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Abstract

Recent advancements in Mamba have shown promising re-
sults in image restoration. These methods typically flatten
2D images into multiple distinct 1D sequences along rows
and columns, process each sequence independently using
selective scan operation, and recombine them to form the
outputs. However, such a paradigm overlooks two vital as-
pects: i) the local relationships and spatial continuity in-
herent in natural images, and ii) the discrepancies among
sequences unfolded through totally different ways. To over-
come the drawbacks, we explore two problems in Mamba-
based restoration methods: i) how to design a scanning
strategy preserving both locality and continuity while fa-
cilitating restoration, and ii) how to aggregate the dis-
tinct sequences unfolded in totally different ways. To ad-
dress these problems, we propose a novel Mamba-based
Image Restoration model (MaIR), which consists of Nested
S-shaped Scanning strategy (NSS) and Sequence Shuffle
Attention block (SSA). Specifically, NSS preserves locality
and continuity of the input images through the stripe-based
scanning region and the S-shaped scanning path, respec-
tively. SSA aggregates sequences through calculating at-
tention weights within the corresponding channels of differ-
ent sequences. Thanks to NSS and SSA, MaIR surpasses
40 baselines across 14 challenging datasets, achieving
state-of-the-art performance on the tasks of image super-
resolution, denoising, deblurring and dehazing. The code
is available at https://github.com/XLearning-
SCU/2025-CVPR-MaIR.

1. Introduction

Image restoration aims to recover visually appealing high-
quality images from given degraded correspondences, e.g.,
noisy, blurry, and hazy images. In recent years, the meth-
ods based on Convolutional Neural Networks (CNNs) and
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Figure 1. The scanning strategies in existing Mamba-based meth-
ods and our proposed method. (a) Vmamba/Vim uses Z-shaped
scan path to flatten 2D image into 1D sequences, in which both
the locality and continuity of 2D image are disrupted. (b) Zigma
utilizes S-shaped path to maintain spatial continuity, while ignores
the locality. (c) LocalMamba leverages window-based scanning
region to preserve locality. However, the Z-shaped scanning path
within and across the windows disrupts the spatial continuity. In
contrast, (d) MaIR divides images into multiple non-overlapping
stripes, and adopts S-shaped scanning path within and across the
stripes, thus simultaneously preserves both locality and continuity.

Transformers have significantly advanced image restora-
tion by effectively capturing locality (i.e., fine-grained pat-
terns and correlations in small regions) and continuity (i.e.,
smooth, gradual transitions across larger areas) inherent in
2D natural images. To be specific, CNNs capture locality
and continuity through the elaborately designed small ker-
nels and sliding strides, respectively. Transformers capture
them through local window partitions and adjacent window
communications (e.g., window shifts and window expan-
sions). However, like a coin with two sides, the success of
CNNs and Transformers in preserving locality and continu-
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ity comes at the cost of their ability to capture long-range
dependencies. Both of them only consider a limited region
of the input image at a time due to their localized kernels or
windows, making them challenging to model relationships
that span across larger sections of the image. Therefore, it is
highly expected to develop a method that is able to capture
long-range dependencies while well preserving locality and
continuity inherent in 2D natural images.

Mamba [11, 15], a novel selective State Space
Model [16], has garnered significant attention due to its
promising performance in long sequence modeling while
maintaining nearly linear complexity. As Mamba’s core
algorithm, Selective Scan Operation (SSO), is inherently
designed for 1D sequences, it can not be directly appli-
cable to processing 2D images. To address the problem,
Mamba-based restoration methods typically involve a 3-
step pipeline: i) flattening 2D image into multiple 1D se-
quences along rows and columns; ii) processing each se-
quence independently using SSO; and iii) aggregating the
processed sequences to form the output 2D image. How-
ever, such a paradigm still faces two demerits when process-
ing images. First, when transforming image into sequences,
it disrupts the locality and continuity inherent in image, as
illustrated in Fig. 1(a)-(c). Second, it generally aggregates
processed sequences via pixel-wise summation, overlook-
ing the distinct contexts among sequences unfolded through
totally different ways.

In this work, we present a novel locality- and continuity-
preserving Mamba for Image Restoration (MaIR), which
consists of Nested S-shaped Scanning strategy (NSS) and
Sequence Shuffle Attention block (SSA). Specifically, NSS
preserves the locality through stripe-based scanning region,
and the continuity via the S-shaped scanning path with shift-
stripe mechanism. SSA aggregates the processed sequences
by calculating attention weights within corresponding chan-
nels of sequences. Thanks to corporation of NSS and SSA,
MaIR enjoys the following merits. Firstly, MaIR involves a
cost-free solution to preserve the locality and continuity in-
herent in natural images, ensuring structural coherence and
avoiding computational overhead. Secondly, MaIR captures
complex dependencies across distinct sequences, facilitat-
ing to leverage complementary information from both for-
ward and reversed rows and columns.

To summarize, the contributions and innovations of this
work are as below:
• In this work, we present MaIR, an approach that effi-

ciently captures long-range dependencies while preserv-
ing the locality and continuity inherent in natural images.

• For Mamba, we introduce NSS, a cost-free solution to
preserve locality and continuity, and SSA, a module to
capture dependencies across distinct sequences.

• MaIR obtains state-of-the-art performance on four tasks
across 14 benchmarks comparing with 40 baselines.

2. Related Works

In this section, we will briefly review related works in image
restoration and vision Mamba.

2.1. Image Restoration

According to the focus of this paper, existing methods can
be classified into three categories, i.e., CNN-, Transformer-
and Mamba-based methods. We will introduce the first two
categories here, while the last one is detailed in Sec. 2.2.

CNN-based Method: Benefiting from the ability of cap-
turing locality and continuity in natural images, CNN-based
methods have achieved promising results in various tasks of
image restoration, such as image super-resolution [10, 26,
28, 40, 64], image denoising [14, 25, 44, 57, 65] and image
deblurring [39, 39, 48, 60]. However, since their localized
receptive fields, CNNs are inherently limited in capturing
long-range dependencies.

Transformer-based Method: Transformers are theoret-
ically capable of capturing the global dependencies [53, 66].
However, to avoid impractical quadratic complexity on im-
ages, existing methods [7, 27, 32] tend to partition the local
regions of input image into different windows, and calcu-
late attentions within or across the windows. For instance,
SwinIR [27] computes attentions within local windows and
shifts these windows between layers. HAT [7] divides im-
ages into overlapping windows to enhance the interaction
between neighbor windows. Although these methods have
ensured structural coherence (i.e., locality and continuity)
of natural images and avoided computational overhead, they
fell into another dilemma of failing to fully capture long-
range dependencies due to their limited window sizes.

2.2. Vision Mamba

Due to Mamba’s demonstrated superiority in long-sequence
modeling [9, 16, 46], some studies have introduced it into
high- [21, 31, 70] and low-level [12, 18, 67] vision tasks. To
enable SSO to process images, these methods [31, 70] tend
to flatten 2D images into multiple 1D sequences along the
different directions. For instance, Vmamba [31] proposes
cross-scan strategy which flattens input images along rows
and columns. However, existing scanning strategies disrupt
structure coherence which is essential for image restoration.
Recently, some Mamba-based restoration methods have be-
gun to recognize the importance of structure coherence, and
tend to introduce extra coherence-preserving modules. For
instance, MambaIR [18] and UVM-Net [67] enhances lo-
cality through additional CNN layers, but introduces extra
computational costs. Although some other studies [19, 21]
devote to designing scanning strategy to preserve locality
and continuity, most of them can only preserve one of them.
In contrast, MaIR provides a cost-free solution to preserve
both locality and continuity.
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(c) Visual Mamba Module (VMM)

(a) Overall architecture of the MaIR

(b) Residual Mamba Block (RMB)

Residual Mamba Group (RMG)

……

Figure 2. Illustrations of MaIR. (a) The overall architecture of MaIR, highlighting its core component, Residual Mamba Group (RMG).
RMG is primarily composed of (b) Residual Mamba Block (RMB), in which (c) Visual Mamba Module (VMM) plays a pivotal role.

Module i Module i+1

(a) Nested S-shaped Scanning (b) Shift-stripe mechanism

Figure 3. Illustrations of (a) Nested S-shaped Scanning strategy
(NSS) and (b) shift-stripe mechanism.

3. Methods
In this section, we first introduce the overall architecture of
our MaIR, and then elaborate on NSS and SSA assembled
in MaIR Module (MaIRM).

3.1. Overall Architecture
Network Structure: Following previous works [18, 27],
MaIR is built up with three stages, namely, shallow feature
extraction stage, deep feature extraction stage and recon-
struction stage. Specifically, in the shallow feature extrac-
tion stage, for a given degraded image x ∈ R3×H×W , we
first employ a convolution layer to extract shallow feature
FS ∈ RC×H×W , where H and W represent the height and
width of x, and C is the number of channels. After that,
FS is fed to the deep feature extraction stage to produce
deep feature FD ∈ RC×H×W . As illustrated in Fig. 2, the
deep feature extraction stage is stacked by multiple Residual
Mamba Groups (RMGs), where each RMG consists of sev-
eral Residual Mamba Blocks (RMBs). Within each RMB,
a Visual Mamba Module (VMM) is introduced to capture
long-range dependencies, which is further composed of our
proposed MaIRM. Finally, we reconstruct the high-quality

image based on FS and FD. Specifically, for image super-
resolution, we introduce a pixel-shuffle layer Ups(·) and a
3 × 3 convolution layer Φ3×3(·) to reconstruct the high-
resolution image y′ = Φ3×3(Ups(FS+FD)). For tasks that
do not require upsampling (e.g., denoising, deblurring and
dehazing), we employ single convolution layer with resid-
ual connection to construct high-quality result, which can
be formulated as y′ = Φ3×3(FS + FD) + x.

Loss Function: For image super-resolution, we use L1

loss to optimize the network following [18, 27, 69], which
can be formulated as

L = ∥y − y′∥1,

where y is the target image. For image denoising, deblur-
ring and dehazing, we adopt Charbonnier loss, i.e.,

L =
√
∥y − y′∥2 + ϵ2,

where ϵ is a hyper-parameter and set to 10−3 empirically.

3.2. MaIR Module
As elaborated above, MaIRM serves as the core module of
MaIR, which involves a three-step pipeline. To be specific,
MaIRM first flattens 2D features into four 1D sequences
through NSS along four distinct directions following [31].
Then, MaIRM employs SSO to capture long-range depen-
dencies. Finally, MaIRM aggregates processed sequences
through SSA to form outputs. Mathematically, for input
feature Fi,j , output feature FM

i,j can be formulated as

FM
i,j = Mi,j(Fi,j),

= ΦSSA
i,j (ΦSSO

i,j (ΦNSS
i,j (Fi,j))),
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Figure 4. Illustration of the Sequence Shuffle Attention (SSA). The input features {Xi}Ki=1 ∈ RD×H×W are first pooled and concatenated
to form X̃ ∈ RL, where L = K×D. This sequence undergoes the sequence shuffle operation and results in shuffled sequences X̂ ∈ RL,
whose channels are split by D group. Then, group convolution and sequence unshuffle operation are applied, producing unshuffled weights
W̃ ∈ RL, which are further chunked and reshaped into attention weights {W i}Ki=1 ∈ RD . Finally, the output feature Y ∈ RD×H×W is
computed by performing a weighted summation of the input features using the attention weights.

where Mi,j(·), ΦNSS
i,j (·), ΦSSO

i,j (·) and ΦSSA
i,j (·) are

MaIRM, NSS, SSO and SSA in the j-th RMB of the i-th
RMG, respectively.

NSS: NSS is designed to extract locality- and continuity-
preserving sequences from input features. Motivated by the
observation illustrated in Fig. 1, one could find that i) Local-
Mamba [21] preserves locality through restricted scanning
region, and ii) Zigma [19] preserves continuity through S-
shaped scanning path. Thus, as shown in Fig. 3(a), we de-
sign the nested S-shaped scanning strategy, which divides
features into multiple non-overlapping stripes and uses S-
shaped scanning path within and across stripes to maintain
both locality and continuity. To better leverage spatial infor-
mation, we extract sequences with four different scanning
directions: top-left to bottom-right, bottom-right to top-left,
top-right to bottom-left, and bottom-left to top-right, fol-
lowing previous works [18, 31].

Besides, NSS includes shift-stipe mechanism to preserve
locality and continuity on the boundary regions between ad-
jacent stripes. As depicted in Fig. 3(b), for two successive
modules, the first module partitions features into multiple
non-overlapping stripes with stripe width ws. For the sec-
ond module, we employ the shift-stripe operation, and set
the first and last stripe widths as ws

2 and others’ width as ws.
Consequently, the boundary regions in the previous module
will be fully covered by a single stripe in this module.

SSA: SSA aggregates the processed sequences by cal-
culating attentions within corresponding channels. This de-
sign enables it to capture complex dependencies across dis-
tinct sequences, thus better leveraging complementary in-
formation from different scanning directions. As shown
in Fig. 4, supposing sequence number K = 4, for SSO-
processed sequences {Xi}4i=1, we first apply spatial aver-
age pooling ΦAP (·) to reduce the computational cost, and
then concatenate as

X̃ = Φcat(ΦAP ({Xi}4i=1))

= [x1
1, · · · , x1

D, x2
1, · · · , x2

D, x3
1, · · · , x3

D, x4
1, · · · , x4

D],

where xk
d is the pooled feature in d-th channel of k-th se-

quence, and D is the number of channel in MaIRM. Then,

we employ sequence shuffle operation Φss(·) to rearrange
features into

X̂ = Φss(X)

= [x1
1, x

2
1, x

3
1, x

4
1, x

1
2, x

2
2, x

3
2, x

4
2, · · · , x1

D, x2
D, x3

D, x4
D].

After that, we employ group convolution Φg(·) with group
size four to obtain the channel-wise attention weights and
unshuffle the weights back to their original order, i.e.,

W̃ = Φsu(Φg(X̂))

= [w1
1, · · · , w1

D, w2
1, · · · , w2

D, w3
1, · · · , w3

D, w4
1, · · · , w4

D],

where Φsu(·) is sequence unshuffle operation. The unshuf-
fled weights W̃ are chunked as {W i}4i=1 = Φchunk(W̃ ),
where Φchunk(·) refers to the chunk operation. Finally, we
adopt weight summation based on {W i}4i=1 to generate the
output, which can be formulated as:

Y =

K=4∑
i=1

W i ∗Xi,

and Y is the output sequence of SSA.

4. Experiments
In this section, we evaluate our MaIR on four representative
image restoration tasks, i.e., image super-resolution, image
denoising, image deblurring, and image dehazing. Exper-
imental settings and visual results will be presented in the
supplementary materials.

4.1. Results on Image Super-Resolution
Datasets: Following [18, 27], we employ DF2K
(DIV2K [49]+Flickr2K [29]) and DIV2K as training sets
for classic and lightweight image super-resolution, respec-
tively. For evaluation, we employ Set5 [3], Set14 [54],
B100 [35], Urban100 [20] and Manga109 [36] as test
sets. Following existing works [10, 40, 58, 64], the low-
resolution images are downsampled from the corresponding
high-resolution images via bicubic interpolation.



Table 1. Quantitative results on classic image super-resolution. The best and second best results are in red and blue.

Methods Scale Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SAN [10] ×2 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792
HAN [40] ×2 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385 39.46 0.9785
IGNN [68] ×2 38.24 0.9613 34.07 0.9217 32.41 0.9025 33.23 0.9383 39.35 0.9786
NLSA [37] ×2 38.34 0.9618 34.08 0.9231 32.43 0.9027 33.42 0.9394 39.59 0.9789
ELAN [63] ×2 38.36 0.9620 34.20 0.9228 32.45 0.9030 33.44 0.9391 39.62 0.9793
IPT [4] ×2 38.37 - 34.43 - 32.48 - 33.76 - - -
SwinIR [27] ×2 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797
SRFormer [69] ×2 38.51 0.9627 34.44 0.9253 32.57 0.9046 34.09 0.9449 40.07 0.9802
MambaIR [18] ×2 38.57 0.9627 34.67 0.9261 32.58 0.9048 34.15 0.9446 40.28 0.9806
MaIR ×2 38.56 0.9628 34.75 0.9268 32.59 0.9049 34.19 0.9451 40.30 0.9807
MaIR+ ×2 38.62 0.9630 34.82 0.9272 32.62 0.9053 34.38 0.9462 40.48 0.9811

SAN [10] ×3 34.75 0.9300 30.59 0.8476 29.33 0.8112 28.93 0.8671 34.30 0.9494
HAN [40] ×3 34.75 0.9299 30.67 0.8483 29.32 0.8110 29.10 0.8705 34.48 0.9500
IGNN [68] ×3 34.72 0.9298 30.66 0.8484 29.31 0.8105 29.03 0.8696 34.39 0.9496
NLSA [37] ×3 34.85 0.9306 30.70 0.8485 29.34 0.8117 29.25 0.8726 34.57 0.9508
ELAN [63] ×3 34.90 0.9313 30.80 0.8504 29.38 0.8124 29.32 0.8745 34.73 0.9517
IPT [4] ×3 34.81 - 30.85 - 29.38 - 29.49 - - -
SwinIR [27] ×3 34.97 0.9318 30.93 0.8534 29.46 0.8145 29.45 0.8826 35.12 0.9537
SRFormer [69] ×3 35.02 0.9323 30.94 0.8540 29.48 0.8156 30.04 0.8865 35.26 0.9543
MambaIR [18] ×3 35.08 0.9323 30.99 0.8536 29.51 0.8157 29.93 0.8841 35.43 0.9546
MaIR ×3 35.10 0.9324 31.05 0.8541 29.51 0.8160 30.05 0.8863 35.44 0.9547
MaIR+ ×3 35.15 0.9328 31.12 0.8550 29.56 0.8167 30.24 0.8881 35.67 0.9556

SAN [10] ×4 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169
HAN [40] ×4 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177
IGNN [68] ×4 32.57 0.8998 28.85 0.7891 27.77 0.7434 26.84 0.8090 31.28 0.9182
NLSA [37] ×4 32.59 0.9000 28.87 0.7891 27.78 0.7444 26.96 0.8109 31.27 0.9184
ELAN [63] ×4 32.75 0.9022 28.96 0.7914 27.83 0.7459 27.13 0.8167 31.68 0.9226
IPT [4] ×4 32.64 - 29.01 - 27.82 - 27.26 - - -
SwinIR [27] ×4 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260
SRFormer [69] ×4 32.93 0.9041 29.08 0.7953 27.94 0.7502 27.68 0.8311 32.21 0.9271
MambaIR [18] ×4 33.03 0.9046 29.20 0.7961 27.98 0.7503 27.68 0.8287 32.32 0.9272
MaIR ×4 32.93 0.9045 29.20 0.7958 27.98 0.7507 27.71 0.8305 32.46 0.9284
MaIR+ ×4 33.14 0.9058 29.28 0.7974 28.02 0.7516 27.89 0.8336 32.66 0.9297

Baselines: We compare our method with 15 competitive
baselines. Specifically, we adopt four CNN-based methods
(i.e., SAN [10], HAN [40], IGNN [68], and NLSA [37]),
four transformer-based methods (i.e., ELAN [63], IPT [4],
SwinIR [27] and SRFormer [69]) and one Mamba-based
method (i.e., MambaIR [18]) as the baselines for clas-
sic super-resolution. For lightweight super-resolution, four
CNN-based methods (i.e., CARN [2], IMDN [22], LA-
PAR [26], LatticeNet [33]), two transformer-based meth-
ods (i.e., SwinIR [27] and SRFormer [69]) and one Mamba-
based method (i.e., MambaIR [18]) are introduced in com-
parisons. Similar to MambaIR, which offers two versions
for lightweight super-resolution, MaIR is also available in
two configurations: MaIR-Tiny and MaIR-Small.

Results: For classic super-resolution, as shown in Tab. 1,
MaIR achieves the best result in almost all quantitative
comparisons. For instance, our method surpasses Mam-
baIR [18] with 0.03dB∼0.12dB in terms of PSNR on
Urban100, and SRFormer with at most 0.04dB, 0.10dB
and 0.25dB in terms of PSNR on B100, Urban100,
and Manga109, respectively, which demonstrates the su-
periority of MaIR. For lightweight SR, MaIR also ex-
hibits its advancement compared to baselines as reported
in Tab. 2. Taking ×4 scale as examples, MaIR-Small sur-
passes MambaIR-Small by 0.08dB in terms of PSNR on
Manga109 with fewer parameters and MACs. MaIR-Tiny
outperforms MambaIR-Tiny and SwinIR by 0.08dB and
0.12dB in terms of PSNR on Urban100 with fewer parame-



Table 2. Quantitative results on lightweight image super-resolution. The best and second best results are in red and blue.

Methods Scale Params MACs Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CARN [2] ×2 1,592K 222.8G 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765
IMDN [22] ×2 694K 158.8G 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.88 0.9774
LAPAR-A [26] ×2 548K 171.0G 38.01 0.9605 33.62 0.9183 32.19 0.8999 32.10 0.9283 38.67 0.9772
LatticeNet [33] ×2 756K 169.5G 38.15 0.9610 33.78 0.9193 32.25 0.9005 32.43 0.9302 - -
SwinIR [27] ×2 910K 122.2G 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 39.12 0.9783
MambaIR-Tiny [18] ×2 905K 167.1G 38.13 0.9610 33.95 0.9208 32.31 0.9013 32.85 0.9349 39.20 0.9782
MaIR-Tiny ×2 878K 207.8G 38.18 0.9610 33.89 0.9209 32.31 0.9013 32.89 0.9346 39.22 0.9778
MambaIR-Small [18] ×2 1,363K 567.5G 38.16 0.9610 34.00 0.9212 32.34 0.9017 32.92 0.9356 39.31 0.9779
MaIR-Small ×2 1,355K 542.0G 38.20 0.9611 33.91 0.9209 32.34 0.9016 32.97 0.9359 39.32 0.9779

CARN [2] ×3 1,592K 111.8G 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9440
IMDN [22] ×3 703K 71.5G 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9445
LAPAR-A [26] ×3 544K 144.0G 34.36 0.9267 30.34 0.8421 29.11 0.8054 28.15 0.8523 33.51 0.9441
LatticeNet [33] ×3 765K 76.3G 34.53 0.9281 30.39 0.8424 29.15 0.8059 28.33 0.8538 - -
SwinIR [27] ×3 918K 55.4G 34.62 0.9289 30.54 0.8463 29.20 0.8082 28.66 0.8624 33.98 0.9478
MambaIR-Tiny [18] ×3 913K 74.5G 34.63 0.9288 30.54 0.8459 29.23 0.8084 28.70 0.8631 34.12 0.9479
MaIR-Tiny ×3 886K 93.0G 34.68 0.9292 30.54 0.8461 29.25 0.8088 28.83 0.8651 34.21 0.9484
MambaIR-Small [18] ×3 1,371K 252.7G 34.72 0.9296 30.63 0.8475 29.29 0.8099 29.00 0.8689 34.39 0.9495
MaIR-Small ×3 1,363K 241.4G 34.75 0.9300 30.63 0.8479 29.29 0.8103 28.92 0.8676 34.46 0.9497

CARN [2] ×4 1,592K 90.9G 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.47 0.9084
IMDN [22] ×4 715K 40.9G 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075
LAPAR-A [26] ×4 659K 94.0G 32.15 0.8944 28.61 0.7818 27.61 0.7366 26.14 0.7871 30.42 0.9074
LatticeNet [33] ×4 777K 43.6G 32.30 0.8962 28.68 0.7830 27.62 0.7367 26.25 0.7873 - -
SwinIR [27] ×4 930K 31.8G 32.44 0.8976 28.77 0.7858 27.69 0.7406 26.48 0.7980 30.92 0.9151
MambaIR-Tiny [18] ×4 924K 42.3G 32.42 0.8977 28.74 0.7847 27.68 0.7400 26.52 0.7983 30.94 0.9135
MaIR-Tiny ×4 897K 53.1G 32.48 0.8985 28.81 0.7864 27.71 0.7414 26.60 0.8013 31.13 0.9161
MambaIR-Small [18] ×4 1,383K 143.0G 32.51 0.8993 28.85 0.7876 27.75 0.7423 26.75 0.8051 31.26 0.9175
MaIR-Small ×4 1,374K 136.6G 32.62 0.8998 28.90 0.7882 27.77 0.7431 26.73 0.8049 31.34 0.9183

ters, verifying both efficiency and effectiveness of MaIR.

4.2. Results on Image Denoising
Datasets: For synthetic noise removal, we train MaIR on
DFWB, which consists of DIV2K, Flickr2K, Waterloo Ex-
ploration Dataset (WED) [34] and BSD400 [35]. For eval-
uation, we utilize BSD68 [35], Kodak24, McMaster [62],
and Urban100 as test set. Following [27, 57–59], we gener-
ate noisy images by manually adding white Gaussian noise
to the clean images with three distinct noise levels, i.e., σ =
15, 25, 50. For real-world image denoising, our model is
trained and tested on the SIDD-Medium [1] dataset, which
provides 320 high-resolution noisy-clean image pairs for
training and additional 40 image pairs for test.

Baselines: We compare our MaIR with 14 representa-
tive methods. To be specific, we adopt four CNN-based
methods (i.e., IRCNN [58], FFDNet [59], DnCNN [57]
and DRUNet [61]), four transformer-based methods (i.e.,
SwinIR [27], Restormer [53], CODE [66] and ART [56])
and one Mamba-based method (i.e., MambaIR [18]) as
the baselines for synthetic noise removal. For real-world
image denoising, four CNN-based methods (i.e., Deam-
Net [43], MPRNet [52], NBNet [8] and DAGL [38]),
two transformer-based methods (i.e., Uformer [50] and
Restormer [53]) and one Mamba-based method (i.e., Mam-
baIR [18]) are introduced for comparisons.

Results: As depicted in the Tab. 3-4, MaIR demonstrates

superior performance on both synthetic and real-world im-
age denoising compared to baselines. Taking results on Ur-
ban100 as examples, MaIR averagely outperforms Mam-
baIR by 0.21dB in terms of PSNR, indicating its superiority
on image denoising.

4.3. Results on Image Deblurring
Datasets: Following previous works [52, 53], we employ
GoPro dataset [39] for training which consists of 2,103
blurry-clean image pairs. For evaluation, we use two com-
mon datasets, i.e., GoPro test set and HIDE [45], which con-
sist of 1,111 and 2,025 blurry-clean pairs, respectively.

Baselines: We adopt 11 competitive image deblurring
baselines for comparisons, including six CNN-based de-
blurring methods (i.e., SRN [48], DBGAN [60], DM-
PHN [55], MIMO [9], MPRNet [52], and NAFNet [6]),
three transformer-based methods (i.e., CODE [66],
Restormer [53] and Uformer [50]), one RNN-based method
(i.e., MT-RNN [41]) and one Mamba-based method (i.e.,
CU-Mamba [12]).

Results: As shown in Tab. 5, MaIR surpasses other base-
lines by PSNR on both GoPro and HIDE. For instance,
MaIR outperforms Restormer [53] by 0.77dB on the Go-
Pro dataset and by 0.35dB on the HIDE dataset in terms of
PSNR. Although NAFNet achieves similar quantitative re-
sults on GoPro, MaIR surpasses NAFNet on HIDE dataset
by 0.25dB in terms of PSNR.



Table 3. Quantitative results on gaussian color image denoising. The best and second best results are in red and blue.

Methods BSD68 Kodak24 McMaster Urban100
σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50

IRCNN [58] 33.86 31.16 27.86 34.69 32.18 28.93 34.58 32.18 28.91 33.78 31.20 27.70
FFDNet [59] 33.87 31.21 27.96 34.63 32.13 28.98 34.66 32.35 29.18 33.83 31.40 28.05
DnCNN [57] 33.90 31.24 27.95 34.60 32.14 28.95 33.45 31.52 28.62 32.98 30.81 27.59
DRUNet [61] 34.30 31.69 28.51 35.31 32.89 29.86 35.40 33.14 30.08 34.81 32.60 29.61
SwinIR [27] 34.42 31.78 28.56 35.34 32.89 29.79 35.61 33.20 30.22 35.13 32.90 29.82
Restormer [53] 34.40 31.79 28.60 35.47 33.04 30.01 35.61 33.34 30.30 35.13 32.96 30.02
CODE [66] 34.33 31.69 28.47 35.32 32.88 29.82 35.38 33.11 30.03 - - -
ART [56] 34.46 31.84 28.63 35.39 32.95 29.87 35.68 33.41 30.31 35.29 33.14 30.19
MambaIR [18] 34.43 31.80 28.61 35.34 32.91 29.85 35.62 33.35 30.31 35.17 32.99 30.07
MaIR 34.48 31.86 28.66 35.53 33.09 30.04 35.71 33.44 30.35 35.35 33.22 30.30
MaIR+ 34.50 31.88 28.69 35.56 33.13 30.08 35.74 33.48 30.39 35.42 33.30 30.41

Table 4. Quantitative results on real image denoising. The best and second best results are in red and blue.

DeamNet [43] MPRNet [52] NBNet [8] DAGL [38] Uformer [50] MambaIR [18] MaIR

PSNR 39.47 39.71 39.75 38.94 39.89 39.89 39.92
SSIM 0.957 0.958 0.959 0.953 0.960 0.960 0.960

Table 5. Quantitative results on image motion deblurring. The best
and second best results are in red and blue. MACs in this table are
evaluated on 128×128 patches followed [66].

Method Params MACs GoPro HIDE

SRN [48] 3.76M 35.87G 30.26 28.36
DBGAN [60] 11.59M 379.92G 31.10 28.94
MT-RNN [41] 2.64M 13.72G 31.15 29.15
DMPHN [55] 86.80M - 31.20 29.09
CODE [66] 12.18M 22.52G 31.94 29.67
MIMO+ [9] 16.10M 38.64G 32.45 29.99
MPRNet [52] 20.13M 194.42G 32.66 30.96
Restormer [53] 26.13M 35.31G 32.92 31.22
Uformer [50] 50.88M 22.36G 33.06 30.90
CU-Mamba [12] 19.7M - 33.53 31.47
NAFNet [6] 67.89M 15.85G 33.69 31.32
MaIR 26.29M 49.29G 33.69 31.57

4.4. Results on Image Dehazing

Datasets: Following [47], we employ RESIDE [24] for
training and testing. For indoor scenes, we train MaIR on
Indoor Training Set (ITS) which consists of 13,990 hazy-
clean pairs, and test it on indoor synthetic objective testing
set (SOTS-Indoor) involving 500 pairs. For outdoor scenes,
we train MaIR on Outdoor Training Set (OTS), which con-
tains 313,950 image pairs, and evaluate it on outdoor syn-
thetic objective testing set (SOTS-Outdoor) involving 500
images. To verify MaIR on more general cases, we also
train the model on RESIDE-6K and test it on the SOTS-
mix, which contain both indoor and outdoor images.

Baselines: We compare MaIR with eight baselines,
including five CNNs (AODNet [23], GDN [30], MS-
BDN [13], FFANet [42] and AECRNet [51]), two trans-
formers (Dehamer [17], Dehazeformer [47]) and one

Mamba (UVM-Net [67]).
Results: As shown in Tab. 6, MaIR surpasses most

baselines on quantitative comparisons. Specifically, MaIR
outperforms DehazeFormer and UVM-Net by 2.67dB and
2.04dB in terms of PSNR on the outdoor scenes. Although
UVM-Net is slightly higher on PSNR in the indoor scenes,
MaIR only takes 0.3% and 4.8% params and MACs of the
UVM-Net, verifying both effectiveness and efficiency.

4.5. Analysis Experiments
4.5.1. Ablation Studies
We first verify the effectiveness of NSS under five configu-
rations, i) replacing NSS with Z-shaped scanning strategy
(denoted as w/o NSS), ii) removing shift stripe (denoted
as w/o SS), iii) replacing NSS by Window-based scanning
strategy [21] (denoted as LM), iv) replacing NSS by Z-
shaped scanning strategy [19] (denoted as ZigMa) and v)
replacing NSS by the Peano-Hilbert curve (denoted as PH).
As illustrated in Tab. 7, NSS is important for MaIR.

To verify the effectiveness of SSA, we remove SSA
and aggregate sequences through: i) sequences-wise ad-
dition (termed as w/o SSA), ii) SSM [67] (termed as
UVM), iii) sequence-wise gating [5] (termed as SeqGat), iv)
channel-wise gating (termed as CAGat), v) pixel-wise gat-
ing through fully connected convolution (termed as FPix-
Gat). vi) pixel-wise gating through depth-wise convolution
(termed as DWPixGat). The size of different models are set
be similar for fair comparisons. As shown in Tab. 8, SSA is
more effective than others.

4.5.2. Verification of Observations
To verify observations shown in Fig. 1, we conduct visual
comparisons among different scanning strategies. As shown



Table 6. Quantitative results on image dehazing. The best and second best results are in red and blue. MACs in this table are evaluated on
256×256 patches followed [47, 67].

Method AODNet GDN MSBDN FFANet AECRNet Dehamer DehazeFormer UVM-Net MaIR
[23] [30] [13] [42] [51] [17] [47] [67] (Ours)

Params 0.002M 0.96M 31.35M 4.46M 2.61M 132.45M 4.63M 1,003.94M 3.40M
MACs 0.115G 21.49G 41.54G 287.8G 52.20G 48.93G 48.64G 501.91G 24.03G

SOTS- PSNR 20.51 32.16 33.67 36.39 37.17 36.63 38.46 40.17 39.45
Indoor SSIM 0.816 0.984 0.985 0.989 0.990 0.988 0.994 0.996 0.997

SOTS- PSNR 24.14 30.86 33.48 33.57 - 35.18 34.29 34.92 36.96
Outdoor SSIM 0.920 0.982 0.982 0.984 - 0.986 0.983 0.984 0.991

SOTS- PSNR 20.27 25.86 28.56 29.96 28.52 - 30.89 31.92 31.52
Mix SSIM 0.855 0.944 0.966 0.973 0.964 - 0.977 0.982 0.980

Input MambaIR
(Z-shaped)

LocalMamba
(Window-based)

ZigMa
(S-shaped) HRMaIR

(Nested S-shaped)

Figure 5. Visual comparisons of different scanning strategies, illustrating that i) windows-based scanning path overlooks the continuity
between different regions (e.g., relationship between different layers of the scarf), resulting in wrong textures, ii) S-shaped scanning path
leads to distortion in local regions, causing the scarf’s texture to appear warped. iii) Z-shaped scanning path suffers from both of them. In
contrast, MaIR avoids aforementioned problems and achieves visually appealing results.

Table 7. Ablation study on the proposed NSS scheme, tested on
lightweight super-resolution tasks with scale factor ×2. The re-
sults on the Urban100 dataset are presented, which demonstrates
the effectiveness of the NSS.

Baseline w/o NSS w/o SS LM ZigMa PH

PSNR 32.97 32.94 32.93 32.93 32.88 32.95
SSIM 0.9359 0.9355 0.9351 0.9357 0.9354 0.9356

Table 8. Ablation study on SSA for lightweight super-resolution
with scale factor ×2. The results on Urban100 dataset demonstrate
the effectiveness of SSA.

MaIR w/o SSA UVM SeqGat

PSNR 32.97 32.90 32.59 32.92
SSIM 0.9359 0.9350 0.9324 0.9352

CAGat FPixGat DWPixGat -

PSNR 32.71 31.90 32.74 -
SSIM 0.9335 0.9250 0.9342 -

in Fig. 5, MaIR can maintain both locality and continuity
and produce more visual pleasant results.

4.5.3. Results on Different Stripe Width
To investigate influence of stripe width, we train and eval-
uate models with stripe width ws = {2, 4, 8, 16, 32} on
Urban100 dataset. As presented in Tab. 9, the PSNR and
SSIM values are quite similar under different settings, ex-
cept for the cases with the largest and the smallest stripe
widths. It indicates that the proposed method exhibits ro-

Table 9. Analyses on stripe widths. Experiment was conducted on
the Urban100 dataset with a scale factor ×2 for lightweight super-
resolution tasks, which illustrates how changes in stripe width af-
fect the restored image quality.

2 4 8 16 32

PSNR 32.95 32.97 32.97 32.97 32.92
SSIM 0.9356 0.9359 0.9355 0.9357 0.9355

bustness against changes in stripe width, maintaining high-
quality image restoration across a range of stripe widths.

5. Conclusion

In this paper, we propose MaIR, a novel state space model
for image restoration that can preserve both local depen-
dencies and spatial continuity of input images. To this end,
we propose two designs: Nested S-shaped Scanning strat-
egy (NSS) and Sequences Shuffle Attention (SSA). NSS is
designed to extract locality- and continuity-preserving se-
quences from images, and SSA adaptively aggregates these
sequences. Thanks to their cooperation, MaIR not only ad-
dresses the limitations of existing Mamba-based restoration
methods but also improves image quality without introduc-
ing extra computations. Extensive experiments across four
tasks on 14 benchmarks comparing with 40 baselines, val-
idate the superiority of MaIR, demonstrating its robustness
and effectiveness in various image restoration tasks.
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