard metacell inference and
data integration pipeline, we first computed metacells using MetaQ
and then applied the Harmony integration algorithm42 to the inferred
metacells. Fig. 4c shows promising batch mixing and cell type group-
ing, suggesting that single-cell-oriented batch integrationmethods are
also suitable formetacells inferredbyMetaQ. Toprovide aquantitative
evaluation, we adopted the Louvain algorithm43 to cluster batch-

integrated metacells and mapped the cluster assignment of each
metacell to the original cells it aggregates. The clusteringAMI, ARI, and
Homogeneity Score are illustrated in Fig. 4h, which shows that MetaQ
and the best competitor SEACell outperform the other two baseline
methods.

Beyond integrating metacells themselves, we further explored
recovering the integrated embedding of original cells using metacell
integration results. Specifically, we trained a simple neural network to
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ibility complex Class II). c UMAP visualization of 590 MetaQ metacells (a 25-fold
reduction) integrated by Harmony. d UMAP visualization of the integrated
embeddings of original cells recovered by MetaQ. e Sankey plots showing Louvain
cluster assignments on cell embeddings integrated by Harmony, recovered by
SuperCell, and recovered by MetaQ. f Normalized expression of the marker gene

TM4SF4 projected on the UMAP plot of alpha cell embeddings by MetaQ and
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ferent resolutions of [0.5, 1.0, 2.0] on cell embeddings obtained by Harmony and
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Homogeneity scores of Louvain clustering with three different resolutions of [1.0,
2.0, 5.0]on 590metacells inferredbydifferentmetacell algorithms. Source data are
provided as a Source Data file.
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map from raw data space to Harmony-integrated space, leveraging the
original and integrated metacells. More details are provided in the
data integration and clustering subsection. The trained network was
then used to map the original cells to the integrated space, thereby
recovering the integration results for single cells. To better integrate
original cells via the mapping, the metacells should be highly proto-
typical of the corresponding cell populations, ensuring the mapping
generalizes well from metacells to original cells. Additionally, the
integrated metacells should contain batch effects as little as possible,
ensuring the mapping can effectively correct the batch effects. In this
context, the batch correction performance of the mapped original
cells reflects not only the prototypicality of metacells, but also how
metacell algorithms collaborate with batch integration methods.
Thanks to the small number ofmetacells, such amapping process only
requires a few seconds. The integration results of original cells
recovered by MetaQ are illustrated in Fig. 4d. Compared with the
baseline result of directly performing Harmony on the original data
(Fig. 4b), one could observe two apparent advantages of the MetaQ-
recovered results highlighted by red circles in the figure. First, MetaQ
alleviates the over-integration problem of Harmony, leading to better
separation between cells of rare types. Second, MetaQ corrects a
subset of beta cells that were falsely integrated with the alpha cells by
Harmony. Intriguingly, we observed that the cell embeddings recov-
ered by MetaQ form two sub-clusters within the alpha cells, both
characterized by the canonical marker glucagon (GCG)44 as shown in
Supplementary Fig. 7a. To further investigate this phenomenon, Fig. 4f
illustrates distinct expression patterns of TM4SF445—a tetraspanin
family member associated with pancreatic development—across these
two subpopulations. Additionally, Supplementary Figs. 7b–7d
demonstrate that the right subpopulation of alpha cells shows ele-
vated expression of NLRP1, which nucleates inflammasomes46, and
TNFRSF12A47,48, a member of the tumor necrosis factor receptor
superfamily. Both genes are pivotal in mediating inflammatory
responses. This observation also aligns with the elevated expression of
chronic pancreatitis risk genes such as PRSS149. These findings may
suggest a potential involvement of this alpha cell subpopulation in the
immune and inflammatory responses of the pancreas, indicating a
broader functional spectrum beyond the traditional role in glucagon
secretion regulation. Importantly, these results are not attributable to
batch effects, as the distinct expression patterns between the two sub-
clusters also exist within the Baron batch of data. In contrast, the
Harmony integration results roughly aggregate all alpha cells together,
thereby overlooking cell heterogeneity.

Finally, we compared the Louvain clustering results on cell
embeddings computed by Harmony and those recovered by MetaQ
and other baseline methods. As depicted in Fig. 4e, MetaQ achieves a
generally consistent cluster partition with Harmony, while correcting
the grouping of a subset of beta cells. Fig. 4g demonstrates thatMetaQ
outperforms othermetacell algorithms, aswell asHarmony on original
cells, in all three clustering metrics. To evaluate the batch integration
performance, we further computed the cLISI and iLISI metrics on the
recovered cells in Supplementary Fig. 8a. As shown, cells recovered by
MetaQ achieve the best or second-best performance in terms of the
two metrics, outperforming harmony-integrated single cells in cell
type grouping. These results demonstrate that MetaQ not only
enhances batch integration at the metacell level, but can also be
effectively incorporated with batch correction methods to improve
performance on original single-cell data.

MetaQ is consistent with differential expression analysis
The above downstream tasks primarily assess the cell-level perfor-
mance of metacell algorithms. Here, we extend our evaluation to the
feature level. Specifically, we applied MetaQ to the human PBMC
perturbation dataset50, which comprises 240,090 immune cells of six
types, three donors, and 144 perturbations, as depicted in Fig. 5a and

Supplementary Fig. 9. Inspired by the pseudo-bulk operation, we
inferred metacells within cells of the same type, donor, and pertur-
bation, with a reduction rate of 10. These metacells were then con-
catenated across different groups to compute differential expression
(DE) values concerning cell types and perturbations, respectively.

For the cell type DE analysis, we utilized metacells from different
cell types within the negative control group. To evaluate how well
MetaQ preserves feature-level characteristics, we compared the DE
ranks of the most differential genes between the original cells and
MetaQ metacells. As shown in Fig. 5b, MetaQ maintains high con-
sistency with the original data in identifying top expressed genes. To
quantitatively compare different metacell methods, we calculated
Kendall’s tau correlation to measure rank consistency between the
original and metacell DE results. Fig. 5c demonstrates that MetaQ and
SuperCell preserve gene expression patternsmore effectively than the
other two baselines.

In the perturbation DE analysis, we used metacells from the same
cell type, including two positive controls, one negative control, and all
144 perturbations. The DE analysis was conducted independently for
each cell type. We compared the Pearson correlation of DE values
between the original data andmetacells inferred by differentmethods.
Fig. 5e reveals that MetaQ achieves the highest or second-highest
correlation in five of six cell types, underscoring its superiority in
preserving biological features. For a more intuitive understanding, we
visualized the DE values for CD8+ T cells computed on original cells
and metacells in Fig. 5d. Red rectangles highlight two instances where
MetaQ outperforms baseline methods. On the one hand, SEACell
incorrectly identifies a strong influence of the compound ABT-737, a
Bcl-2 family inhibitor51, on genes NKG7, GZMA, and CCL5. On the other
hand, SuperCell underestimates the impact of Raloxifene on gene
POU2F2, while overestimating its effect on gene AC022706.1. Overall,
as depicted in Supplementary Figs. 10 and 11, the DE values of MetaQ
metacells exhibit a high consistency with those of the original data,
emphasizing MetaQ’s promising ability to accurately summarize bio-
logical features.

MetaQ is a stable and robust algorithm for metacell inference
We performed a series of experiments on the human thyroid cancer
dataset to evaluate the stability and robustness of the proposedMetaQ
algorithm. To begin, we assessed the consistency of metacell assign-
ments by testing MetaQ across varying numbers of metacells, corre-
sponding to reduction rates ranging from 25 to 150. The agreement in
metacell assignments across different reduction rates is depicted in
Fig. 6b. Notably, inmost instances, cells assigned to the samemetacell
at a lower reduction rate remain grouped together at a higher reduc-
tion rate. This indicates that metacells formed at higher reduction
rates represent further aggregations of those formed at lower reduc-
tion rates. As shown in Fig. 6c, the homogeneity scores between
metacell assignments consistently exceed 0.5 across all tested reduc-
tion rates, demonstrating the robustness of MetaQ against varying
target metacell numbers.

Next, to examine the capacity of MetaQ in identifying rare cell
types, we assigned each original cell the majority cell type of its cor-
respondingmetacell. The accuracyof such amajority-votedprediction
reflects how well metacells cover different cell types. As shown in
Fig. 6d,MetaQ achieves the highest balanced accuracy, outperforming
existingmetacellmethods in rare cell type identification. Furthermore,
we conducted subsampling experiments on the two rarest cell types,
tumor-associated myeloid cell (TAMC) and parafollicular cell, to
explore the minimum cell type frequency that could be captured
under different reduction rates. As illustrated in Fig. 6e and Supple-
mentary Fig. 12a, under the reduction rate of 50, MetaQ is the only
method capable of accurately identifying cell types present at fre-
quencies as low as 0.01%. Even when reducing the data size by 100,
MetaQ still effectively captures cell types with frequencies above
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0.07%. These results demonstrate that MetaQ is a reliable tool for
identifying rare cell types in metacell analysis.

Then, to evaluate the robustness of MetaQ against algorithmic
configurations, we performed ablation studies on the discrete code-
book, the core design in MetaQ for metacell assignments. Specifically,
in addition to randomly initializing codebook entries by default, we
experimented with two alternative initialization strategies, namely,
Kmeans52 and geometric sketching53. As shown in Fig. 6f, MetaQ
maintains stable performance across different initialization strategies
and random seeds. Supplementary Figs. 12b and 12c demonstrate that
MetaQ performs consistently under both cosine and Euclidean dis-
tance measures between cell embeddings and codebook entries.

Additionally, we conducted a parameter analysis on the momentum
used in updating the historical codebook entry usage in Eq. (11). Fig. 6g
illustrates thatMetaQ is stable acrossmomentum values ranging from
0.85 to 0.95 (with 0.9 as the default setting). However, when the
momentum deviates significantly from this range, either toward lower
or higher values, the entry usage update becomes too frequent or
infrequent, hindering proper adjustment of over-large and over-small
entries and ultimately resulting in degraded performance.

Lastly, as MetaQ requires manually setting the target metacell
number, we provide a practical guideline for selecting an appropriate
metacell number. SinceMetaQmakes consistentmetacell assignments
across different reduction rates, we recommend simply setting the
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metacell number to achieve a common 50-fold or 100-fold reduction
when usingMetaQ in practice. To find amore precise estimation of the
metacell number that balances data compression and information
preservation, we tested metacell numbers ranging from 50 to 1000
and tracked three algorithmic metrics, namely, the proportion of the
original (LNB/LPois) to the quantized (LN̂B/L ^Pois) reconstruction loss
(referred to as reconstruction proportion), the difference in similarity
between cells’ closest and second-closest codebook entries (referred
to as similarity difference), and the codebook loss (LC). In parallel, we

recorded two metacell quality metrics, including metacell purity and
balanced accuracy, by assigning eachoriginal cell themajority cell type
of its corresponding metacell. In addition to the discrete thyroid
cancer data, we applied the same evaluation to the continuous bone
marrow data. Subsampling was applied to the thyroid data to keep the
original cell number consistent between the two datasets. As depicted
in Supplementary Fig. 12d, themetacell quality improves progressively
with the metacell number on both datasets. Notably, the thyroid can-
cer data, beingmore discrete, requires fewermetacells (~400) to reach
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the balanced accuracy plateau compared to the bone marrow data
(~600), likely due to the greater diversity of cells along the continuous
developmental path in the latter. Supplementary Fig. 12e indicates that
compared to the codebook loss, the reconstruction proportion and
similarity difference exhibit stronger correlations with metacell purity
and balanced accuracy. Given that the reconstruction proportion
tends to increase continuously with the number of metacells, we
recommend first plotting the trend of similarity difference against the
metacell number, and then selecting the point at which the decline in
similarity difference plateaus as a more precise estimation.

Discussion
Towards the rapidly increasing volume of sequencing data, metacell
methods provide a promising solution to reduce the computational
burden by aggregating biologically similar cells. However, existing
metacell algorithms, despite their intended purpose of alleviating
computational complexity, are themselves computationally demand-
ing and struggle to handle large-scale data. Essentially, these methods
shift the computational bottleneck from downstream analysis to the
metacell inference stage, sidestepping rather than ultimately solving
the core issue.

MetaQ is a metacell algorithm that scales to arbitrarily large
datasets, with linear time and constant memory costs relative to the
cell number. Such superior efficiency and scalability set MetaQ apart
from existing methods that suffer from exponential time or memory
complexity. For instance, MetaQ achieves about 100 times speedup
and 50 times memory savings when processing 100,000 cells, com-
pared to the most competitive baseline SEACell.

The design of MetaQ is motivated by the cell differentiation
process in multicellular organisms. Specifically, we conceptualize
each metacell as a collective ancestor of a subgroup of specialized
cells, which can thus effectively derive the latter. Following this idea,
MetaQ employs a generative single-cell quantization approach to
identify homogeneous cell subsets for metacell inference. Powered
by the feature extraction capabilities of deep neural networks,MetaQ
could precisely capture biological states, resulting in accurate and
prototypical metacell construction. Extensive experiments demon-
strate that even with significantly reduced computational complex-
ity, MetaQ still achieves comparable, and in most cases slightly
better, performance than existingmetacell algorithms across various
downstream tasks, including cell type annotation, developmental
trajectory inference, batch integration, clustering, and differential
expression analysis.

While current metacell algorithms are all designed for uni-omics
data, MetaQ could easily extend to paired multi-omics analysis thanks
to its simple yet effective design. By requiring the quantized cell
embeddings to reconstruct all modalities, MetaQ is able to infer
metacells for eachmodalitywhile preservingpairing information. Such
native support for multi-omics analysis aligns with the evolving cap-
abilities of sequencing technologies, which increasingly enable simul-
taneous profiling of single cells across multiple layers.

Regarding the stability and generalizability of MetaQ, we simpli-
fied its hyper-parameters to avoid laborious tuning across different
datasets. In this study, we fixed parameter configurations in all
experiments and found that MetaQ consistently achieves promising
results. In other words, users only need to specify the target number of
metacells. Additionally, guidance on estimating the appropriate
number of metacells is provided to facilitate practical application.

To further improve metacell analysis in future research, several
promising avenues could be explored. First, while MetaQ currently
learns cell embeddings using an autoencoder network, leveragingmore
advanced large-scale pre-trained models for single-cell data may
improve feature extraction ability and, accordingly, the metacell qual-
ity. Second, MetaQ could currently handle various omics data, includ-
ing gene expression, protein, and chromatin accessibility data. It is

worth exploring its application in other omics, such as DNA methyla-
tion, by designing more appropriate modeling strategies. Third, while
this paper demonstrates the effectiveness of MetaQ in inferring meta-
cells on the continuous developmental data, it remains unexplored how
MetaQ behaves on actual time-series sequencing data. Understanding
how metacell algorithms could facilitate links between snapshots
sampled at different time points presents an intriguing opportunity for
future research. We anticipate that future developments could further
enhance the performance, generalization capabilities, and applications
of MetaQ, establishing it as a handy and powerful tool for metacell
inference in the era of high-throughput profiling.

In conclusion, MetaQ is an efficient, scalable, and effective metacell
algorithm that could be seamlessly incorporated into existing single-cell
analysis pipelines. By reducing the number of cells while preserving
biological characteristics, MetaQ enables existing single-cell analysis
tools to handle arbitrarily large datasets, breaking the computational
bottleneck. With the growing volume of cells and omics in high-
throughput profiling data, we believe MetaQ will become a pivotal tool
with broad applications across various downstream analyses.

Methods
The MetaQ algorithm
The inputs to MetaQ include the number of metacells N̂ and the raw
count matrix X 2 RN ×M , where N and M denote the number of cells
and features (e.g., genes, proteins, peaks), respectively. MetaQ views
each metacell as a collective ancestor of a subgroup of specialized
cells, which could effectively derive these homogeneous cells. To
implement the idea, MetaQ quantizes all cells into a D-dimensional
codebook C 2 RN̂ ×DðN̂<NÞ consists of limited entries, aiming to
reconstruct each cell using its most similar entry. For better recon-
struction, cells with similar biological states would be quantized into
the same entry. Consequently, each codebook entry intrinsically cor-
responds to a metacell, representing all cells it quantizes. MetaQ
employs deep neural networks to perform the above cell quantization
and reconstruction process, with further details provided below.

Count data modeling with the negative binomial and Poisson dis-
tribution. To endow deep neural networks with feature extraction
capabilities, MetaQ first models the raw count matrix X using the
negative binomial (NB) distribution54–56 for gene expression and pro-
tein data (detailed derivations are provided in Supplementary Note 1),
and Poissondistribution57,58 for chromatin accessibility data. The count
matrix is modeled by the two distributions using an auto-encoder.
Specifically, for the i-th cell xi 2 RM , an encoder f( ⋅ ) is first employed
to learn the cell embedding ei, followed by a decoder g( ⋅ ) to estimate
themeanμi 2 RM anddispersion ri 2 RM of theNBdistribution, or the
mean λi 2 RM of the Poisson distribution. The learning objective is to
maximize the following distribution log-likelihoods:
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where si represents the size factor each cell scaled to meet 10,000
counts during data preprocessing, Wμ, Wr, and Wλ are independent
fully connected layers. Notably, rather than modeling the entire data-
set with a single NB or Poisson distribution, MetaQ assigns distinct
distribution parameters to each cell.While the decoder network g( ⋅ ) is
shared across all cells, their distribution parameters differ due to the
unique embeddings ei associated with each cell. Supplementary
Figs. 6c and 6d demonstrate that modeling chromatin accessibility
data with the Poisson distribution outperforms that with the negative
binomial distribution, in both uni- and multi-omics scenarios.

Cell quantization with a discrete codebook. To discover biologically
similar cells, MetaQ quantizes all cells into a discrete codebook Cwith
N̂ learnable entries. Specifically, given a cell embedding ei, MetaQ
employs the quantizer q( ⋅ ) to assign it to the closest entry in the
codebook, namely,

êi =qðeiÞ= ck , k = argmax
ck2C

cosðei, ckÞ, ð5Þ

where ck denotes the k-th entry in the codebook, which has the same
dimensionality as ei, and cosð�, �Þ refers to the cosine similarity.

The codebook entries are randomly initialized by default, given its
simplicity and efficiency. Notably, MetaQ also supports alternative
initialization strategies such as Kmeans52 and geometric sketching53.
Fig. 6f demonstrates thatMetaQperforms consistently under different
initialization strategies. After initialization, the codebook entries will
be optimized through quantized cell reconstruction and adjusted with
usage recording, as elaborated below.

Codebook optimization with quantized cell reconstruction. As
compact proxies of the original cells, metacells ought to retain as
much information from the original data as possible. In other words, a
prototypical metacell is expected to effectively reconstruct a sub-
group of homogeneous cells. To achieve this, MetaQ aims at recon-
structing each original cell using its quantized cell embedding êi, with
the following losses:
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� log NB xijμ̂i, r̂i
� �� �

, ð6Þ

μ̂i =diag si
� �

× exp Ŵ μd̂i

� �
, r̂i = exp Ŵ rd̂i

� �
, d̂i = ĝðêiÞ ð7Þ

L ^Pois =
1
N

XN
i = 1

� log Pois xijλ̂i
� �� �

, ð8Þ

λ̂i =diag si
� �

× exp Ŵ λêi
� �

, ð9Þ

where Ŵμ, Ŵ r , Ŵ λ and ĝ refer to a copy of the decoder parameters for
the quantized cell reconstruction. The premise behind cell quantiza-
tion is that biologically similar cells could be effectively reconstructed
by the same entry in the codebook. In other words, the quantization
operation naturally and intrinsically achieves themetacell assignment.

In addition to reconstructing original cell counts in the raw space,
MetaQ further aligns codebook entries with their corresponding cell
embeddings in the embedding space, namely,

LC =
1
N

XN
i = 1

qðeiÞ � sg½ei�
�� ��2

2, ð10Þ

where sg[ ⋅ ] denotes the stop-gradient operator59, which prevents the
loss from influencing original cell embeddings. Otherwise, the cell

embeddings might be disturbed when approximating randomly
initialized codebook entries during the early stages of training.
Aligning codebook entries with corresponding cell embeddings
provides two primary benefits. First, it accelerates the convergence
of thequantized cell reconstruction losses in Eqs. (1) or (3), by reducing
the gapbetween the quantized andoriginal data distributions. Second,
it helps metacells identify more biologically similar cells, by guiding
codebook entries toward biologically meaningful regions in the
embedding space.

Codebook entry adjustment with usage recording. The above cell
quantization strategy could discover metacells by learning a dis-
crete codebook. However, it might encounter the error accumu-
lation problem. Specifically, active entries frequently used to
quantize cells would be optimized more often, increasing their
likelihood of being selected for quantizing more cells. Con-
versely, inactive entries that are rarely used would be less or even
never optimized, making them unlikely to represent other cells.
As a result, only a portion of the discrete codebook would be
effectively leveraged and optimized, leading to highly unbalanced
metacell groupings. Biologically, when a metacell aggregates too
few cells, it becomes more susceptible to technical noise and
random fluctuations. Conversely, when a metacell represents too
many cells, it may encompass diverse cell types or states, diluting
the unique characteristics of a particular population.

To prevent such a degenerated solution,MetaQ records the usage
of each codebook entry and adjusts those excessively large or small
ones during the training process. Formally, the historical usage of
entries is recorded with the exponential moving average as follows:

Ut
k =η � Ut�1

k + ð1� ηÞ � N
t
k

N
, U0

k =0, ð11Þ

where Ut�1
k refers to the historical usage of entry ck, N

t
k denotes the

number of cells it quantizes in the t-th iteration, and η is the momen-
tum parameter. Based on the recorded codebook usage, MetaQ first
addresses theover-small entries by relocating them to themost distant
cells, whose information is least captured by the current metacells.
Specifically, the distance between the i-th cell and the codebook is
defined by

ds
i = max

j

exp 1� cosðei, cjÞ
� �

PN̂
k = 1 exp 1� cosðei, ckÞ

� � : ð12Þ

MetaQ randomly selects N̂ cells as the target with the probability
of ½ds

1, � � � ,ds
N �, so that distant cells aremore likely to be selected. After

that, MetaQ updates the codebook entries by pushing them to the
selected distant cells Es = ½e s

1 , � � � , es
N̂
�, namely,

ctk = ð1� β sÞ � ct�1
k + β s � es

k , β s = expð�100 � Ut
k � N̂ � ϵÞ, ð13Þ

where ϵ is a small constant to stabilize the momentum update, and βs

ensures that over-small entries are updated more frequently to
quantize more cells.

In addition to the over-small entries, some entriesmight be overly
used during the quantization process. However, a single metacell
cannot fully describe the biological states of all the corresponding
cells, leading to inferior prototypicality of metacells. Therefore, we
propose to disturb those over-large codebook entries, allowing a
subset of cells they quantize to be taken over by other metacells. In
practice, we found that reallocating codebook entries to the median-
distance cells serves as a moderate and effective disturbance.
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Specifically, MetaQ randomly selects onemedian-distance cell for
each entry following the probability:

dl
ik =

expð�j cosðei, ckÞ �mk jÞPN
j = 1 expð�j cosðej, ckÞ �mk jÞ

, mk = median
i

cosðei, ckÞ, ð14Þ

where dl
ik denotes the probability of the i-th cell being selected by the

k-th entry, and mk represents the median distance between the k-th
entry and cell embeddings. Let El = ½el1, � � � , elN̂ �, e

l
k � ½dl

1k , � � � ,dl
Nk � be

the selected median-distance cells, MetaQ disturbs the codebook
entries by:

ctk = ð1� βlÞ � ct�1
k +βl � elk , βl = expð�10 � N̂

N
� 1

Ut
k

� ϵÞ, ð15Þ

where ϵ is the same small constant as in Eq. (13), and βl strengthens the
disturbance on large codebook entries. By adjusting excessively large
and small codebook entries, MetaQ is able to produce more balanced
metacell assignments, ensuring that each metacell captures the bio-
logical states for a moderate number of cells.

By combining Eqs. (1), (3), (6), (8), and (10), the overall objective
function of MetaQ lies in the form of

LMetaQ =
LNB + LN̂B + LC, for gene expression andproteindata,

LPois + L ^Pois + LC, for chromatin accessibility data:

(

ð16Þ
The above objective simultaneously optimizes the parameters of

the encoder f(⋅), the decoders gð�Þ, ĝð�Þ,WμðŴμÞ,Wr ðŴ rÞ,W λðŴ λÞ, and
the codebook C via gradient descent. Furthermore, the codebook
would be adjusted via Eq. (13) and (15) in every iteration.

Metacell inferencewith cell quantization results. After training, each
cell would be quantized into one of the codebook entries. To derive
the metacell count matrix X̂ 2 RN̂ ×M , MetaQ simply averages the raw
count value of cells quantized into the same entry, as these cells are
likely to have similar features. Formally, the i-th metacell x̂i is com-
puted as

x̂i =
1

N̂i

XN
j = 1

xj , s:t: qðejÞ= ci, ð17Þ

where N̂i denotes the number of cells quantized into the i-th
codebook entry.

Implementation details. MetaQ is implemented in Python using the
PyTorch60 framework, v.2.1.1. The encoder network f(⋅) is a fully con-
nected network (FCN) consisting of three layers—an input layer, a
hidden layer, and an output layer with 512, 128, and 32 neurons,
respectively. Eachof the inputM features is connected to all neurons in
the input layer, and each subsequent neuron is fully connected to the
neurons in the next layer. The decoder networks g(⋅) and ĝð�Þ are
similarly structured FCNs with two layers of 128 and 512 neurons,
respectively. The 32-dimensional cell embedding connects to all neu-
rons in the first layer, and each neuron is further connected to all the
neurons in the second layer. To estimate the NB distribution, two
subsequent one-layer FCNs W μðŴμÞ and WrðŴ rÞ project the 512-
dimensional feature to M-dimensional mean μ and dispersion r para-
meters. For the Poisson distribution, a one-layer FCNW λðŴ λÞ projects
cell embeddings to the M-dimensional mean parameter λ. In all
experiments, we trained MetaQ for 300 epochs using the Adam61

optimizer with a learning rate of 1e − 3 and a weight decay of 1e − 2. In
addition to the joint optimization with network parameters through
standard gradient descent62, the codebook C is further updated via
Eqs. (13) and (15) at each mini-batch. We fixed the momentum

parameter η = 0.9 and small constant ϵ = 1e − 3 for all datasets. To
expedite training,we early stopped theoptimizationwhen the changes
in losses LN̂B (for RNA andADTdata), L ^Pois (for ATACdata), and LCwere
less than 1e − 5 for ten consecutive epochs. All experiments were
conductedon anNVIDIARTX3090GPUwithCUDA 12.2 on theUbuntu
20.04 OS.

Handling multi-omics data. In the preceding sections, we introduced
MetaQ on uni-omics data for clarity. The design of MetaQ naturally
supports metacell inference for paired multi-omics data. As illustrated
in Supplementary Fig. 1, MetaQ makes two primary adjustments to
accommodate multi-omics data. First, MetaQ concatenates the multi-
omics information when computing the cell embeddings. Second,
MetaQ requires the quantized cell embeddings to reconstruct the
original count matrices across all modalities. Specifically, let
X 1,X2, . . . ,XT ðXj 2 RN ×M j Þ be the paired multi-omics data of T mod-
alities, MetaQ first extracts the feature of each modality and then
concatenate them to form the cell embedding, namely,

e0i = concatðe1i , e2i , . . . , eTi Þ, e j
i = f

jðx j
i Þ, ð18Þ

where e0i 2 RN ×T �D is themulti-omics embedding of the i-th cell, x j
i and

e j
i denote its raw count and embedding in the j-th modality,
respectively. Moreover, f j(⋅) refers to the encoder for modality j
trained with LjNB or LjPois consistent with Eqs. (1) and (3). The quantized
cell embedding êi = qðe 0

i Þ is expected to reconstruct all modalities by
minimizing Lj

N̂B
or Lj ^Pois, j ∈ [1, T] consistent with Eqs. (6) and (8). The

codebook entry adjustment strategy in Eqs. (13) and (15) remains the
same as for uni-omics data, with the codebook size extending to N̂ ×T �
D catering to the multi-omics cell embeddings.

In summary, the overall objective function of MetaQ for multi-
omics data lies in the form of

L0MetaQ = LC +
XT
j = 1

LjNB + L
j
N̂B
, if the j�th omics is gene expressionor protein ,

LjPois + L
j
^Pois
, if the j�th omics is chromatin accessibility:

8<
:

ð19Þ
After training, MetaQ averages the raw counts of cells from the

same codebook entry in eachmodality according to Eq. (17), resulting
in the paired multi-omics metacells for downstream analyses.

Data preprocessing
Topreprocess the input rawcountmatrix,wefirst normalized each cell
by dividing each count against its total number of counts, then mul-
tiplied the counts by 10,000 to standardize total counts across cells.
After that, we log normalized the counts and scaled the data to have
unit variance and zero mean. The detailed preprocessing steps for
each dataset are elaborated below:

• Human fetal atlas data. The human fetal atlas data was down-
loaded from NCBI GEO accession number GSE1567932, including
the raw gene expression and cell-type information. We prepro-
cessed the data following the previous work scJoint9. To construct
relatively balanced data, for cell type k with number of cells
nk > 10,000, we subsampledmaxf0:05 � nk , 10, 000g cells. All cells
were kept for cell types with less than 10,000 cells, resulting in
433,695 cells of 54 cell types. Data upsampling was performed
when evaluating the running time and memory costs of metacell
algorithms.

• Human bone marrow data. The human bone marrow data
(GSE12863927) was downloaded with the SeuratData package27,
v.0.2.2.9001. We used the InstallData function to download the
bmcite dataset, which includes 30,672 scRNA-seq profiles and a
panel of 25 antibodies. The cell type information was obtained
from the meta.data$celltype.l2 field of the Seurat object.
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• Mouse kidney data. The gene expression and peak-by-cell matrix
were downloaded from https://www.10xgenomics.com/resources/
datasets/mouse-kidney-nuclei-isolated-with-chromium-nuclei-
isolation-kit-saltyez-protocol-and-10x-complex-tissue-dp-ct-sorted-
and-ct-unsorted-1-standard34, which includes 14,527 cells with
20,105 genes and 32,285 peaks. The cell types were manually
annotated according to the reported cell-type markers1.

• Human pancreas data. The human pancreas dataset was down-
loaded from https://hemberg-lab.github.io/scRNA.seq.datasets/
human/pancreas. The data was generated using four different
scRNA-seq protocols fromfive different sources, including inDrop
(GSE84133, 8569 cells)37, CEL-Seq2 (GSE85241, 2122 cells)38, Smart-
Seq2 (E-MTAB-5061, 2127 cells)39, and SMARTer (GSE83139, 457
cells and GSE81608, 1492 cells)40,41. The sequencing data from five
experiments was concatenated by keeping commonly detected
genes. Cells annotated as “unclear”, “co-expression”, “not applic-
able”, “unclassified”, “unclassified endocrine”, “dropped”, “alpha.-
contaminated”, “beta.contaminated”, “delta.contaminated”, or
“gamma.contaminated” were removed. Cell type annotations
“activated_stellate”, “PSC (Pancreatic Stellate Cell)”, and “quies-
cent_stellate” were renamed to “Stellate”, while “mesenchyme”
cells were renamed to “Mesenchymal”. The above preprocessing
results in 14,767 cells of 15 different cell types.

• Human PBMC perturbation data. The human PBMC perturbation
data50 was downloaded from https://www.kaggle.com/
competitions/open-problems-single-cell-perturbations/data. The
publicly accessible training split was used, including 240,090 cells
of six cell types, 144 compounds as perturbations, two positive
controls Dabrfenib and Belinostat, and one negative control
DMSO.More specially, B andMyeloid cells include 15 compounds,
while T cells (CD4+, CD8+, regulatory) and NK cells include all 144
compounds.

• Human thyroid cancer data. The human thyroid cancer data63 was
downloaded from https://ngdc.cncb.ac.cn/gsa-human/browse/
HRA000686. This dataset comprises single-cell sequencing of
thyroid cancer samples from one normal thyroid tissue, three
anaplastic thyroid cancer (ATC), and three papillary thyroid
cancer (PTC) cases, encompassing a total of 46,205 cells of 16
different cell types.

Performance and benchmarking
Baseline methods. Four existing metacell algorithms were bench-
marked for comparisons, including SEACell19, MetaCell V220, SuperCell6,
and EpiCarousel35.

For SEACell, we used its Python package (https://github.com/
dpeerlab/SEACells), v.0.3.3. Following its official tutorial, we used the
SEACells, construct_kernel_matrix, initialize_archetypes, and fit functions
to build and fit the model. After training, we inferred the metacell
assignments through thesummarize_by_SEACell function. We kept the
default parameters except for n_SEACells, which was tuned to adjust
the number of metacells.

For MetaCell V2, we used its Python package (https://github.com/
tanaylab/metacells), v.0.9.4. Notably, the algorithm itself does not
directly support specifying the number of metacells. Thus, for fair
comparisons, we searched for the target_metacell_umis parameter as
suggested in its tutorial to approximate the expected metacell number,
with other parameters set as the default. The divide_and_conquer_pipeline
and collect_metacells functions were utilized to infer the metacell
grouping. In practice, we also found that in some cases MetaCell V2 fails
with thedefaultparameters.Asa solution, among itshundredsof tunable
parameters, we manually tuned the min_metacell_size, qual-
ity_min_gene_total, target_metacell_size, and project_min_significant_gen-
e_umis values until the algorithm gives proper outputs.

For SuperCell, we used its official R package (https://github.com/
GfellerLab/SuperCell), v.1.0. Following its default pipeline, we first

constructed a k-nearest neighbor single-cell network and thenmerged
densely connected cells to infer metacell membership, using the
SCimplify function. All parameters were set as default except for
gamma, which was tuned to adjust the number of metacells.

For EpiCarousel, we used its Python package (https://github.com/
BioX-NKU/EpiCarousel/tree/main), v.0.0.8. Notably, as EpiCarousel is
designed for scATAC-seq data, we evaluated it on the mouse kidney
dataset. Following its official tutorial, we first used the data_split
function to partition data into chunks, and then used the identify_me-
tacells and merge_metacells functions to compute metacells. We kept
the default parameters except for carousel_resolution, whichwas tuned
to adjust the metacell number.

Cell type classification. To classify Human fetal atlas cells, we used
the inferred metacells to train a classification network. The network is
an FCN with the dimension ofM-512-128-K, whereM and K denote the
number of input features and cell types, respectively. We adopted the
following cross-entropy loss to train the network:

LCE =
1

N̂

XN̂
i = 1

� log
exp pi ŷi

	 
� �
PK

k = 1 exp pi½k�
� �

 !
, ð20Þ

where pi denotes the predicted soft label of the i-th metacell whose
label ŷi is given by the majority of original cells it represents. The
network was trained for 50 epochs with a batch size of 512, by the
Adam optimizer with default parameters.

We used the network trained on the metacells to classify all ori-
ginal cells. To evaluate the performance, we computed the classifica-
tion accuracy and balanced accuracy score64,65 defined as

ACC=
1
N

XN
i= 1

δ ~yi, yi
� �

, δða,bÞ= 1 if a = b,

0 otherwise,

�
ð21Þ

BalancedACC=
1P
iwi

XN
i = 1

δ ~yi, yi
� �

wi, wi =
1P

jδð yj , yiÞ
, ð22Þ

where ~yi and yi denote the predicted and ground-truth annotation of
the i-th cell. The balanced accuracy score accounts for the cell type
distribution, highlighting the classification performance on rare types.

Metacell compactness and separation. To evaluate the homogeneity
of cells within each metacell and the heterogeneity of cells across
different metacells, we introduced the following compactness and
separation metrics:

Compactness=
N̂
N

X
i2M

1
∣M∣

X
j2M

sðxi, xjÞ, ð23Þ

Separation =
N̂
N

X
i2M

argmin
j=2M

1� sðxi, xjÞ
h i

, ð24Þ

where N, N̂ are the numbers of original cells and metacells, M denotes
the index set of cells grouped into the samemetacell, and s( ⋅ , ⋅ ) refers to
the Pearson correlation coefficient ranging from [ − 1, 1]. Here, we chose
Pearson correlation in the raw space as the cell similarity measure, to
avoid the influence of different dimensional reduction techniques
employed by various methods. Additionally, we accounted for metacell
sizes by keeping the magnitude ∣M∣ in the outer summation, thereby
mitigating thepotential bias arising fromextremely imbalancedmetacell
assignments. For example, assigning ∣M∣� 1 cells into ∣M∣� 1 metacells
in a one-to-one fashion, while grouping all remaining cells into a single
metacell would artificially inflate metric scores without truly improving
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metacell grouping. Lastly, the factor of N̂=N was included to account for
the magnitude differences across varying numbers of metacells. Higher
values of both metrics indicate a more effective metacell grouping.

Multi-omics analysis and trajectory inference. For pairedmulti-omics
analysis on human bone marrow data, we applied the WNN integration
algorithm27 implemented by the muon66 Python package, v.0.1.5, to the
inferred metacells. The neighboring information was then passed to the
PAGA algorithm28 provided in the scanpy17 Python package, v.1.9.6, for
trajectory inference. A random hematopoietic stem cell was set as the
root for thedevelopmental trajectory. Thepeak-to-gene correspondence
on the mouse kidney data was obtained by Signac36, v1.8.0.

Data integration and clustering. To integrate human pancreas data,
we adopted the official harmonypy42 Python package, v.0.0.6. After
correcting batch effects inmetacells, webuilt a neural network to learn
the mapping from the raw space to the batch-corrected PCA space.
The mapping networkm( ⋅ ) is of the dimension ofM-256-50, whereM
refers to the number of input features and 50 is the default PCA
dimension suggested by Harmony. We trained the network by mini-
mizing the following mean squared error:

LMSE =
1

N̂

XN̂
i= 1

k mðx̂iÞ � ẑik22, ð25Þ

where ẑi denotes the Harmony integrated PCA embedding of the i-th
metacell. The networkwas trained for 1000 epochswith a batch size of
512 by the Adam optimizer. After that, we mapped original cells via
zi = m(xi), where zi corresponds to the batch-corrected embedding of
the i-th cell.

To cluster batch-corrected data, we adopted the Louvain clus-
tering algorithm43 provided in the scanpy python package, v.1.9.6. The
following AMI67, ARI68, and Homogeneity Score69 metrics were used to
evaluate the clustering performance:

AMI=
MIðU,V Þ � EfMIðU,V Þg

maxfHðUÞ,HðV Þg � EfMIðU,V Þg , ð26Þ

MIðU,V Þ=
XK 0

p = 1

XK
q= 1

∣Up \ Vq∣ log
N∣Up \ Vq∣
∣Up∣× ∣Vq∣
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HðU Þ= �
XK 0

p = 1

∣Up∣
N

log
∣Up∣
N

, HðV Þ= �
XK
q= 1

∣Vq∣
N

log
∣Vq∣
N

ð27Þ

where MI(U, V) is the mutual information between the cluster assign-
ments U and ground-truth labels V, H(U ), H(V ) are the entropies, and
K 0,K refers to the number of clusters and cell types, respectively.

ARI =

PK 0
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where
n
2

� �
=nðn� 1Þ=2 refers to the number of pairs in n samples.

Homogeneity Score= 1� HðV jUÞ
HðV Þ , ð29Þ

HðV jUÞ= �
XK 0

p= 1

∣Up∣
N

XK
q= 1

∣Up \ Vq∣
∣Up∣

log
∣Up \ Vq∣

∣Up∣
, ð30Þ

where H(V∣U) is the conditional entropy of the ground-truth labels
given the cluster assignments, and the entropy H(V) is defined the
same as in Eq. (27). A larger value of the three metrics indicates better
agreements between the cluster assignments and ground truth labels,
namely, a better clustering result.

Moreover, we employed the cLISI and iLISI metrics introduced in
Harmony42 to evaluate the batch integration performance. For each
cell, the two metrics were computed by:

cLISI =
1PK

q= 1 pðqÞ
, iLISI =

1PB
b= 1 pðbÞ

, ð31Þ

where B denotes the number of batches, and p(q), p(b) refer to the cell
type and batch probabilities in the Gaussian kernel-based neighborhood
distributionswith a perplexity of 30. To balance the significance ofmajor
and rare cell types,weaveraged the twometricswithineachcell type.The
original cLISI and iLISI range in [1,K] and [1,B], respectively. For clarity,we
normalized them to [0, 1] and reported the 1 - cLISI and iLISI values. In
other words, a higher 1 - cLISI value indicates more accurate cell type
grouping, while a higher iLISI value indicates better batch mixing.

Differential expression analysis. To compute the differential
expression (DE) for the human PBMC perturbation data, we used the
rank_genes_groups functionwithWilcoxon rank-sum test70, provided in
the scanpy17 package, v.1.9.6. We conducted DE analyses with respect
to cell types and compound perturbations respectively, with the log-
foldchanges values reported. The cell type DE was computed on cells
from the negative control, while the perturbationDEwas calculated on
each cell type independently.

Visualization. We used the umap function provided in the scanpy17

Python package, v.1.9.6, to reduce the dimension to two for cell and
metacell visualization. Boxplots, heatmaps, lineplots, and barplots
were illustrated using the seaborn71 Python package, v.0.12.2.

Statistics & reproducibility. Statistical analyseswere performedby the
SciPy Python package72, v1.11.3. The p-value was determined by the two-
sidedT-test, and thep-value <0.05 is considered statistically significant.
Experiments are conducted under five randomizations with different
random seeds. No statistical method was used to predetermine the
sample size.We subsampled over-large cell types to construct relatively
balanced data for the human fetal atlas and kept commonly detected
genes across different batches for the human pancreas data. No other
data were excluded from the analyses. The investigators were not
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this work are publicly available. The human fetal
atlas data2 used in this study are available in the GEO database under
accession code GSE156793. The human bone marrow data27 used in
this study are available in the GEO database under accession code
GSE128639, which could be downloaded with the SeuratData package
from https://github.com/satijalab/seurat-data. The mouse kidney
data34 are available at https://www.10xgenomics.com/resources/
datasets/mouse-kidney-nuclei-isolated-with-chromium-nuclei-
isolation-kit-saltyez-protocol-and-10x-complex-tissue-dp-ct-sorted-
and-ct-unsorted-1-standard. The human pancreas data used in this
study are available in the GEO database under accession codes
GSE8413337 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE84133], GSE8524138 [https://www.ncbi.nlm.nih.gov/geo/query/acc.
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cgi?acc=GSE85241, E-MTAB-506139 [https://www.ebi.ac.uk/biostudies/
arrayexpress/studies/E-MTAB-5061], GSE8313940 [https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE83139], and GSE8160841

[https : / /www.ncbi .n lm.nih .gov/geo/query/acc.cgi?acc=
GSE81608], which are also accessible on https://hemberg-lab.
github.io/scRNA.seq.datasets/human/pancreas. The human PBMC
perturbation data50 are available at the Kaggle competition site
https://www.kaggle.com/competitions/open-problems-single-cell-
perturbations/data. The human thyroid cancer data63 are available
under restricted access due to sharing principles in the Genome
Sequence Archive under accession code HRA000686. The access
can be obtained following the official data application guideline at
https://ngdc.cncb.ac.cn/gsa-human/document/GSA-Human_
Request_Guide_for_Users_us.pdf, which provides detailed instruc-
tions on how to submit a data access request, along with the cri-
teria for approval. The expected timeframe for response to access
requests is typically within four weeks. Source data are provided
with this paper.

Code availability
The code used to develop the model and generate results in this
study is publicly available and has been deposited in GitHub at
https://github.com/XLearning-SCU/MetaQ, under MIT license. The
specific version of the code associated with this publication is
archived in Zenodo and is accessible via https://doi.org/10.5281/
zenodo.1427148073.
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