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Abstract

Graph representation learning is fundamental for analyzing
graph-structured data. Exploring invariant graph representa-
tions remains a challenge for most existing graph representa-
tion learning methods. In this paper, we propose a cross-view
graph consistency learning (CGCL) method that learns invari-
ant graph representations for link prediction. First, two com-
plementary augmented views are derived from an incomplete
graph structure through a coupled graph structure augmenta-
tion scheme. This augmentation scheme mitigates the poten-
tial information loss that is commonly associated with various
data augmentation techniques involving raw graph data, such
as edge perturbation, node removal, and attribute masking.
Second, we propose a CGCL model that can learn invariant
graph representations. A cross-view training scheme is pro-
posed to train the proposed CGCL model. This scheme at-
tempts to maximize the consistency information between one
augmented view and the graph structure reconstructed from
the other augmented view. Furthermore, we offer a compre-
hensive theoretical CGCL analysis. This paper empirically
and experimentally demonstrates the effectiveness of the pro-
posed CGCL method, achieving competitive results on graph
datasets in comparisons with several state-of-the-art algo-
rithms.

Introduction
Graph neural networks (GNNs), inheriting the representa-
tion learning advantages of traditional deep neural networks
(Wang et al. 2023; Liu et al. 2023a; Chen et al. 2023a,c;
Peng et al. 2022), have become increasingly popular for
analyzing graph-structured data (Hassani and Khasahmadi
2020). Graph representation learning (GRL) aims to learn
meaningful node embeddings, referred to as graph repre-
sentations, from both graph structures and node features via
GNNs (Kipf and Welling 2017). Graph representations have
been extensively applied in downstream tasks, e.g., link pre-
diction. Link prediction seeks to predict the missing connec-
tions between node pairs from an incomplete graph struc-
ture. It shows the significant impact of developing applica-
tions with graph-structured data (Liu et al. 2023b), including
citation network analysis (Li et al. 2022a), social network
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analysis (Li et al. 2022a) and recommendation systems (Wu
et al. 2021).

In recent years, many research efforts have been directed
toward investigating GNNs for GRL. For example, several
classic GNN models have been proposed to learn mean-
ingful graph representations from graph-structured data,
such as graph convolutional network (GCN) (Kipf and
Welling 2017), variational graph autoencoder (VGAE) (Kipf
and Welling 2016), graph attention network (Veličkovi’c
et al. 2018), graph sampling and aggregation (GraphSAGE)
(Hamilton, Ying, and Leskovec 2017) and their variants (Tan
et al. 2023; Li et al. 2022a). These methods have achieved
impressive link prediction results. However, the potential of
utilizing graph structures for the available graph-structured
data has not been fully exploited.

Self-supervised learning has recently emerged as a
promising representation learning paradigm for GNNs (Hou
et al. 2022; Tsai et al. 2020). It can learn latent graph rep-
resentations from unlabeled graph-structured data by su-
pervision, which is provided by the data itself with differ-
ent auxiliary learning tasks. Most self-supervised learning-
based algorithms fall into two categories: contrastive learn-
ing (Chen et al. 2023b; Li et al. 2022b; Hassani and Khasah-
madi 2020; You et al. 2020) and generative learning (Tan
et al. 2023; Li et al. 2022a; Hou et al. 2022; Cui et al. 2020).
For example, Hassani et al. (Hassani and Khasahmadi 2020)
presented a contrastive multiview representation learning
(CMRL) method that learns graph representations by con-
trasting encodings derived from first-order neighbors and a
graph diffusion module. The feature pairs may have different
data distributions under the two different types of augmented
views. This may have a significant negative impact on mea-
suring the similarity between positive pairs and the dissim-
ilarity between negative pairs when conducting contrastive
learning. Li et al. (Li et al. 2022a) presented a masked graph
autoencoder (MGAE) method that reconstructs a complete
graph structure by masking a portion of the observed edges.
By randomly masking a portion of the edges, the MGAE
method somewhat reduces the redundancy of the graph au-
toencoder (GAE) in self-supervised graph learning tasks.
The randomness of edge masking causes a sampling in-
formation loss problem. Consequently, this is an increasing
concern regarding the capture of the complementary infor-
mation between the augmented views of a graph.



Figure 1: Framework of the CGCL model. Each augmented view of a graph structure, Ai (i = 1, 2), corresponds to three
modules, including an augmented graph structure module, a shared GCN encoder module and a shared cross-view consistency
decoder module. A and Ã represent the incomplete graph structure and predictive graph structure, respectively.

A vast majority of the available contrastive learning-based
GRL methods consider their GNN-based models to be in-
dependent of different downstream tasks (Tan et al. 2023;
Zhu et al. 2020). Recent advances have shown that the opti-
mal data augmentation views critically depend on the down-
stream tasks involving the visual data (Wang et al. 2022; You
et al. 2020). The augmented views of the visual data share as
little information as necessary to maximize the task-relevant
mutual information. Motivated by this, we further investi-
gate how to take full advantage of graph structure informa-
tion and simultaneously retain the task-relevant information
needed by a specific downstream task, i.e., link prediction.
This is beneficial for learning invariant graph representations
from the augmented views of graph-structured data, which
is central to enhancing the ability of a model to produce gen-
eral graph representations.

In this paper, we propose a cross-view graph consistency
learning (CGCL) method that learns invariant graph repre-
sentations for link prediction. Numerous missing connec-
tions are involved in the graph structure. We first construct
two complementary augmented views of the graph struc-
ture of interest from the remainder of the link connections.
Then, we propose a cross-view training scheme to train the
proposed CGCL model, which can produce invariant graph
representations for graph structure reconstruction purposes.
The proposed cross-view training scheme attempts to max-
imize the consistency information between one augmented
view and the graph structure reconstructed from the other
augmented view. In contrast with random edge perturbation,
node dropping or attribute masking, this approach preserves
the valuable information contained in raw graph-structured
data during GRL. Moreover, the complementary informa-
tion in the graph structure can be further exploited by virtue
of the cross-view training scheme. In addition, a comprehen-
sive theoretical analysis is provided to reveal the supervi-
sory information connections between the two complemen-
tary augmented views.

The key contributions are summarized as follows.

• We propose a CGCL model that learns two pairs of cross-
view adjacency matrices, which can be considered view-
invariant, for link prediction.

• A coupled graph structure augmentation scheme is intro-
duced to construct two complementary augmented views

of a graph structure, which help produce more distinct
low-dimensional node embeddings.

• A cross-view training scheme is designed to train the
CGCL model by maximizing the consistency informa-
tion between one augmented view and the graph structure
reconstructed from the other augmented view.

• Extensive experiments are conducted on graph datasets,
achieving competitive results.

Preliminaries
An undirected graph G is defined as G = (V, E), where
V = {v1, ..., vn} and E = {e1, ..., em} stand for a set
of n nodes and a set of m edges, respectively (Kipf and
Welling 2017). Each node vi in V is associated with a corre-
sponding feature xi (1 ≤ i ≤ n) ∈ Rd. An adjacency matrix
A ∈ Rn×n represents the relationships among the nodes in a
graph, where Aij = 1 indicates that an edge exists between
nodes vi and vj and vice versa. The degree matrix D is de-
fined as D = diag [d1, d2, ..., dn] ∈ Rn×n, and its diagonal
elements are di =

∑
vj∈V Aij .

A GCN learns node embeddings for graph-structured data
(Kipf and Welling 2017). Given an undirected graph G,
Ã = A + I is the adjacency matrix of G with an added
self-loop, and D̃ is a diagonal degree matrix D̃ii =

∑
j Ãij .

The formula for the lth GCN layer is defined as

H(l) = σ
(
D̃−1/2ÃD̃−1/2H(l−1)W(l)

)
(1)

where l denotes the lth layer, W(l) is a layer-specific learn-
able weight matrix, H(l) is the node embedding matrix with
H(0) = X, and σ is a nonlinear activation function, e.g.,
ReLU (·) = max (0, ·). For a semi-supervised classifica-
tion task, the weight parameters in the GCN model can be
learned by minimizing the cross-entropy error between the
ground truth and predictive the labels (Kipf and Welling
2017).

Cross-View Graph Consistency Learning
In this section, we present the proposed CGCL method in de-
tail, which produces invariant graph representations for self-
supervised graph learning. These graph representations can
be employed on a specific downstream task, i.e., the recon-
struction of an incomplete graph structure.



Problem Formulation
Let X ∈ Rn×d be a matrix consisting of node features, each
row of which corresponds to a node feature. Given an undi-
rected graph G with an incomplete graph structure and the
above node features X, the goal of our work is to learn graph
representations, which can be employed to reconstruct the
incomplete graph structure for link prediction.

Network Architecture
The proposed CGCL method aims to produce the complete
graph structure by predicting the missing connections. Fig.
1 provides an overview of the proposed CGCL network ar-
chitecture, which is composed of three main modules, i.e.,
an augmented graph structure module, a shared GCN en-
coder module and a shared cross-view consistency decoder
module. The augmented graph structure module is utilized
to generate two complementary augmented views of the
original graph structure. Inspired by the VGAE (Kipf and
Welling 2016), the shared GCN encoder module learns in-
dividual graph structures for each augmented view under
unsupervised representation learning. The cross-view con-
sistency decoder module produces a predictive graph struc-
ture by maximizing the consistency information between
one augmented view and the graph structure reconstructed
from the other augmented view. With these three modules,
CGCL simultaneously learns graph representations from
graph-structured data and reconstructs an incomplete graph
structure for inferring the missing connections.

CGCL Model
Motivation Considering the two complementary graph
structures A1 and A2 shown in Fig. 1, CGCL aims to en-
sure the consistency of the pairwise matchings between the
pairs of nodes in A1 and Ã1, where Ã1 is produced from
the other original structure A2 and the node features.

Definition 1 (Cross-View Graph Consistency) Given two
augmented graph structures A1 and A2, a generated graph
structure Ã1 is assumed to be reconstructed by using the
node features X and graph structure A2. Let A1

ij and Ã1
ij

(i, j ∈ {1, ..., n}) form a pairwise matching chosen from
A1 and Ã1, respectively. The relationship between the two
graph structures A1 and Ã1 is said to exhibit cross-view
consistency if the following equality holds: A1

ij = Ã1
ij for

all i, j ∈ {1, ..., n}.

To reconstruct the incomplete graph structure, CGCL
maximizes the consistency information between two ran-
dom variables v1 and v2 with a joint distribution p (v1, v2)
corresponding to the pairwise matching variables of a pair
of nodes a1 and a2 in a graph structure A1 and its recon-
struction Ã1, i.e.,

max
f

C (a1, a2) (2)

where C (a1, a2) = Ep(a1,a2)
a1 log a2, ai = f (vi) denote

random variables, vi ≥ 0, i ∈ {1, 2}, and f represents a

mapping function. According to the data processing inequal-
ity for the Markov chains v1 → v2 → a2 and a2 → v1 → a1
(Wang et al. 2022; Cover and Thomas 2006), we have

C (v1, v2) ≥ C (v1, a2) ≥ C (a1, a2) . (3)

Thus, C (v1, v2) is the upper bound of C (a1, a2). The vari-
able v1 can provide supervisory information for v2 in an
unsupervised manner, and vice versa. All supervisory in-
formation for one augmented view comes from the consis-
tency information provided by the other augmented view in
the context of CGCL. Assuming that the mapping function
f has a sufficient graph representation learning ability, we
have C (v1, v2) = C (a1, a2). This indicates that C (v1, v2)
and C (a1, a2) are approximately minimal when the consis-
tency information shared between the two augmented views
is sufficient for each other during GRL.

Coupled Graph Structure Augmentation The hidden
representation of each node during GRL is determined by
both the node itself and its neighbors. The neighbor selec-
tion process is influenced by both the graph structure and
the node features. To extract sufficient supervisory informa-
tion from the two augmented views, the straightforward ap-
proach is to select distinct neighbor candidate sets for each
node. In contrast to the recently proposed graph contrastive
learning methods that employ techniques such as node drop-
ping and attribute masking for graph data augmentation, we
refrain from performing any augmentation operations on the
node features of the graph.

Guided by the task of reconstructing the incomplete graph
structure, a portion of the connections is missing in an
undirected graph G. Edge dropping is an intuitive graph-
structured data augmentation. The choice of different edge
dropping ratios often leads to varying results in link predic-
tion tasks. Some combinations of dropping ratios can even
perform worse than no augmentation at all. Consequently,
determining an optimal dropping ratio for edges becomes a
dilemma. We introduce a coupled graph structure augmen-
tation scheme for the original incomplete graph structure.
Specifically, we randomly divide the set of edges into two
complementary subsets following a particular distribution,
e.g., the Bernoulli distribution. The edges of the two subsets
are complementary when the directions of the edges are not
considered. Furthermore, two undirected augmented views
A1 and A2 can be constructed after applying the bidirec-
tional order for each pair of nodes in each subset, which
are E1 and E2, respectively. In particular, these two views
may share some edge pairs. This strategy offers two benefits
for graph-structured augmentation. First, it directly simpli-
fies the process of selecting the optimal edge-dropping ratio.
Second, graph representation learning models with multiple
GNN layers tend to make node representations more sim-
ilar due to their message-passing mechanisms. By provid-
ing complementary candidate neighbor sets for each node,
these two augmented views help produce more distinct low-
dimensional node embeddings.

Given the adjacent matrices of the two complementary
augmented views for a graph structure, A1 and A2, two cor-
responding adjacency matrices can be reconstructed using



the GNN-based models (Veličkovi’c et al. 2018; Hamilton,
Ying, and Leskovec 2017; Kipf and Welling 2017). Differ-
ent from previous work (Tan et al. 2023; Fang et al. 2022;
Li et al. 2022a), we focus on reconstructing the cross-view
adjacency matrices from A1 and A2 based on our specific
motivation. Specifically, the cross-view adjacency matrices
Ã1 and Ã2 can be reconstructed as follows:

Ã1 = f (X,A2) ,

Ã2 = f (X,A1)
(4)

where f is a mapping function consisting of the shared GCN
encoder module and shared cross-view consistency decoder
module shown in Fig. 1. Ã1 and Ã2 represent the predic-
tion results obtained for the incomplete graph structures de-
rived from A2 and A1, respectively. Two pairs of adjacency
matrices produced from graph-structured data,

(
A1, Ã1

)
and

(
A2, Ã2

)
, are cross-view adjacency matrices that can

be considered view-invariant matrices. These pairs of adja-
cency matrices can be utilized for link prediction.

Reconstruction of an Incomplete Graph Structure The
shared GCN encoder module utilizes a GCN as the back-
bone. For each GCN-based encoder component, the encoder
part produces hidden representations of the nodes derived
from a graph structure and node features. Without a loss of
generality, the GCN-based encoder component is defined as

Zv = g (X,Av) = ELU
(
AvXW(1)

)
, (5)

where W(1) ∈ Rd×dv is the weight parameters, dv repre-
sents the number of neural units in the hidden layer, ELU (·)
denotes a nonlinear activation function, and Zv represents
low-dimensional node embeddings. Thus, the GCN-based
encoder component extracts graph-level representations Z1

and Z2 for the adjacent matrices of the two augmented views
A1 and A2, respectively.

Given the low-dimensional node embeddings Zv , we em-
ploy the shared cross-view consistency decoder module,
which consists of an inner product decoder component and
a multilayer perceptron (MLP) component, to obtain the re-
constructed adjacency matrices. The inner product decoder
component is constructed by

Hv =

N∑
i=1

N∑
j=1

p
(
A

(v)
ij |Z(v)

i ,Z
(v)
j

)
(6)

where p
(
A

(v)
ij |Zi

(v),Zj
(v)

)
=

(
Z

(v)
i

)T

Z
(v)
j and v ∈

{1, 2}. The MLP component is composed of two fully con-
nected layers with computations defined as follows:

Ã1 = MLP
(
H2,W

(1,2)
)
,

Ã2 = MLP
(
H1,W

(1,2)
) (7)

where a nonlinear activation function, ReLU (·), is applied
for each layer. H1 and H2 represent invariant graph repre-
sentations that are utilized to predict Ã2 and Ã1, respec-
tively. The reconstructed graph structures Ã1 and Ã2 can be
obtained using Eq. (7).

Training Scheme
We propose a cross-view scheme for training the CGCL
model. For the connections between the same pair of nodes,
we emphasis their consistency across the augmented view
and its corresponding counterpart. Specifically, the differ-
ence between the adjacent matrices of the augmented view
Av and the reconstructed graph structure Ãv should be re-
duced during the training stage (v ∈ {1, 2}). We establish
two sets of edges to measure this difference. First, we create
a set of edges by selecting all edges from Av (v ∈ {1, 2}),
considering each edge as positive. Second, we generate a set
of negative edges by randomly sampling unconnected edges
from the alternate augmented view. The number of negative
edges corresponds to the number of positive edges within the
alternative augmented view. By adopting the binary cross-
entropy loss, the loss function for the graph consistency Lv

between Av and Ãv is formulated as:

Lv = loss
(
Av, Ãv

)
=− 1

n2

n∑
i=1

n∑
j=1

[
δ
(
Av

ij

)
log δ

(
Ãv

ij

)
+
(
1− δ

(
Av

ij

))
log

(
1− δ

(
Ãv

ij

))] (8)

where Av
ij and Ãv

ij represent the elements of the ith rows

and the jtth columns of Av and Ãv , respectively. The en-
tire learning procedure of the proposed CGCL method is
summarized in Algorithm 1. Thus, we can obtain the graph
representations and the predictive graph structure, simulta-
neously.

Theoretical Analysis
In this section, we provide a theoretical analysis of our
model from the perspective of sufficient supervision infor-
mation in GRL. The reconstructions of the incomplete graph
structures Ã1 and Ã2 are obtained from the two augmented
views. Considering Eq. (8), the general form of the optimiza-
tion objective is

loss
(
Av, Ãv

)
(9)

where v ∈ {1, 2}. According to Eq. (3), a loss of task-
relevant information occurs if the following condition holds,
i.e.,

C (A1,A2) ≥ C
(
Ã1, Ã2

)
. (10)

Similarly, the sufficient supervisory information shared
between one augmented view and the graph structure recon-
structed from the other augmented view is task-relevant if
the following condition holds, i.e.,

C
(
A1, Ã1

)
= C

(
A2, Ã2

)
= C

(
Ã1, Ã2

)
. (11)

By considering the objective from the perspective of suffi-
cient supervisory information, we emphasize the importance
of utilizing appropriate data augmentation schemes for in-
complete graph structures. Therefore, the augmented view



Algorithm 1: Optimization Procedure for CGCL

Input: Data matrix X, the adjacency matrix of an incom-
plete graph structure A, and parameters λ and dv .

Initialize: epochs = 800;
1: for t = 1 to epochs do
2: Constructing two complementary augmented views

A1 and A2 from A;
3: for v = 1 to 2 do
4: i = 1 if v == 2 else 2;
5: Computing Z(v) via Eq. (5) using X and Av;
6: Constructing the set E

′

i by sampling the negative
edges from the other augmented view Ai;

7: Computing H(v) via Eq. (6) using three variables,
including Z(v), the set of edges constructed from
Ai, and the set of negative edges E

′

i;
8: Computing Ãi via Eq. (7);
9: Updating W(1) and W(1,2) by minimizing Lv in

Eq. (8) using Ai and Ãi;
10: end for
11: end for
12: Computing Z via Eq. (5) using X and A;
13: Computing H via Eq. (6);
14: Computing Ã via Eq. (7);
Output: The graph structure Ã.

generation process can typically be guided by the theoreti-
cal conditions in (10) and (11).
Theorem 1 For any two variables r1 ∈ [0, 1] and r2 ∈
[0, 1], C (a1, a2) is bounded by:

− log 2

1 + 1/e
≤ C (a1, a2) ≤ − log (1 + 1/e)

2

where a1 = δ (r1), a2 = δ (r2), and δ (·) denotes the sig-
moid function.
Proof Let ri ∈ [0, 1] (i ∈ {1, 2}) be any two variables. Ac-
cording to the sigmoid function δ (·), we have

1

2
≤ ai ≤

1

1 + 1/e
.

Considering C (a1, a2) = Ep(a1,a2)
a1 log a2, we obtain

− log 2

1 + 1/e
≤ C (a1, a2) ≤ − log (1 + 1/e)

2
.

□

According to Theorem 1, Lv has specific upper and lower
bounds in Eq. (8). The lower bound can be theoretically
guaranteed when minimizing Lv in Eq. (8). Moreover, we
further obtain the following Lemma.
Lemma 1 There exists a constant such that ∀a1, a2 and
∀θ1, θ2 ∈ θ, the following inequality holds:

|Cθ1 (a1, a2)− Cθ2 (a1, a2)| ≤
1

1 + 1/e

where θ ∈ Rd represents the parameters in neural networks.

The proof of Lemma 1 is omitted, as it follows in a straight-
forward manner from Theorem 1. Lemma 1 predicts that the
loss function Lv will gradually decline during the training
stage.

Related Work
Contrastive learning-based GRL methods follow the princi-
ple of mutual information maximization by contrasting posi-
tive and negative pairs (You et al. 2020; Hassani and Khasah-
madi 2020; Zhu et al. 2020). Data augmentation is a key
prerequisite for these GRL methods. For example, You et
al. (You et al. 2020) presented a graph-contrastive learning
framework that provides four types of graph augmentation
strategies, including node dropping, edge perturbation, at-
tribute masking and subgraph production, to improve the
generalizability of the graph representations produced dur-
ing GNN pretraining.

Generative learning-based GRL methods aim to recon-
struct graph data for learning graph representations (Tan
et al. 2023; Li et al. 2022a; Kipf and Welling 2016). For
example, a VGAE employs two GCN models to build its
encoder component, which can learn meaningful node em-
beddings for the reconstruction of a graph structure (Kipf
and Welling 2016). Lousi et al. (Louis, Jacob, and Salehi-
Abari 2023) presented a scalable simplified subgraph repre-
sentation learning method (S3GRL) that simplifies the mes-
sage passing and aggregation operations in the subgraph of
each link. Additionally, several GAE-based GRL methods
employ different masking strategies on a graph structure to
implement graph augmentation, including a masked GAE
(GraphMAE) (Hou et al. 2022), an MGAE (Li et al. 2022a)
and a self-supervised GAE (S2GAE) (Tan et al. 2023). After
randomly making a portion of the edges on a graph structure,
these GRL methods attempt to reconstruct the missing con-
nections with a partially visible, unmasked graph structure.

Experiments
In this section, we conduct extensive experiments to evalu-
ate the link prediction performance of the proposed CGCL
method. The source code for CGCL is implemented upon
a PyTorch framework and a PyTorch Geometric (PyG) li-
brary. All experiments are performed on a Linux worksta-
tion with a GeForce RTX 4090 GPU (24-GB caches), an
Intel (R) Xeon (R) Platinum 8336C CPU and 128.0 GB of
RAM.

Experimental Settings
Datasets We select five widely used graph datasets for
evaluation, including Cora (Sen et al. 2008), Citeseer (Sen
et al. 2008), Pubmed (Namata et al. 2012), Photo (McAuley
et al. 2015), and Computers (McAuley et al. 2015), which
are publicly available on PyG. The Cora, Citeseer and
Pubmed datasets are citation networks, where nodes and
edges indicate papers and citations, respectively. The Photo
and Computers datasets are segments of the Amazon co-
purchase graph, where each node represents a good, and
each edge indicates that the two corresponding goods are
frequently bought together.



Methods Testing ratios
Cora CiteSeer PubMed Photo Computers

AUC AP AUC AP AUC AP AUC AP AUC AP
GraphSAGE

10%

90.56±0.39 88.70±0.62 89.22±0.47 88.15±0.67 94.85±0.10 94.97±0.08 90.42±1.35 87.99±1.27 87.20±1.38 84.99±1.18
VGAE 91.88±0.58 92.51±0.35 91.29±0.56 92.35±0.41 94.86±0.69 94.75±0.62 96.76±0.16 96.72±0.16 90.86±0.69 91.75±0.62
SEAL 91.11±0.13 92.87±0.15 89.08±0.15 91.44±0.05 93.18±0.17 93.84±0.07 96.46±0.14 97.11±0.13 94.53±0.16 94.69±0.31

S3GRL 94.24±0.22 94.04±0.54 95.79±0.63 95.04±0.68 97.12±0.29 96.72±0.40 96.90±0.52 96.44±0.43 95.17±0.45 93.08±0.65
S2GAE 95.89±0.48 95.78±0.60 95.65±0.26 95.75±0.33 96.85±0.13 96.49±0.13 97.93±0.06 97.39±0.09 97.25±0.17 96.68±0.21
MGAE 96.74 ±0.09 96.36 ±0.18 97.62±0.13 97.87±0.13 97.62±0.02 97.19±0.04 98.64±0.01 98.42±0.02 98.27±0.03 98.01±0.03
CGCL 97.00±0.15 97.34±0.11 97.35±0.23 97.62±0.16 98.48±0.03 98.37±0.03 98.88±0.01 98.72±0.02 98.41±0.04 98.15±0.04

GraphSAGE

20%

90.17±0.60 88.62±0.67 88.09±0.74 85.62±0.84 94.26±0.14 94.44±0.16 89.58±2.68 87.45±3.28 86.04±1.19 84.25±1.55
VGAE 89.73±0.24 91.03±0.26 90.66±0.38 91.59±0.36 93.44±0.4 93.71±0.26 96.61±0.16 96.42±0.16 89.44±0.40 90.71±0.26
SEAL 91.40±0.22 92.80±0.13 89.13±0.23 91.33±0.06 93.22±0.16 93.90±0.13 94.68±0.09 95.26±0.14 90.13±0.23 91.46±0.27

S3GRL 92.18±0.32 92.01±0.58 94.76±0.56 94.42±0.68 95.55±0.52 95.16±0.71 95.32±0.27 95.17±0.94 92.85±0.58 93.94±0.77
S2GAE 93.00±0.37 92.42±0.60 94.82±0.22 94.74±0.26 96.60±0.15 96.24±0.15 97.76±0.09 97.19±0.13 97.21±0.10 96.65±0.13
MGAE 95.75±0.11 96.23±0.09 95.75±0.11 96.23±0.09 97.47±0.03 97.20±0.03 98.51±0.01 98.29±0.02 98.11±0.03 97.88±0.03
CGCL 96.61±0.35 97.16±0.15 97.21±0.18 97.51±0.13 98.27±0.02 98.14±0.04 98.77±0.01 98.59±0.01 98.32±0.02 98.11±0.03

Table 1: Link prediction results obtained on all datasets.

Methods Testing ratios
Cora CiteSeer PubMed Photo Computers

AUC AP AUC AP AUC AP AUC AP AUC AP
DGCLone-view 10%

96.77±0.13 97.13±0.12 97.10±0.17 97.20±0.19 98.30±0.03 98.21±0.04 98.63±0.04 98.43±0.05 98.08±0.03 97.96±0.04
CGCL 97.00±0.15 97.34±0.11 97.26±0.23 97.54±0.16 98.48±0.03 98.37±0.03 98.88±0.01 98.72±0.02 98.39±0.04 98.41±0.04

DGCLone-view 20%
96.91±0.13 96.95±0.12 97.09±0.12 97.18±0.14 98.19±0.03 98.02±0.04 98.61±0.05 98.45±0.04 98.01±0.03 97.91±0.05

CGCL 97.61±0.35 97.16±0.15 97.28±0.18 97.51±0.13 98.27±0.02 98.14±0.04 98.77±0.01 98.59±0.01 98.32±0.02 98.37±0.03

Table 2: Ablation study concerning the main training stages of the proposed CGCL method conducted on all datasets.

Each graph dataset is divided into three parts, including
a training set, a validation set and a testing set. We use two
different sets of percentages for the validation set and test-
ing set, including (1) 5% of the validation set and 10% of
the testing set and (2) 10% of the validation set and 20% of
the testing set. The links in the validation and testing sets are
masked in the training graph structure. For example, we ran-
domly select 5% and 10% of the links and the same numbers
of disconnected node pairs as testing and validation sets un-
der the first setting, respectively. The remainder of the links
in the graph structure are used for training.

Comparison Methods We compare the proposed CGCL
method with several state-of-the-art methods for link predic-
tion, including GraphSAGE (Hamilton, Ying, and Leskovec
2017), a VGAE (Veličkovi’c et al. 2018), SEAL (Zhang
et al. 2021), S3GRL (Louis, Jacob, and Salehi-Abari 2023),
S2GAE (Tan et al. 2023), and an MGAE (Li et al. 2022a).
The source codes of the competing algorithms are provided
by their respective authors. For the MGAE, the edgewise
random masking strategy is chosen to sample a subset of the
edges in each dataset.

Evaluation Metrics Two metrics are utilized to evaluate
the link prediction performance of all competing algorithms,
including the area under the curve (AUC) score and average
precision (AP) score. For comparison, each experiment is
conducted 10 times with different random parameter initial-
izations. We report the mean values and standard deviations
achieved by all the competing methods on the five graph
datasets. For each evaluation metric, a higher value repre-
sents better link prediction performance.

Parameter Settings The proposed network architecture
contains 2 hidden layers in the CGCL model. The sizes of
the 2 hidden layers are set to [dv, dv/2], where dv is the
number of neural units in the first hidden layer. In the ex-
periments, dv ranges within {512, 256, 128, 64}. The learn-
ing rate of the proposed CGCL method r is chosen from{
1e−3, 5e−3, 0.01, 0.05

}
. For all datasets, the number of it-

erations is set to 800 during the training stage. To conduct
a fair comparison, the best link prediction results of these
competing methods are obtained by tuning their parameters.

Performance Evaluation
The experimental results produced by all competing meth-
ods on the five link prediction tasks are reported in Table 1.
The best and second-best values of the link prediction re-
sults are highlighted in bold and underlined, respectively.
We observed that the proposed CGCL method almost per-
forms better than the other competing methods in terms of
the AUC and AP. For example, CGCL achieves performance
improvements of approximately 0.26%, 0.86%, 0.24% and
0.13% in terms of the AUC with a testing rate of 10% on the
Cora, PubMed, Photo and Computers datasets, respectively.
Moreover, CGCL outperforms the competing methods in
terms of the AUC and AP metrics as the testing rate in-
creases from 10% to 20% in the link prediction tasks. These
results demonstrate the superiority of CGCL over the other
methods.

As expected, the AUC and AP results produced by CGCL
slightly decrease as the testing rate increases from 10% to
20% on the three citation datasets, including the Cora, Cite-
seer and PubMed datasets. In contrast, the AUC and AP re-
sults of CGCL remain almost unchanged on the Photo and
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Figure 2: The AUC and AP values yielded by CGCL with
different combinations of dv and r on the Cora dataset.

Computers datasets. These two datasets contain larger num-
bers of edges than the other datasets. This demonstrates the
effectiveness and robustness of the coupled graph structure
augmentation approach.

Two main reasons highlight the advantages of the pro-
posed CGCL method. First, constructing two complemen-
tary augmented views of a graph structure enhances the di-
versity of the produced graph representations while coun-
teracting the adverse consequences of information losses in
the graph representations. Additionally, the MGAE yields
encouraging AUC and AP results in the experiments due
to its effective edge masking strategy. Second, the pro-
posed CGCL method achieves invariant graph representa-
tions through cross-view graph consistency learning. This
mechanism plays a key role in facilitating the reconstruction
of the incomplete graph structure within the scope of self-
supervised learning.

Ablation Study
In Section , CGCL constructs two complementary aug-
mented graph structure views using the coupled graph struc-
ture augmentation scheme. To verify the importance of the
proposed graph structure augmentation scheme in CGCL,
we further conduct an ablation study to isolate the neces-
sity of the two complementary augmented views. Specif-
ically, we consider a special version, i.e., a variant that
only chooses one of the two complementary augmented
views during the training stage, which is referred to as
DGCLone-view. We employ the same experimental settings as
those utilized above. The best experimental results derived
from the two complementary augmented views are included
for comparison purposes. Table 2 shows the experimental
AUC and AP results produced by DGCLone-view and CGCL.
We see that CGCL performs better than DGCLone-view on
the link prediction tasks. This provides strong empirical evi-

(a) AUC with a 10% testing rate (b) AP with a 10% testing rate

(c) AUC with a 20% testing rate (d) AP with a 20% testing rate

Figure 3: The AUC and AP values yielded by CGCL with
different combinations of dv and r on the Computers dataset.

dence demonstrating the importance of the two complemen-
tary augmented views in CGCL.

Parameter Sensitivity Study

We conduct experiments to investigate the sensitivity levels
of the two parameters in the proposed CGCL method, in-
cluding the number of neural units in the first hidden layer dv
and the learning rate r. The dv and r parameters range within
{512, 256, 128, 64} and

{
1e−3, 5e−3, 0.01, 0.05

}
, respec-

tively. Due to space limitations, two representative datasets
are selected for evaluation, i.e., the Cora and Comput-
ers datasets. Figs. 2 and 3 show the experimental results
achieved by CGCL in terms of the AUC and AP values ob-
tained with different combinations of dv and r. CGCL can
achieve relatively stable link prediction results under differ-
ent testing ratios with different combinations of dv and r.
This indicates that CGCL performs well across relatively
large dv and r ranges on the Cora and Computers datasets.

Conclusion
In this paper, we present a CGCL method that learns invari-
ant graph representations from graph-structured data. CGCL
utilizes a coupled graph structure augmentation scheme to
construct two complementary augmented graph structure
views. This augmentation scheme supports graph consis-
tency learning, thereby enhancing the generalizability of the
graph representations produced by CGCL. Through cross-
view graph consistency learning, CGCL effectively acquires
invariant graph representations and facilitates the construc-
tion of an incomplete graph structure. Extensive experimen-
tal results obtained on graph datasets demonstrate that the
proposed CGCL method almost outperforms several state-
of-the-art approaches.
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