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One-Step Adaptive Graph Learning for Incomplete
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Abstract—Incomplete multiview clustering (IMVC) optimally
integrates complementary information within incomplete multi-
view data to improve clustering performance. Several one-step
graph-based methods show great potential for IMVC. However,
the low-rank structures of similarity graphs are neglected at the
initialization stage of similarity graph construction. Moreover,
further investigation into complementary information integration
across incomplete multiple views is needed, particularly when
considering the low-rank structures implied in high-dimensional
multiview data. In this paper, we present one-step adaptive graph
learning (OAGL) that adaptively performs spectral embedding
fusion to achieve clustering assignments at the clustering indi-
cator level. We first initiate affinity matrices corresponding to
incomplete multiple views using spare representation under two
constraints, i.e., the sparsity constraint on each affinity matrix
corresponding to an incomplete view and the degree matrix of the
affinity matrix approximating an identity matrix. This approach
promotes exploring complementary information across incomplete
multiple views. Subsequently, we perform an alignment of the
spectral block-diagonal matrices among incomplete multiple views
using low-rank tensor learning theory. This facilitates consistency
information exploration across incomplete multiple views. Further-
more, we present an effective alternating iterative algorithm to
solve the resulting optimization problem. Extensive experiments on
benchmark datasets demonstrate that the proposed OAGL method
outperforms several state-of-the-art approaches.

Index Terms—Incomplete multiview clustering, adaptive graph
learning, spectral embedding, tensor nuclear norm.

I. INTRODUCTION

MULTIVIEW data usually come from diverse sources or
are generated using various feature descriptors [1], [2],
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[3]. For instance, human facial images are captured by multicam-
era video surveillance systems, and user behavior records are
collected across different social media platforms. These samples
are frequently high-dimensional and are approximately drawn
from a union of multiple low-dimensional subspaces [4], [5]. In
real scenarios, multiview data frequently exhibit incompleteness
due to the absence of instances for certain samples across partial
views; this is referred to as incomplete multiview data. Incom-
plete multiview clustering (IMVC) aims to partition samples
into distinct clusters by uncovering the intrinsic structures within
incomplete multiview data.

IMVC has emerged as a hot topic in unsupervised learning, in-
cluding subspace learning-based methods [6], [7], [8], [9], graph
learning-based methods [10], [11], [12], [13], [14], [15], [16],
multiple kernel-based methods [17], [18] and deep learning-
based methods [19], [20], [21], [22], [23]. To reveal the intrinsic
structures within multiview data, graph-based MVC methods
are often combined with manifold learning techniques such as
spectral clustering [12], [24] and kernel functions [17], [18]. By
virtue of the advantage of effectively capturing the nonlinear
structures of multiview data, graph-based IMVC methods have
achieved encouraging clustering results. The main objective
of graph-based methods is to learn a consensus representation
by exploring the underlying graph structure from incomplete
multiview data. Graph-based methods can effectively capture
complementary information across multiple views.

Most of the existing graph-based IMVC methods can be
roughly divided into two categories from the perspective of
graph information fusion, including the fusion of affinity ma-
trices [14], [16], [25] and the fusion of spectral embedding
representations [11], [12], [13], [26]. For example, Tao et al. [10]
presented an ensemble clustering model to exploit the higher-
level information contained in the multiview data. Yin et al. [25]
proposed a reconstruction strategy of incomplete views to learn a
fused affinity matrix. Wen et al. [26] presented a consensus graph
learning model that learns a fused spectral embedding represen-
tation from the graphs of multiple views. Chen et al. [11] applied
spectral rotation fusion to learn a consensus spectral embedding
representation from the spectral embedding graphs of multiple
views. These methods typically consist of two successive stages.
The fused affinity matrix or spectral embedding representation
is first acquired from the similarity graphs of multiple views in
the first stage. Then, one of the spectral clustering techniques
or the k-means algorithm is applied to the fused affinity matrix
or consensus spectral embedding representation in the second

1041-4347 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SICHUAN UNIVERSITY. Downloaded on April 07,2025 at 03:45:42 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-0827-8819
https://orcid.org/0000-0003-3198-6282
https://orcid.org/0000-0002-8698-7605
https://orcid.org/0000-0002-2821-3767
https://orcid.org/0000-0002-7752-3606
https://orcid.org/0000-0002-5727-2790
mailto:chenjie2010@scu.edu.cn
mailto:pengx.gm@gmail.com
mailto:hua.mao@northumbria.ac.uk
mailto:wailok.woo@northumbria.ac.uk
mailto:liuchuanbingl@163.com
mailto:wangzhu@scu.edu.cn


2772 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 5, MAY 2025

stage, respectively. Although these methods have achieved sig-
nificant improvements with regard to IMVC, they still have the
following limitations. On the one hand, the clustering results
of these methods may remain unstable since the k-means algo-
rithm is involved in the second stage. This limits their practical
application. On the other hand, the two separate stages may
lead to a suboptimal IMVC result [27]. This inevitably affects
clustering performance. As a result, integrating graph learning
and the clustering process into a unified framework poses a great
challenge for researchers.

Many efforts have recently been devoted to addressing one-
step multiview clustering [24], [28], [29], [30], [31], [32]. For ex-
ample, Zhang et al. [31] presented a one-step multiview subspace
clustering (OMVSC) method that attempts to identify affinity
matrices from multiple views under the F -norm constraint.
However, this approach may be insufficient to characterize the
subspace structures of high-dimensional multiview data using
the F -norm constraint, especially for grossly corrupted original
data. Tang et al. [24] presented a unified one-step multiview
spectral clustering (UOMSC) method that integrates spectral
embedding and k-means into a unified framework to obtain
clustering results. In UOMSC, the inner product of a spectral
embedding matrix and its transpose is considered a low-rank
approximation of the similarity graph. However, the low-rank
structure of the similarity graph is neglected at the initial-
ization stage of graph construction. Consequently, IMVC still
face significant challenges. First, when the affinity matrices
of incomplete multiple views are initialized, the underlying
structures of the similarity graphs deserve further investigation
in high-dimensional multiview data. Second, how can the infor-
mation fusion of similarity graphs be accomplished to explore
consistency and complementary information across incomplete
multiple views in a single-step approach?

To address the abovementioned issues, we present a one-step
adaptive graph learning (OAGL) method to learn the clustering
assignments for high-dimensional incomplete multiview data.
We first construct affinity matrices that correspond to incomplete
multiple views using the self-expressiveness property of the ex-
isting instances. In contrast to most previous IMVC studies, we
utilize the block-diagonal structures implied in the affinity matri-
ces to explore the complementary information across incomplete
multiple views. The proposed OAGL method can be considered
to be an incomplete multiview subspace clustering (IMVSC)
technique. In addition, we introduce low-rank tensor learning
theory to implement an alignment of the spectral block-diagonal
matrices among incomplete multiple views, which facilitates
the exploration of consistency information across incomplete
multiple views. Furthermore, we employ spectral rotation to
achieve clustering assignments during spectral embedding fu-
sion. Finally, we present an effective alternating iterative algo-
rithm to solve the resulting optimization problem. The major
contributions of this paper are highlighted as follows.
� We present an end-to-end OAGL model that can adaptively

perform spectral embedding fusion to achieve clustering
assignments at the clustering indicator level.

� We exploit the self-expressiveness property of the existing
instances to explore complementary information across

incomplete multiple views under two additional con-
straints, i.e., the sparsity constraint on an affinity matrix
corresponding to each incomplete view and the degree
matrix of the affinity matrix approximating an identity
matrix.

� We perform an alignment of the spectral block-diagonal
matrices among incomplete multiple views using low-rank
tensor learning theory, which is conducive to exploring the
consistency information across incomplete multiple views.

� Extensive experiments show the effectiveness and advan-
tages of the proposed OAGL method compared with sev-
eral state-of-the-art methods.

The remainder of this paper is organized as follows. In
Section II, we provide a brief review of the related work.
Section III presents the proposed OAGL method in detail. Exten-
sive experiments that are employed to validate the effectiveness
of the proposed OAGL method are described in Section IV.
Finally, we conclude this paper in Section V.

II. RELATED WORK

A. Spectral Clustering

Let X = [x1,x2, . . .,xn] ∈ R
d×n denote a single-view

dataset, whered andn represent the dimensionality and the num-
ber of samples, respectively. The discrete binary cluster indicator
matrix is denoted asY = [y1,y2, . . .,yn]

T ∈ {0, 1}n×c, where
yi ∈ R

c is the clustering indicator vector, and c denotes the
number of clusters. In particular, yij = 1 if xi is assigned to the
jth cluster, and 0 otherwise.

A weighted undirected graphG(V, E) is represented by a set of
nodes V and a set of edges E , where each node vi (1 ≤ i ≤ n) in
V corresponds to a sample inX, and each edge eij inE represents
a connection from node i to node j. The similarity graph can be
described by a weighted adjacency matrix W ∈ R

n×n, where
Wij denotes the similarity between xi and xj . The degree D ∈
R

n×n of G is a diagonal matrix, whose diagonal elements are
defined as

di =
n∑

j=1

Wij . (1)

The objective function of a graph normalized cut in spectral
clustering [24], [33] can be formulated as

min
Y

tr
((

YTY
)− 1

2YTLY
(
YTY

)− 1
2

)
s.t. Y ∈ {0, 1}n×c, yi1c = 1 (2)

where tr(·) denotes the trace of the matrix and L ∈ R
n×n is a

Laplacian matrix, i.e., L = I−D−
1
2WD−

1
2 . To avoid seeking

the discrete solution of Y, (2) is reformulated as

min
H

tr
(
HTLH

)
s.t. HTH = Ic. (3)

where H ∈ R
n×c represents the spectral embedding matrix.

The optimal solution H in (3) consists of the eigenvectors
corresponding to the c smallest eigenvalues of L.
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The goal of spectral rotation is to derive a discrete indicator
matrix from H [34]. The objective function of spectral rotation
can be formulated as follows:

min
Y,R
‖HR−Y‖2F s.t. RTR = Ic,Y1c = 1n. (4)

where R ∈ R
c×c is considered a rotation matrix.

B. One-Step Graph-Based MVC Techniques

Given a high-dimensional multiview data {X(v)
m ∈

R
dv×n}nv

v=1 with n samples from nv views, X
(v)
m denotes

the vth view, and dv represents the dimensionality of instances
in the vth view.

To date, several representative one-step graph-based methods
have been proposed for MVC [24], [31], [32]. For example,
UOMSC jointly exploits the complementary information of
view-specific graphs and spectral embedding matrices in a uni-
fied graph [24]. In UOMSC, W(v)

x ∈ R
n×n and W

(v)
h ∈ R

n×n

represent an original affinity matrix constructed from X
(v)
m

and a low-rank spectral embedding matrix, respectively. The
optimization problem of the UOMSC method is formulated as

max
H,Y,αv,βv

tr
(
HTWY

(
YTY

)− 1
2

)

s.t. HTH = Ic,

nv∑
v=1

α2
v = 1, αv ≥ 0,

nv∑
v=1

β2
v = 1, βv ≥ 0,

W = (1− λ)

nv∑
v=1

αvW
(v)
x + λ

nv∑
v=1

βvW
(v)
h (5)

where λ, αv and βv are trade-off parameters.
One-step graph-based methods assume that all the views are

complete [24], [31], [32]. However, each view may contain
different percentages of missing instances in incomplete mul-
tiview data. Consequently, it is still an open problem to design
a reasonable one-step graph-based scheme for IMVC.

C. Tensor Nuclear Norm Theory

Given two tensors A ∈ R
n1×n2×n3 and B ∈ R

n2×m×n3 , the
t-product of A and B is defined as

C = A ∗ B = fold (bcirc (A) · unfold (B)) (6)

where C ∈ R
n1×m×n3 . Theunfold(·) operator mapsB to a two-

dimensional matrix of size (n1n3)× n2, the fold(·) operator
performs an inverse operation of unfold(·), and bcirc(·) maps
a tensor to a block circulant matrix [35].

A tensor X ∈ R
n1×n2×n3 is f -diagonal if each of its frontal

slices is a diagonal matrix. The tensor singular value decompo-
sition (t-SVD) of X is factorized as

X = U ∗ S ∗ VT (7)

where U ∈ R
n1×n1×n3 and V ∈ R

n2×n2×n3 are two orthogonal
tensors and S ∈ R

n1×n2×n3 is an f -diagonal tensor [35].
The tensor nuclear norm of the tensor X is defined as

‖X‖∗ =
r∑

i=1

S(i, i, 1) (8)

Algorithm 1: The t-SVT Operator [36].

1: Input: A ∈ R
n1×n2×n3 and a parameter λ > 0.

2: Computing Ā = fft(A, [], 3), where fft is a
MATLAB command;

3: for i = 1, . . ., �n3+1�
2 do

4: /* Considering each frontal slice of Ā */
5: [U,S,V] = svd(Ā(i));
6: W̄(i) = U(S− λ)+V

T ;
7: end for
8: for i = �n3+1�

2 + 1, . . ., n3 do
9: W̄(i) = conj(W̄(n3−i+2));

10: end for
11: Output: Dλ(A) = ifft(W̄ , [], 3), where ifft is a

MATLAB command.

where S(i, i, 1) (1 ≤ i ≤ r) denotes a singular value of the
tensor X , and r is the tubal rank of X [35], [36]. To seek a
low-tubal-rank approximation of A, the optimization problem
can be formulated as

min
X∈Rn1×n2×n3

λ ‖X‖∗ +
1

2
‖X −A‖2F . (9)

The optimization solution to (9) can be calculated according
to a proximal operator of the matrix nuclear norm. The tensor-
singular-value thresholding (t-SVT) operator is a proximal op-
erator whose details are summarized in Algorithm 1 [36].

Tensor nuclear norm-based techniques have been introduced
to capture higher-order information across multiple views. For
example, Xie et al. [16] proposed a multiview clustering method
based on tensor-singular value decomposition (t-SVD), which
refines view-specific subspaces from different views. Similarly,
Chen et al. [12] developed a multiview embedding matrix fusion
model that leverages complementary information by identi-
fying higher-order correlations among multiple views. These
approaches have demonstrated effectiveness in multiview clus-
tering.

III. ONE-STEP ADAPTIVE GRAPH LEARNING

In this section, we present an OAGL method that learns
clustering assignments in a single step for IMVC, including
the motivation of the proposed OAGL method, the details of
the OAGL model and an optimization strategy of the overall
objective function of OAGL.

A. Motivation

Given incomplete multiview data {X(v) ∈ R
dv×n}nv

v=1 with c
clusters, each viewX(v) containsn instances. As each view may
have missing instances for some of the samples, the remainder
of the instances are denoted as X

(v)
r ∈ R

dv×Nv , where Nv

represents the number of existing instances in the vth view.
Without loss of generality, we assume that all instances in

each view are rearranged according to the index order of the
clusters, i.e., {X(v) = [X

(v)
1 ,X

(v)
2 , . . .Xc

(v)]}nv
v=1. Considering

an affinity matrix W(v) ∈ R
n×n constructed from X(v), we
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can achieve an individual spectral embedding representation
H(v) ∈ R

n×c using (3). The inner product of H(v) and its
transpose is denoted asH(v)(H(v))T , which contains a low-rank
structure. It can be employed as an affinity matrix for measuring
the relationships among samples. Ideally, it consists of c diag-
onal blocks. Therefore, H(v)(H(v))T is regarded as a spectral
block-diagonal matrix.

When the degree matrix D(v) of W(v) satisfies an additional
condition D(v) = In [24], (3) can be further reformulated as

min
H(v)

∥∥∥∥W(v) −H(v)
(
H(v)

)T∥∥∥∥
2

F

s.t.
(
H(v)

)T
H(v) = Ic.

(10)

As indicated in (10), W(v) approximates the spectral block-
diagonal matrix under the F -norm constraint; this motivates us
to pursue block-diagonal structures of the affinity matrix W(v)

constructed from X(v). The task of integrating complementary
information across incomplete multiple views is implemented by
performing low-rank alignment of the spectral block-diagonal
matrices among multiple views.

B. Proposed OAGL Model

High-dimensional multiview data are often considered to be
a collection of samples approximately drawn from a union of
multiple low-dimensional subspaces [4], [5]. To pursue block-
diagonal structures of the affinity matrix W(v), we exploit the
self-expressiveness property of the existing instances to initial-
ize the affinity matrix W(v). Specifically, each existing data
instance x

(v)
r in the vth incomplete view can be represented by

a small number of other existing instances under the sparsity
constraint, i.e.,

min
w

(v)
r

∥∥∥x(v)
r −X(v)

r w(v)
r

∥∥∥2
2
+ λ

∥∥∥w(v)
r

∥∥∥
0

s.t
Nv∑
i=1

w
(v)
i = 1, w

(v)
ir = 0 (11)

where λ denotes a balance parameter, the sparse coefficients
in w

(v)
r ∈ R

Nv represent the relationship between x
(v)
r and the

other existing instances in the vth incomplete view, and ‖ · ‖2 in-
dicates a specific regularization strategy for characterizing noise.
Since (11) is a general NP-hard problem [37], it is reformulated
as a convex relaxation of the l1-norm, i.e.,

min
w

(v)
r

∥∥∥x(v)
r −X(v)

r w(v)
r

∥∥∥2
2
+ λ

∥∥∥w(v)
r

∥∥∥
1

s.t
Nv∑
i=1

w
(v)
i = 1, w

(v)
ir = 0. (12)

The optimization problem in (12) can be efficiently solved using
convex optimization tools [38], [39].

Suppose the instances are noise-free; then, we have∥∥∥x(v)
r −X(v)

r w(v)
r

∥∥∥2
2
= 0. (13)

This indicates that a set of existing instances is strictly drawn
from a union of c independent subspaces of unknown dimen-
sions. We set W(v)

r = [w
(v)
1 ,w

(v)
2 , . . .,w

(v)
Nv

] ∈ R
Nv×Nv . Ide-

ally, W(v)
r has c distinct diagonal blocks corresponding to the

c subspaces. Each element w(v)
ij (1 ≤ i ≤ Nv, 1 ≤ j ≤ Nv) in

W
(v)
r represents the similarity between the ith and jth existing

instances of the vth incomplete view. We fill each element of
W

(v)
r into the corresponding position of W(v). The similarities

between the remaining pairs of the instances in W(v) are set to
zero. Thus, W(v) remains as block-diagonal structures.

Due to noise and the incompleteness of the instances in high-
dimensional multiview data, W(v) may not contain accurate
similarity among the instances of the vth incomplete view. Con-
sequently, the clustering performance inevitably degenerates
when we perform information fusion of the affinity matrices
among multiple views. Thus, we introduce the third-order low-
rank tensor to characterize low-rank structures of the spectral
block-diagonal matrices among multiple views. Specifically, the
third-order tensorH ∈ R

n×n×nv is first constructed by stacking
{H(v) (H(v))T }nv

v=1. Subsequently, we perform low-rank align-
ment of the spectral block-diagonal matrices to uncover a unified
low-rank structure closely associated with spectral embedding
representations. To implement information fusion of the spectral
block-diagonal matrices across multiple views, we employ a
tensor flip operation onH to obtain a surrogate third-order tensor
T = {H(v) (H(v))T }nv

v=1 ∈ R
n×nv×n, where first frontal slices

of T are matrices of size n× nv . The purpose of introducing the
tensor flip operation on H is to examine the correlations across
multiple views [16].

To implement one-step adaptive graph learning, we perform
spectral embedding fusion of multiple affinity matrices at the
clustering indicator level. During spectral embedding fusion,
we exploit spectral rotation to yield a binary clustering indicator
matrix by considering the differences among multiple views.
Therefore, the spectral embedding fusion at the clustering indi-
cator level can be formulated as

min
Y,R(v),λ(v)

nv∑
v=1

∥∥∥Y(YTY
)−1/2 − λ(v)H(v)R(v)

∥∥∥2
F

s.t.
(
R(v)

)T
R(v) = Ic, λ

(v) > 0,

nv∑
v=1

(
λ(v)

)2
= 1,

Yij ∈ {0, 1} , Yi,:1c = 1 (14)

where λ(v) ∈ R is a weight factor that adaptively balances
the importance of different views, R(v) ∈ R

c×c represents the
spectral rotation matrix, and Y ∈ R

n×c denotes the clustering
indicator matrix. The proposed OAGL model unifies the adaptive
spectral embedding fusion and the low-rank alignment of the
spectral block-diagonal matrices, which can be implemented
by spectral rotation and spectral embedding tensor learning,
respectively. The final objective function of the OAGL can be
formulated as

min
Y,H(v),R(v),λ(v)

‖T ‖∗ +
α

2

nv∑
v=1

∥∥∥∥W(v) −H(v)
(
H(v)

)T∥∥∥∥
2

F
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+
β

2

nv∑
v=1

∥∥∥Y(YTY
)−1/2 − λ(v)H(v)R(v)

∥∥∥2
F

s.t.
(
H(v)

)T
H(v) = Ic,

(
R(v)

)T
R(v) = Ic, λ

(v) > 0,

nv∑
v=1

(
λ(v)

)2
= 1, Yij ∈ {0, 1} ,Yi,:1c = 1 (15)

where α and β are balance parameters.

C. Optimization Strategy

We provide an alternating iterative algorithm based on the
alternating direction method of multipliers (ADMM) frame-
work [40] to efficiently solve the optimization problem in (15).
An auxiliary tensor variable G ∈ R

n×nv×n is first introduced
into (15). Then, this optimization problem can be converted into
the following equivalent problem:

min
Y,H(v),R(v),λ(v)

‖G‖∗ +
α

2

nv∑
v=1

∥∥∥∥W(v) −H(v)
(
H(v)

)T∥∥∥∥
2

F

+
β

2

nv∑
v=1

∥∥∥Y(YTY
)−1/2 − λ(v)H(v)R(v)

∥∥∥2
F

s.t.
(
H(v)

)T
H(v) = Ic,

(
R(v)

)T
R(v) = Ic, λ

(v) > 0,

nv∑
v=1

(
λ(v)

)2
= 1, Yij ∈ {0, 1} ,Yi,:1c = 1,G = T . (16)

The augmented Lagrangian function in (16) is

L
(
G,Y,H(v),R(v), λ(v)

)

= ‖G‖∗ +
α

2

nv∑
v=1

∥∥∥∥W(v) −H(v)
(
H(v)

)T∥∥∥∥
2

F

+
β

2

nv∑
v=1

∥∥∥Y(YTY
)−1/2 − λ(v)H(v)R(v)

∥∥∥2
F

+ 〈S, T − G〉+ μ

2
‖T − G‖2F (17)

where S ∈ R
n×nv×n is a Lagrange multiplier, and μ > 0 is an

adaptive penalty factor. The augmented Lagrangian function of
(17) can be equivalently converted into the following function
as

L
(
G,Y,H(v),R(v), λ(v)

)

= ‖G‖∗ +
α

2

nv∑
v=1

∥∥∥∥W(v) −H(v)
(
H(v)

)T∥∥∥∥
2

F

+
β

2

nv∑
v=1

∥∥∥Y(YTY
)−1/2 − λ(v)H(v)R(v)

∥∥∥2
F

+ 〈S, T − G〉+ μ

2
‖T − G‖2F . (18)

There are five variables in (18): G, Y, H(v), R(v) and λ(v). We
alternately update one variable until convergence while fixing
the others. Thus, the optimization problem in (15) can be divided
into five subproblems as follows:
Y-subproblem: When fixing the other four variablesG,H(v),

R(v) and λ(v), (18) can be rewritten as

min
Y

nv∑
v=1

∥∥∥Y(YTY
)−1/2 − λ(v)H(v)R(v)

∥∥∥2
F

s.t. Yij ∈ {0, 1} , Yi,:1c = 1. (19)

The problem in (19) is equivalent to the following optimization
problem:

max
Y

tr
((

YTY
)−1/2

YTQ
)

s.t. Yij ∈ {0, 1} , Yi,:1c = 1 (20)

where Q =
∑nv

v=1 λ(v)H(v)R(v). Eq (20) can be transformed
to

max
Y

c∑
m=1

∑n
i=1 yimqim√
yT
mym

s.t. yim ∈ {0, 1} , Yi,:1c = 1

(21)

where ym denotes the mth column of Y and qim represents the
entry in the ith row and mth column of Q. Each row of Y can
be solved using an incremental mechanism [24], [41], which is
formulated as

ρim =

∑n
j=1 yjmqjm + qim (1− yim)√

yT
mym + (1− yim)

−
∑n

j=1 yjmqjm − qimyim√
yT
mym − yim

. (22)

The clustering indicator r in yi, which represents the ith row of
Y, can be calculated as

r = arg max
1≤m≤c

ρim. (23)

R(v)-subproblem: With the other four variables G, Y, H(v)

and λ(v) being fixed, (18) can be simplified as

min
R(v)

nv∑
v=1

∥∥∥Y(YTY
)−1/2 − λ(v)H(v)R(v)

∥∥∥2
F

s.t.
(
R(v)

)T
R(v) = Ic (24)

The problem in (24) is equivalent to

max
R(v)

(
R(v)

)T(
H(v)

)T
Y
(
YTY

)−1/2
s.t.
(
R(v)

)T
R(v) = Ic. (25)

The economy SVD of the matrix A(v) is A(v) = UcΣcV
T
c ,

where A(v) = (H(v))TY(YTY)
−1/2

. The problem in (24) has
a closed-form solution [34], i.e.,

R(v) = UcV
T
c . (26)
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H(v)-subproblem: When the other four variables G, Y, R(v)

and λ(v) are fixed, the problem in (18) can be rewritten as

min
H(v)

α

nv∑
v=1

∥∥∥∥W(v) −H(v)
(
H(v)

)T∥∥∥∥
2

F

+ β

nv∑
v=1

∥∥∥Y(YTY
)−1/2 − λ(v)H(v)R(v)

∥∥∥2
F

+ μ

∥∥∥∥G −
(
T +

S
μ

)∥∥∥∥
2

F

s.t.
(
H(v)

)T
H(v) = Ic (27)

SettingM = G − Sμ in (27), we have

max
H(v)

tr

((
H(v)

)T
B(v)H(v)

)
+ tr

((
H(v)

)T
C(v)

)
(28)

where B(v) = αW(v) + μ
2 (M(v) + (M(v))

T
) and C(v) =

βλ(v)Y(YTY)
−1/2

(R(v))T . The problem in (28) can be re-
laxed to

max
H(v)

tr

((
H(v)

)T
P(v)

)
s.t.
(
H(v)

)T
H(v) = Ic (29)

where P(v) = B(v)H(v) +C(v). The problem in (29) can be
solved by the generalized power iteration (GPI) algorithm [42],
where the optimal solution is obtained by iteratively updating
H(v) after an initialization of H(v) is provided.
G-subproblem: By fixing the other four variables Y, H(v),

R(v) and λ(v), the problem in (18) can be converted to

min
G
‖G‖∗ +

μ

2

∥∥∥∥G −
(
T +

S
μ

)∥∥∥∥
2

F

. (30)

The problem in (30) can be solved by Algorithm 1 [36].
λ(v)-subproblem: When the other four variables G, Y, R(v)

and H(v) are fixed, we have

max
λ(v)

tr

(
nv∑
v=1

λ(v)
(
H(v)

)T
Y
(
YTY

)−1/2(
R(v)

)T)

s.t.
nv∑
v=1

(
λ(v)

)2
= 1, λ(v) > 0 (31)

The closed-form solution of the problem in (31) can be updated
as

λ(v) =
δ(v)√∑nv

v=1

(
δ(v)

)2 (32)

where δ(v) = tr((H(v))
T
Y(YTY)

−1/2
(R(v))

T
) [24].

In addition, the Lagrange multiplier S and penalty parameter
μ are updated as

S(v) ← S(v) + μ (G − T ) (33)

μ← min (ρμ, μmax) (34)

where ρ and μmax are constants.

Algorithm 2: Solving the Problem in (15) Using the ADMM
Framework.
Input: Data matrices {H(v)}nv

v=1 and {W(v)}nv
v=1 and

parameters α and β.
1: initialize: ρ = 1.2, μ = 10−4, μmax = 106, ε = 10−6,

t = 1 and maxIters = 200;
2: while not converged do
3: Update Y via (19);
4: Update {R(v)}nv

v=1 via (24);
5: Update {H(v)}nv

v=1 via (27);
6: Update G via (30);
7: Update λ(v) via (31);
8: Update the Lagrange multiplier S via (33);
9: Update the penalty parameter μ via (34);

10: Check the following convergence condition,
11: ‖G − T ‖max < ε;
12: if t > maxIters or converged then
13: break;
14: end if
15: t← t+ 1;
16: end while
Output: Y.

The iterative optimization procedure stops when the con-
vergence condition is satisfied, i.e., ‖G − T ‖max < ε, where ε
is a small constant, e.g., ε = 1e−6. We summarize the entire
procedure of the optimization for solving the objective function
in (15) in Algorithm 2.

D. Theoretical Analysis

1) Why Sparse Representation is Needed in IMVSC? Sparse
representations jointly recover subspace structures of samples
in high-dimensional multiview data. In addition to the missing
instances in incomplete multiple views, the existing instances
are often corrupted by noise. As a result, the instances do not lie
perfectly in a union of subspaces. For each existing data instance
in an incomplete view, the nonzero elements of the sparse
representation, referred to as sparse coefficients, correspond to
a few of the other existing instances from the same subspace.
Sparse coefficients encode the memberships of the existing
instances, which can be employed in spectral embedding fusion.
Such construction of affinity matrices can reduce the negative
influence of spectral embedding fusion when a fraction of the
instances is missing in incomplete multiple views.

In sparse representation, the additional constraint∑Nv

i=1 w
(v)
i = 1 is introduced in (12). This approach offers

two advantages for IMVSC. On the one hand, this constraint
requires that the sum of the sparse coefficients for each existing
data instance equals 1. This ensures that D(v) = In is implied
in (15). On the other hand, the sparse coefficients corresponding
to different instances across incomplete multiple views are
uniformly constrained to the same scale. Consequently, spectral
embedding fusion can effectively reduce redundant information
from the original incomplete multiview data in a single step.
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TABLE I
STATISTICS OF THE EXPERIMENTAL DATASETS

2) Convergence Analysis: It is difficult to theoretically prove
the convergence of the proposed OAGL method under the
ADMM framework [40]. Fortunately, the optimization problem
in (15) can be divided into five subproblems. Each subproblem
can achieve an optimal solution. The auxiliary tensor variable
G ∈ R

n×nv×n is introduced into the optimization problem in
(15) with the constraint G = T . Consequently, the proposed
OAGL method can find a locally optimal solution when the
convergence condition ‖G − T ‖max < ε is reached during the
iterations, where ‖ · ‖max denotes the maximum value of all
the elements in a matrix. In addition, the proposed OAGL
method converges well in practice, which can be validated in
experiments.

3) Computational Complexity Analysis: In Algorithm 2, the
computational complexity of the proposed OAGL method con-
sists of five critical steps. First, the computational complexity of
updating Y isO(nc). Second, the computational complexity of
calculating the SVD of A(v) isO(nvc

3) for solving R(v). Next,
the computational complexity of calculating the SVD of P(v)

is O(t1nvn
3), where t1 is the number of iterations of the GPI

algorithm. Then, the computational complexity of updating G is
O(nvn

2 log(n) + n2
vn

2). Finally, the computational complexity
of updating λ(v) is O(nvc

3). Consequently, the computational
complexity of Algorithm 2 is O(t2(nc+ 2nvc

3 + t1nvn
3 +

nvn
2 log(n) + n2

vn
2)), where t2 is the number of iterations of

Algorithm 2. The final computational complexity of Algorithm 2
is O(tn3) if nv � n and c� n, where t = t1t2.

IV. EXPERIMENTS

In this section, we conduct a series of experiments to validate
the effectiveness of the proposed OAGL method. The source
code for OAGL is written in MATLAB 2022b. All of the exper-
iments are conducted on a Windows 11 platform with an Intel
Core i7-10700 CPU and 32 GB of RAM. The source code for
the OAGL is available online at https://codeocean.com/capsule/
7420051/tree/v1.

A. Experimental Settings

1) Datasets: Seven complete benchmark multiview datasets
are employed to evaluate the proposed OAGL method. The
statistics of the datasets used are summarized in Table I. Details
of these multiview datasets are provided as follows:

� MSRC-v1 dataset:1 This dataset contains 210 images for
7 classes of scene recognition. Each image is characterized
by five distinct feature sets.

� BBC dataset [43]: This dataset contains 685 documents in
5 categories collected from the BBC news website. Each
document is represented by four views.

� Flower17 dataset [44]: This dataset contains 1,360 flower
images that belong to 17 categories. Each image includes
seven views.

� Handwritten dataset [45]: This dataset consists of 2,000
handwritten images of digits 0 to 9. Each image is described
by six different features.

� NUSwide dataset [46]: This dataset consists of 2,400
images in 12 categories. Each image includes six views.

� Outdoor Scene (O-Scene) dataset [47]: This dataset con-
tains 2, 688 images in 8 categories. Each image is charac-
terized by four distinct features.

� Caltech101 dataset [48]: This dataset consists of 8,677
images of objects in 101 classes. Each object has ap-
proximately 30-800 images. In particular, the background
category has been removed.

2) Comparison Methods: We compare OAGL with several
state-of-the-art methods, including consensus spectral rota-
tion fusion (CSRF) [11], graph structure refining (GSR) [49],
UOMSC [24], efficient and effective one-step multiview clus-
tering (E2OMVC) [29], adaptive graph learning and spec-
tral rotation (AGLSR) [28] and spectral embedded clustering
(SEC) [30]. These comparison methods can be divided into
two categories, including one-step and two-stage methods. Two-
stage graph-based methods typically involve two successive
stages, including learning a consensus representation from in-
complete multiview data, and applyingk-means to the consensus
representation, e.g., CSRF and GSR. The remainder of the
comparison methods accomplish the IMVC task in a single step.
The construction of {W(v)}nv

v=1 is a preprocessing step in the
proposed OAGL method. In the experiments, an adaptive neigh-
bor graph learning (ANGL) method [50] is used to initialize in-
dividual sparse affinity matrices for incomplete multiview data.
In addition, we employ an additional baseline for comparison.
First, the affinity matrices corresponding to incomplete multiple
views can be obtained using sparse representation, which is also
used in OAGL. Then, we aggregate all the affinity matrices into
an accumulated affinity matrix. Finally, we apply a standard
spectral clustering (SC) method to the accumulated affinity
matrix, e.g., NCut [33]. The baseline is regarded as the SC
method. Additionally, the missing entries in the affinity matrices
constructed by the four one-step MVC methods are filled with
zeros. The source codes for the other competing methods were
provided by their respective authors.

3) Evaluation Metrics: Three widely used clustering met-
rics are employed to evaluate the clustering performance of
all the algorithms, namely, the clustering accuracy (ACC), the
normalized mutual information (NMI) and the adjusted rand
index (ARI) [51], [52]. For each clustering metric, a higher value
indicates superior clustering performance.

1https://www.microsoft.com/en-us/research/project/image-understanding/
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TABLE II
CLUSTERING RESULTS (MEAN ± STD.) OF DIFFERENT METHODS ON SEVEN MULTIVIEW DATASETS WITH VARIOUS MISSING DATA RATIOS

4) Parameter Settings: The proposed OAGL method has
two parameters in (15), i.e., α and β. The values of the
parameters were selected from {1e−3, 5e−3, 0.01, 0.05} using
a grid search strategy. We assumed that the true number of
clusters is known for each dataset. For the competing methods
involving the k-means algorithm, we repeated each experiment
10 times and reported the mean values and standard deviations.
For a fair comparison, we reported the best clustering results
achieved by tuning the parameters of these methods. The best
and second-best clustering results are highlighted in bold and
underlined, respectively.

We examined two specific scenarios for the multiview
datasets. In the first scenario, all instances were available in

each view. In the second scenario, we randomly removed varying
percentages of instances from each view: 10%, 30%, and 50%.
The ANGL method requires a parameter that defines the number
of nearest neighbors for each instance, which is chosen from the
ranges of {5, 10, 15, 20, 25}.

B. Performance Evaluation

The experimental results of all the competing methods are
presented in Table II, where the symbol ‘-’ indicates an out-of-
memory issue for the corresponding algorithm. The proposed
OAGL method consistently achieves the best clustering perfor-
mance for all the datasets. For example, our method outperforms
the second-best results by nearly 3.79%, 7.55% and 7.08% in
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Fig. 1. The ACC of the OAGL method with different combinations of α and β on the Flower17 dataset for various missing ratios of instances: (a) ratio = 0,
(b) ratio = 10%, (c) ratio = 30%, and (d) ratio = 50%.

terms of the ACC, NMI and ARI, respectively, on the NUS-
WIDE dataset with a missing data ratio of 0. Similarly, OAGL
exhibits significant improvements in clustering performance for
the other datasets. Therefore, this demonstrates the effectiveness
and advantages of the OAGL for IMVC.

The clustering performance of all competing methods gener-
ally decreases as the missing data ratio gradually increases from
0 to 50%. The proposed OAGL method consistently outperforms
the other competing methods. Compared with GSR, our method
achieves improvements of approximately 3.79%, 3.4%, 5.87%
and 16.84% on the NUS-WIDE dataset with missing data ratios
of 0, 10%, 30% and 50%, respectively. The gap in the clustering
performance between OAGL and GSR increases for higher
missing data ratios, e.g., 30% and 50%, respectively. Therefore,
this shows the robustness of the proposed OAGL method.

GSR achieves the second-best clustering results on all the
datasets except the Caltech101 dataset. Unfortunately, this
method suffers from an out-of-memory issue on the Caltech101
dataset. CSRF shows competitive clustering results on the
datasets. The four one-step IMVC methods obtain comparable
results with the complete multiview datasets. In addition, the
clustering performance of UOMSC, E2OMVC and SEC tends to
deteriorate in most cases as the missing data ratio increases from
10% to 50% in the multiview datasets. In contrast, the clustering
performance of AGLSR often remains relatively stable on sev-
eral datasets, e.g., the MSRC-v1, BBC and Flower17 datasets,
as the missing data ratio increases. This shows its robustness
against incomplete views.

As a one-step IMVC method, OAGL consistently outperforms
other one-step IMVC approaches, such as AGLSR, E2OMVC,
SEC, and UOMSC. All of these methods perform a spectral
rotation operation on the spectral embedding matrix to obtain
clustering results in a single step. In contrast, they employ dif-
ferent techniques to examine correlations across multiple views.
OAGL introduces low-rank tensor learning to align spectral
block-diagonal matrices, which can effectively reveal a unified
low-rank structure within high-dimensional multiview data.

The advantages and effectiveness of the proposed OAGL
method can be attributed to three primary reasons. First, spectral
embedding fusion is adaptively performed to achieve clustering
assignments in a one-step manner. This effectively mitigates
the detrimental impact of noise and eliminates redundant infor-
mation from multiple original views when contrasted with con-
ducting information fusion at the original data level. Second, the
sparsity constraint on an affinity matrix is introduced to improve

TABLE III
COMPUTATION TIMES (IN SECONDS) OF DIFFERENT METHODS ON SEVEN

MULTIVIEW DATASETS WITH VARYING MISSING RATIOS OF INSTANCES

the quality of the similarity graph corresponding to each incom-
plete view. The spectral block-diagonal matrices are constructed
from the corresponding similarity graphs and projected into a
union of lower-dimensional spaces. As a result, they preserve the
intrinsic structures embedded in the incomplete views. Finally,
an alignment of the spectral block-diagonal matrices among
incomplete multiple views integrates the information from the
incomplete views in a coherent manner, which is conducive to
discovering the low-rank structures implied in similarity graphs.

To illustrate the efficiency of the proposed OAGL method,
we record the average running times of all the competing
state-of-the-art algorithms on the six multiview datasets with
varying missing data ratios. These average running times are
presented in Table III. CSRF, UOMSC, E2OMVC and SEC show
the advantage of running time on all the datasets. The running
times of AGLSR are higher than those of the other competing
methods in most cases. Compared with GSR, OAGL obtains
comparable running times on all the multiview datasets except
for the Caltech101 dataset. In addition, the running times of the
proposed OAGL method are higher than that of most competing
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Fig. 2. The ACC of the OAGL method with different combinations of α and β on the Handwritten dataset for various missing ratios of instances: (a) ratio = 0,
(b) ratio = 10%, (c) ratio = 30%, and (d) ratio = 50%.

Fig. 3. The NMI of the OAGL method with different combinations of α and β on the Flower17 dataset for varying missing ratios of instances: (a) ratio = 0,
(b) ratio = 10%, (c) ratio = 30%, and (d) ratio = 50%.

Fig. 4. The NMI of the OAGL method with different combinations of α and β on the Handwritten dataset for varying missing ratios of instances: (a) ratio = 0,
(b) ratio = 10%, (c) ratio = 30%, and (d) ratio = 50%.

methods. This is because OAGL involves low-rank tensor learn-
ing for the alignment of spectral block-diagonal matrices, which
requires SVD during iterations. This leads to a relatively high
computational cost. However, OAGL effectively explore corre-
lations across multiple views using low-rank tensor learning.
With the rapid advancement of computer hardware technology,
computational cost may become a secondary concern.

C. Parameter Sensitivity Analysis

Due to space limitations, we utilize two multiview datasets
to evaluate the parameter sensitivity of the OAGL, i.e., the
Flower17 and Handwritten datasets. The proposed OAGL
method has two parameters in (15), i.e., α and β. Additionally,
the ANGL method requires a parameter, i.e., the number of
nearest neighbor k.

The parametersα andβ vary from {5e−3, 0.01, 0.05, 0.1} and
{1e−3, 5e−3, 0.01, 0.05}, respectively. The number of nearest
neighbors in the ANGL method is identical to that provided
in Section IV-B. Figs. 1–4 show the clustering performances of
OAGL on the Flower17 and Handitten datasets with different
combinations of the two parameters α and β, respectively. We

Fig. 5. Comparison of the ACC values of the OAGL method with different
numbers of nearest neighbors k on the datasets: (a) Flower17 and (b) Handwrit-
ten.

can observe that OAGL obtains stable clustering results on the
different datasets with relatively wide ranges of α and β. For ex-
ample, OAGL can achieve satisfactory clustering results whenα
andβ range from 0.01 to 0.1 and 1e−3 to 0.05 on the Handwritten
dataset, respectively. In addition,α is more sensitive thanβ in the
experiments. This is because the gap between each individual
affinity matrix and the corresponding spectral block-diagonal
matrix varies significantly across different datasets.

The number of nearest neighbors k in the ANGL method is
chosen from {5, 10, 15, 20}. As shown in Fig. 5, the proposed
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Fig. 6. Comparison of the ACC values of the OAGL method with those of OAGLlr on all the datasets: (a) MSRCv1, (b) BBC, (c) Flower17, (d) Handwritten,
(e) NUSwide, (f) O-Scene, and (g) Caltech101.

Fig. 7. Convergence results of the OAGL method on all datasets with varying missing ratios of instances: (a) ratio = 0, (b) ratio = 10%, (c) ratio = 30%,
and (d) ratio = 50%.

OAGL method achieves high ACC values across different k
values on both the Flower17 and Handwritten datasets. The ACC
remains relatively stable for k = 10 and k = 15. In contrast, the
ACC is slightly degraded when k = 5 or k = 20. Additionally,
OAGL consistently achieves satisfactory ACC values as the
missing data ratio in each dataset gradually increases from 0 to
50%. These observations further demonstrate the robustness of
the proposed OALG method in constructing the affinity matrices
from similarity graphs.

D. Ablation Study

In this section, we empirically investigate low-rank structures
implied in similarity graphs. In (15), W(v) exhibits an ap-
proximate block-diagonal structure, whereasH(v) (H(v))T con-
tains low-rank structures. Low-rank representation is a crucial
subspace learning technique for exploring low-rank structures
in high-dimensional data. We employed an adaptive low-rank
(LR) representation method [51] to construct affinity matrices
corresponding to incomplete multiple views. Thus, this variant
is regarded as OAGLlr.

According to Fig. 6, the proposed OAGL method outperforms
OAGLlr on all the datasets in terms of ACC. OAGL and OAGLlr

obtained comparable ACCs on the MSRCv1, BBC, Handwritten
and NUS-WIDE datasets, with a missing ratio of 0. This is
because the affinity matrices produced by OAGLlr also ex-
hibit an approximate block-diagonal structure. OAGL generally
maintains stable clustering performance as the missing ratio
of the instances gradually increases. In contrast, the clustering
performance of OAGLlr does not remain stable. OAGLlr cannot
capture the intrinsic structure of incomplete multiple views
because the missing instances are removed from incomplete
multiple views. This illustrates the need for sparse representation
in constructing affinity matrices in OAGL.

E. Convergence Analysis

To validate the convergence property of the proposed OAGL
method, we conduct experiments on all the datasets with varying
missing ratios of the instances. The parameters of the OAGL
follow the settings in Section IV-B. Fig. 7 shows the curves repre-
senting the values of the convergence condition ‖G − T ‖max of
OAGL during the iterations. The convergence condition values
of the proposed methods generally fluctuate slightly during the
first 30 iterations, and then decrease slowly until convergence.
Moreover, the number of iterations is less than 110 for all the
datasets. This indicates that the proposed OAGL method can
achieve a local optional solution during iterations. Consequently,
Algorithm 2 is effective for solving (15).

V. CONCLUSION

In this paper, we propose the OAGL method for IMVC,
which can adaptively perform spectral embedding fusion to
achieve clustering assignments at the clustering indicator level.
We explore complementary and consistency information across
incomplete multiple views from two perspectives. On the one
hand, we employ sparse representation on the existing instances
with incomplete multiple views to initiate each affinity matrix,
and ensure that the degree matrix of the affinity matrix ap-
proximates an identity matrix. On the other hand, we exploit
low-rank tensor learning theory to perform an alignment of
the spectral block-diagonal matrices among incomplete multiple
views. Compared with the existing graph-based IMVC methods,
we consider the low-rank structures implied in similarity graphs,
which can alleviate the negative impact of redundant informa-
tion contained in incomplete multiview data. Additionally, an
effective alternating iterative algorithm is presented to solve
the resulting optimization problem. The experimental results on
benchmark datasets demonstrate the advantages and effective-
ness of the proposed OAGL method.
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