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Abstract In this paper, we reveal and study a new

challenging problem faced by object Re-IDentification

(ReID), i.e., Coupled Noisy Labels (CNL) which refers

to the Noisy Annotation (NA) and the accompanied

Noisy Correspondence (NC). Specifically, NA refers to

the wrongly-annotated identity of samples during man-

ual labeling, and NC refers to the mismatched train-

ing pairs including false positives and false negatives

whose correspondences are established based on the

NA. Clearly, CNL will limit the success of the object

ReID paradigm that simultaneously performs identity-

aware discrimination learning on the data samples and

pairwise similarity learning on the training pairs. To

overcome this practical but ignored problem, we pro-

pose a robust object ReID method dubbed Learning

with Coupled Noisy Labels (LCNL). In brief, LCNL
first estimates the annotation confidences of samples

and then adaptively divides the training pairs into four

groups with the confidences to rectify the correspon-

dences. After that, LCNL employs a novel objective

function to achieve robust object ReID with theoretical

guarantees. To verify the effectiveness of LCNL, we con-

duct extensive experiments on five benchmark datasets

in single- and cross-modality object ReID tasks com-

pared with 14 algorithms. The code could be accessed

from https://github.com/XLearning-SCU/2024-IJCV-

LCNL.
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Fig. 1 Our observation on Coupled Noisy LabeLs (CNL)
problem. CNL refers to the noisy annotation and the accom-
panied noisy correspondence. (a) Noisy Annotation (NA): it
refers to the wrong annotations of samples. (b) Noisy Corre-
spondence (NC): it refers to the mismatched pairs including
false positive and false negative pairs. Without loss of gen-
erality, taking the cross-modality ReID as an example, two
samples R1

2 and R2
2 with similar poses, which should be of

identity 2 and 1 respectively. Due to the over-high similar-
ity, however, they are probably been wrongly annotated and
such a wrong annotation will further result in the false cor-
respondence because the object pairs are usually established
based on annotations. In the figure, V/R denotes the visi-
ble/infrared modality, and V i

j denotes the j-th samples of
the i-th person.

1 Introduction

For a given query, object Re-IDentification (ReID) (Bai

et al., 2017; Ge et al., 2020; He et al., 2021; Luo et al.,
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2022; Rao et al., 2021; Ye et al., 2021b; Zheng et al.,

2012, 2015b) aims at searching different images of the

same identity from the gallery set, which plays an im-

portant role in the intelligent surveillance system. In

the heart of ReID, the key is matching a specified object

across non-overlapping visible cameras, which is gener-

ally formulated as a single-modality matching problem.

Although single-modality ReID has achieved promising

performance in a number of scenarios, it cannot achieve

encouraging results at night due to the degraded per-

formance of the visible camera under low illumination

conditions. As a remedy, cross-modality ReID (Choi

et al., 2020; Lu et al., 2020; Shi et al., 2023; Tian et al.,

2021; Wu et al., 2017, 2021; Ye et al., 2021a) associates

the identities across visible and infrared modalities so

that the powerful capacity of infrared cameras under

low-lighting conditions is exploited. Regardless of the

difference in data resources, most single- and cross-

modality ReID methods (Choi et al., 2020; Ge et al.,

2020; He et al., 2021; Lu et al., 2020; Rao et al., 2021; Ye

et al., 2021a,b; Zheng et al., 2022) share the same tech-

nical characteristics. Namely, both of them will learn

the identity-aware discrimination from the annotated

samples, while learning the pairwise similarity from the

training pairs whose correspondences are established

based on the annotations. As a result, the success of

both single- and cross-modality ReID will heavily rely

on the quality of data annotations.

Unfortunately, in practice, it is expensive and even

impossible to precisely annotate all the samples due to

the viewpoint differences across cameras, poor recog-

nizability in the colorless infrared modality, and so on.

As shown in Fig. 1(a), the analogous human poses and

low image resolution probably result in Noisy Annota-

tion (NA) which will degrade the performance of object

ReID in two aspects. On the one hand, the sample-wise

discrimination learning (Fig. 1(c)) will fit NA, and thus

optimizing ReID models in a wrong direction. On the

other hand, as almost all existing object ReID methods

construct the training pairs using data annotations, NA

will result in another kind of label noise, i.e., Noisy Cor-

respondence (NC, Fig. 1(b)). As shown in Fig. 1(d), the

pairwise similarity learning with NC would wrongly in-

crease the similarities of false positive pairs (FP) while

decreasing the ones of false negative pairs (FN), thus

degrading the performance of ReID models.

Based on the above observations, we reveal and study

the Coupled Noisy Labels (CNL) problem for object

ReID tasks in this paper. Note that, some recent ef-

forts (Ge et al., 2020; Ye and Yuen, 2020; Ye et al.,

2022; Yu et al., 2019) have been devoted to achieving

robust ReID by generating pseudo annotations or revis-

ing noisy annotations. However, almost all of them only

focus on achieving robustness on NA while ignoring the

influence of NC. In fact, it is impossible to eliminate the

influence of CNL by only achieving robustness against

NA. To be specific, the ReID dataset usually consists of

thousands of identities (categories), thus hindering the

accurate revisions on NA. The inaccurate revisions on

NA would still introduce the NC, which finally degrades

the performance. To verify the above claims, some em-

pirical studies will be carried out in our experiments.

To conquer the above CNL problem in ReID, we

propose a robust object ReID framework, named Learn-

ing with Coupled Noisy Labels (LCNL), which could

be generalized to single and cross-modality scenarios.

Specifically, LCNL first models the annotation confi-

dences by resorting to the memorization effect of Deep

Neural Networks (DNNs) (Arpit et al., 2017), i.e., DNNs

will first fit the clean data and then noisy ones. Based

on the estimated confidences, LCNL takes an adaptive

way to divide training pairs into different triplet combi-

nations with rectified correspondences, i.e., True Posi-

tive pairs (TP) & True Negative pairs (TN), TP&FN,

FP&TN, and FP&FN. Finally, to achieve robust ReID,

LCNL adopts a novel CNL-robust objective function

which consists of soft identification loss and adaptive

quadruplet loss. In detail, the soft identification loss

has an incentive to penalize NA by utilizing the es-

timated confidences. Besides, we propose an adaptive

quadruplet loss which adaptively changes the optimiza-

tion directions when encountering different triplet com-

binations, thus enjoying robustness against NC. Thanks

to our loss, LCNL takes different optimization prop-

erties w.r.t. different homogeneous combinations (i.e.,

TP&FN or FP&TN), which is theoretical provable. In

summary, the contributions and novelties of this work

are given as follows:

– We reveal a new problem faced by both single- and

cross-modality object re-identification, termed cou-

pled noisy labels. Different from existing studies on

noisy annotation, CNL refers to the noise in the

identities (categories) of samples and the accompa-

nied noise in the correspondence of training pairs.

To the best of our knowledge, the existing robust

ReID methods only take the NA problem in single-

modality person ReID into consideration. There are

few studies on NA for cross-modality ReID so far,

not to mention the more challenging and practical

CNL problem.

– To solve the CNL problem, we propose a robust ob-

ject ReID method (i.e., LCNL) which enjoys the

robustness against CNL for both single- and cross-

modality object ReID tasks. The major novelty of

LCNL is the CNL-robust object function which pre-

vents models from CNL-dominated optimization in
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two aspects. On the one hand, it achieves robust-

ness against NA by penalizing samples of NA based

on the estimated confidences. On the other hand, it

achieves robustness against NC by adaptively chang-

ing optimization directions and handling homoge-

neous combinations with theoretical guarantees.

– Extensive experiments have been conducted on three

different ReID tasks including single-modality per-

son/vehicle ReID and cross-modality person ReID,

which show the importance of the CNL problem and

the effectiveness of the proposed LCNL method.

2 Related Works

In this section, we briefly review three topics related

to this work, i.e., deep object ReID, ReID with noisy

annotations, and learning with noisy labels.

2.1 Deep Object ReID

As the two most popular tasks of object ReID, per-

son ReID and vehicle ReID aim to match person and

vehicle across cameras, respectively. In general, person

ReID (He et al., 2021; Li et al., 2021; Shen et al., 2018;

Suh et al., 2018; Wu et al., 2017, 2020; Ye et al., 2021a;

Zheng et al., 2017b) could be roughly grouped into

single- and cross-modality retrieve tasks. In brief, the

single-modality person ReID aims at learning identity-

aware discrimination by enlarging the inter-identity dif-

ferences and alleviating the intra-identity variations caused

by viewpoint differences or pose changes. According to

the differences in feature learning, most of the single-
modality person ReID works could be roughly grouped

into the following two categories: i) the global feature

learning based methods (Li et al., 2021; Wang et al.,

2016; Ye et al., 2021b; Zheng et al., 2017a) which ex-

tract the global embedding for each person image by de-

signing effective backbones or devising enhanced atten-

tion schemes; ii) the local feature learning methods (He

et al., 2021; Hou et al., 2019; Sun et al., 2018) which

learn part or region aggregated features to discover the

nuances between different identities through image di-

vision or human parsing techniques.

Thanks to the complementarity between visible and

infrared modalities, cross-modality person ReID has at-

tracted increasing attention from the community. The

greatest challenge of this task lies in how to alleviate

the modality discrepancy caused by heterogeneous vis-

ible and infrared cameras. To address the challenge, a

number of visible-infrared person ReID methods have

been proposed, which could be classified into the fol-

lowing three categories, i.e., i) the architecture design

based methods (Choi et al., 2020; Lu et al., 2020; Wu

et al., 2017, 2021; Ye et al., 2020) which strive to learn

the discriminative representation shared across modal-

ities; ii) the metric design based methods (Ye et al.,

2018, 2021a,b) which aim to devise different metrics

or loss functions for learning cross-modality similarity;

iii) the modality transform based methods (Hao et al.,

2021; Wang et al., 2019a,b; Wei et al., 2021) which aim

at designing transformation or augmentation strategies

to narrow the gap between modalities.

Similar to person ReID, vehicle ReID owns a broad

range of demands in intelligent transportation surveil-

lance systems. Thanks to the development of different

vehicle benchmarks (Liu et al., 2016a,b, 2017), vehi-

cle ReID has achieved promising progress during past

years, which could be partitioned into two groups ac-

cording to the usage of extra viewpoint information. In

brief, the viewpoint-aware based methods (Chen et al.,

2020; Chu et al., 2019; He et al., 2021; Meng et al.,

2020) usually utilize the available orientation informa-

tion to eliminate scene bias and learn invariant fea-

tures. Besides, the other group of methods (Rao et al.,

2021; Zhang et al., 2020) tries to distinguish the fine-

grained visual differences between vehicles for enlarging

the intra-identity similarity while shortening the inter-

identity one.

Although huge success has been achieved during

past years in the ReID community, most of the existing

methods might suffer from performance degradation in

some scenarios. To be specific, almost all existing ReID

methods assume that the identity annotations are fault-

less and the training pairs are correctly matched. How-

ever, either of the two assumptions is hard and even

impossible to be satisfied in real-world applications due

to the extremely-large identity number and the com-

plex data collection environment. Therefore, the exist-

ing ReID methods probably show inferior performance

when encountering the coupled noisy labels as discussed

in Introduction. To achieve robustness against CNL,

this study formally reveals the CNL problem and pro-

poses a CNL-robust framework for single- and cross-

modality ReID. To the best of our knowledge, this study

could be one of the first works on CNL-robust ReID.

2.2 Robust Object ReID with Noisy Annotations

With the rapid development of deep ReID, some works (Ge

et al., 2020; Ye and Yuen, 2020; Ye et al., 2022; Yu et al.,

2019) have realized the noisy annotation challenge in

single-modality person ReID and a number of methods

have been proposed to achieve robustness against the

NA. In brief, Yu et al. (2019) first studies the NA prob-

lem in person ReID and proposes modeling the feature
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uncertainty to alleviate the negative impacts of noisy

samples. Ye and Yuen (2020); Ye et al. (2022) aim to

achieve NA-robust person ReID by explicitly correct-

ing the annotation with model prediction. Ge et al.

(2020) dives into the study of domain adaption on per-

son ReID and proposes handling the noise during the

adaption process with a carefully-designed pseudo label

generating strategy.

The major differences between existing NA-robust

ReID methods and this work are given below. First, ex-

isting works only consider the sample-wise NA problem

for single-modality person ReID. The achieved robust-

ness is suboptimal for the popular ReID paradigm (Choi

et al., 2020; Ge et al., 2020; He et al., 2021; Lu et al.,

2020; Rao et al., 2021; Ye et al., 2021a,b) which simul-

taneously performs sample-wise discrimination learning

and pair-wise similarity learning. In contrast, this study

reveals the more pragmatic CNL challenge for ReID

tasks and simultaneously achieves robustness against

the NA and NC, i.e., CNL. Notably, there are few

studies on NA for cross-modality ReID, not to men-

tion the CNL challenge. Second, to solve the NA prob-

lem, the existing works mainly focus on revising the

annotations, which is daunting for the ReID datasets

of numerous identities. In contrast, our method enjoys

robustness against the NA by estimating the annotation

confidences and designing robust loss, which is more ac-

cessible than the explicit annotation revision. Notably,

this study is also significantly different from the prelim-

inary conference version (DART (Yang et al., 2022a))

in the following aspects. On the one hand, DART fo-

cuses on achieving the noise-robust cross-modal person

ReID, whereas this work proposes a unified CNL-robust

framework which could be generalized to both single-
and cross-modality ReID tasks. On the other hand, the

loss functions are different and the experimental stud-

ies show the superiority of this study. More specifically,

DART would achieve sub-optimal robustness against

the homogeneous combinations, whereas this work the-

oretically improves the robustness of the loss function

by designing different recast functions to transform the

similarities of the homogeneous combinations into de-

sirable ones.

2.3 Learning with Noisy Labels

During the past decade, the efforts on learning with

noisy labels have concentrated on the classification task (Song

et al., 2020). According to the robustness paradigm,

the existing studies on label noise could be roughly di-

vided into four groups, i.e., i) robust loss based meth-

ods (Kim et al., 2021; Ma et al., 2020) which aim to

design the noise-tolerant loss functions; ii) robust archi-

tecture based methods (Goldberger and Ben-Reuven,

2017; Xiao et al., 2015) which modify the network archi-

tecture to estimate the noise transition matrix; iii) sam-

ple selection based methods (Han et al., 2018) which se-

lect truly-labeled data from the noisy dataset for better

optimization; iv) Semi-supervised learning based meth-

ods (Li et al., 2020; Nguyen et al., 2019) which par-

tition the dataset into clean and noisy subsets which

are fed into semi-supervised learning methods (Berth-

elot et al., 2019). Besides the noise-robust classification

studies, some recent efforts (Hu et al., 2021; Mandal

and Biswas, 2020) have been devoted to solving the la-

bel noise problem for the cross-modal retrieval task.

Among the aforementioned works, the sample selec-

tion based methods and noise-robust cross-modal re-

trieve studies could be most similar to this work while

being with the following differences. First, traditional

label noise studies mainly focus on the sample-wise an-

notation errors. In contrast, this work consider a new

label noise paradigm, i.e., CNL, which refers to both

sample-wise annotation errors (i.e., NA) and pair-wise

correspondence mismatch (i.e., NC). Besides the differ-

ence in the paradigm, the proposed method is remark-

ably different from the sample selection based methods.

In brief, the sample selection based methods usually

treat the training data with relatively greater loss value

as noise and discard them, which may eliminate nu-

merous informative samples. Some of them (Han et al.,

2018; Shen and Sanghavi, 2019) even require taking

the noise rate as a prior. In contrast, our method first

estimates the truly-annotated confidences and utilizes

them to penalize the noisy samples during optimiza-

tion instead of simply discarding and requiring addi-

tional priors. Besides, based on the computed confi-

dences, this work further achieves robustness against

the NC. Second, most of the robust cross-modal re-

trieve methods (Hu et al., 2021; Mandal and Biswas,

2020) use the off-the-shelf data pairs and assume that

the training pairs are fully aligned at the instance level.

In other words, they do not need to construct train-

ing pairs and assume the cross-modal correspondences

are faultless. In contrast, this work dives into the ob-

ject ReID task where the training pairs are constructed

according to the annotations. Once the annotation is

false, the NC would be inevitably introduced and the

CNL-robust methods are highly expected.

2.4 Learning with Noisy Correspondence

Learning with noisy correspondence is a recently-

rising topic, which mainly focuses on combating the

potential mismatched pairs in cross-modal tasks. Yang
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Fig. 2 The framework of LCNL. It consists of co-modeling, pair division, and dually-robust training modules. Specifically,
the co-modeling module first warms up two individually-initialized DNNs with the vanilla identification loss (Lid), and then
models the annotation confidences by resorting to the memorization effect. After that, the estimated confidences are passed
into the pair division module in a swapping manner for further usage. In the pair division module, the training pairs will be
partitioned into different groups and the correspondences within each group will be rectified. As a result, four kinds of triplet
combinations could be obtained, i.e., TP&TN, FP&FN, TP&FN, and FP&TN. To prevent networks B/A from overfitting the
NA, the estimated confidences by network A/B will be used as coefficients in the soft identification loss Lsid to penalize the
noise samples. To achieve robustness against the NC, the loss Laqdr will adaptively change the optimization directions when
encountering different kinds of divided triplets. Especially, for different homogeneous triplets (i.e., FP&TN or TP&FN), the
loss can enjoy different optimization properties under the help of the designed recast functions, thus further improving the
robustness with theoretical guarantees.

et al. (2021, 2022b) studies the false negative prob-

lem in contrastive learning and achieves robust multi-

view clustering accordingly. Huang et al. (2021) first

formally studies the noisy correspondence problem and

achieves robust cross-modal matching against false pos-

itive pairs. Following (Huang et al., 2021), some recent

works (Hu et al., 2023; Qin et al., 2022) propose solving

the NC problem in more efficient and diversified ways,

constantly improving the robustness and performance.

Recently, some works extend the scenario of the NC

problem from cross-modal matching to visible-infrared

person ReID (Yang et al., 2022a) and graph match-

ing (Lin et al., 2023). Different from the existing works,

this work not only extends the definition of noisy corre-

spondence to both false negative and false positive cor-

respondence but also extends the setting of NC from

cross-modal to both single- and cross-modal scenarios.

3 Method

In this section, we elaborate on the proposed LCNL

which is a general framework for achieving robustness

against the CNL encountered in both single- and cross-

modality object ReID.

3.1 Problem Definition

For a given query image, most existing single- or cross-

modality object ReID methods aim at finding images of

the same identities within or across modalities from the

gallery. For ease of representation, we take the Visible-

Infrared cross-modality ReID (VI-ReID) task as a show-

case without loss of generality. Formally, let Dm1
=

{xm1
i , ym1

i }
Nm1
i=1 and Dm2 = {xm2

i , ym2
i }

Nm2
i=1 denote the

observed visible and infrared modality datasets collected

from K different identities respectively, where xm
i is the

image, Nm is the dataset size, m ∈ {m1,m2} denotes

the modality, and ymi is the identity annotation which is

potentially wrong. For achieving cross-modal individual

retrieve, most existing methods (Choi et al., 2020; Ge

et al., 2020; He et al., 2021; Lu et al., 2020; Rao et al.,

2021; Ye et al., 2021a,b) construct cross-modal set S ={
(xm1

i ,xm2
j , ypij) | y

p
ij ∈ {0, 1}, i ∈ [1, Nm1

], j ∈ [1, Nm2
]
}

based on the annotations, where ypij is the pairwise cor-

respondence indicating that the pair (xm1
i ,xm2

j ) is pos-

itive (ypij = 1) or negative (ypij = 0). In other words,

ypij = 1 i.f.f. ym1
i = ym2

j , and ypij = 0 otherwise. With

the annotated samples and constructed pairs, the meth-

ods usually adopt the sample-wise discrimination loss

(e.g. Cross-Entropy (CE) loss) onDm to learn the identity-

aware discrimination, and pair-wise similarity loss (e.g.,

triplet loss) on S to further enlarge the inter-identity

distinguishability while alleviating the intra-identity vari-

ances.

Unfortunately, as the annotation ymi may be wrong

due to inevitable manual labeling faults (i.e., Noisy An-

notation, NA), the established correspondence ypij may

also be wrong, thus leading to the so-called Noisy Cor-

respondence (NC). Note that, the ground-truth anno-

tations and correspondences are unknown, which are

denoted as ŷmi and ŷpij respectively. For simplicity, we

refer to the above NA and the accompanied NC as the

CNL with the following definitions.
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Definition 1 Coupled Noisy Labels (CNL). For

the given multi-modal dataset {Dm1
, Dm2

} and the

constructed cross-modal set S, CNL means that the an-

notations ymi are of NA and the correspondences ypij are

of NC, and the ground-truth ŷmi and ŷpij are agnostic.

Definition 2 Noisy Annotation (NA). For each modal-

ity Dm, it is with NA when

Nm∑
i=1

I (ymi = ŷmi ) < Nm,∀m ∈ {m1,m2}, (1)

where I(ymi = ŷmi ) equals to 1 i.f.f. ymi = ŷmi , otherwise

0.

Definition 3 Noisy Correspondence (NC). The pairs

in cross-modal set S consist of four types, i.e., True Pos-

itive pairs (TP, ypij = ŷpij = 1), True Negative pairs (TN,

ypij = ŷpij = 0), False Positive pairs (FP, ypij = 1, ŷpij = 0)

and False Negative pairs (FN, ypij = 0, ŷpij = 1). NC

refers to the mismatched pairs, i.e., FP and FN.

Note that, the aforementioned notations and defi-

nitions are also hold for single-modality ReID cases by

simply setting m1 = m2 and i 6= j. To achieve CNL-

robust object ReID, we proposed the LCNL framework

in this paper. As shown in Fig. 2, LCNL consists of

co-modeling, pair division, and dually robust training

modules which will be elaborated on one by one below.

3.2 Co-modeling

Some pioneer works (Arpit et al., 2017) have empiri-

cally found that DNNs are apt to fit simple patterns be-

fore fitting the complex ones, thus leading to relatively

small loss values for the clean (i.e., simple) samples and

larger loss values for the noisy (i.e., complex) samples

in the initial training phase. Motivated by the so-called

memorization effect of DNNs, we estimate the clean

confidence of each sample by fitting the per-sample loss

distribution (Huang et al., 2021; Li et al., 2020). Specif-

ically, we first compute the per-sample identification

(CE) loss of each modality by feeding Dm1
and Dm2

into the given networks respectively. Mathematically,

`{Fm,C} = {`i}Nm
i=1 = {Lid (C (Fm(xm

i )) , ymi )}Nm
i=1, (2)

where Lid is the vanilla CE loss, Fm denotes the modality-

specific encoder for modality m, and C denotes the

shared identity classifier.

Given the above computed per-sample loss, we model

the loss distribution by fitting a two-component Gaus-

sian Mixture Model (GMM) as follows,

p(` | θ) = α1Φ(` | θ1) + α2Φ(` | θ2), (3)

where θ denotes the parameters of GMM, {θ1, α1} and

{θ2, α2} denote the parameter and mixture coefficient

for each component, respectively. To optimize the GMM,

we adopt the widely-used EM algorithm. After that, we

estimate the clean confidences of annotations by com-

puting the posterior probability of each sample belong-

ing to the component with a small mean value based

on the memorization effect of DNNs. In detail, the con-

fidence wm
i is computed by

wm
i = p(θ1 | `i) =

p(θ1)p(`i | θ1)

p(`i)
, (4)

where θ1 and θ2 denote the components with smaller

and larger mean value, respectively.

The estimated annotation confidences would be uti-

lized for NC detecting and further training. However,

our empirical results show that simply training the net-

works in a self-modeling manner may have an incen-

tive to accumulate errors. Hence, to circumvent the

self-modeling bias, we adopt a co-modeling manner.

Specifically, we individually train two sets of network

{Fm
A , CA} and {Fm

B , CB} with different initializations.

At each epoch, we estimate the annotation confidences

for network A/B, and use them to detect NC and fur-

ther train the other network B/A. Notably, as the mem-

orization effect requires initial training to enlarge the

loss value difference between clean and noisy samples,

we propose warming up the two sets of networks by us-

ing the vanilla CE loss before beginning the co-modeling

process.

3.3 Pair Division

Given annotation confidences estimated by the co-modeling

module, the pair division module is designed to parti-

tion the cross-modal set S =
{

(xm1
i ,xm2

j , ypij)
}

into

clean pair subset Sc and noisy pair subset Sn. Formally,

Sc =
{

(xm1
i ,xm2

j , ypij) | (w
m1
i ≥ γ) ∧ (wm2

j ≥ γ)
}

and

Sn =
{

(xm1
i ,xm2

j , ypij) | ((w
m1
i ≥ γ) ∧ (wm2

j < γ)) ∨ ((wm1
i

< γ) ∧ (wm2
j ≥ γ))

}
, where γ is the criterion thresh-

old and is fixed to 0.5 in our experiment. Note that,

the pairs with ((wm1
i < γ) ∧ (wm2

j < γ)) will be dis-

carded because they are both unconfident and thus can-

not been correctly divided.

Given the clean subset Sc and noisy subset Sn, the

correspondences of pairs within the subsets would be

further rectified via the following operation:

ỹpij = I(ypij ∈ S
c)� ypij , (5)

where � is the xnor operator and ỹpij is the rectified

correspondence. The above operation is designed for

the following goals. In brief, for the positive pairs from
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Sc, their correspondence would be rectified as ỹpij = 1,

thus being regarded as true positive (TP) pairs; other-

wise, they would be regarded as false positive (FP) pairs

with the rectified correspondences ỹpij = 0. Likewise, for

the negative pairs from Sc, they would be treated as

true negative (TN) pairs with the rectified correspon-

dences ỹpij = 0. Notably, if negative pairs come from

Sn, they cannot be simply considered as false negative

(FN) pairs since xm1
i and xm2

i may derive from different

identities, i.e., TN pairs. Therefore, to recall such TN

pairs, we further revise the correspondences of those

negative pairs from Sn via

ỹpij = I(C(Fm1(xm1
i )) = C(Fm2(xm2

j ))). (6)

With the pair division module, each training pair

from S could be divided into one of TP, FP, TN, or

FN, which is further used for training.

3.4 CNL-robust Objective Function

With the co-modeling and pair division modules, one

can obtain the estimated annotation confidences of sam-

ples and the rectified correspondences of divided pairs

which are combined with our CNL-robust object func-

tion to achieve robustness against the CNL. Formally,

the objective function is defined as follows,

L = Lsid + Laqdr, (7)

where Lsid and Laqdr are designed for achieving robust-

ness on NA and NC, respectively. In the following, we

will elaborate on them one by one.

3.4.1 Robustness against NA

Given the annotation confidence wm
i for sample xm

i of

identity k, we propose the following soft identification

loss for achieving robustness against NA,

Lsid = −wm
i ∗

K∑
j=1

I(j = k) log p(j | xm
i ). (8)

The proposed soft identification loss owns the fol-

lowing merits. First, it has an incentive to penalize the

noise during optimization by utilizing the confidences

instead of simply discarding the noisy samples (Han

et al., 2018). Besides, our loss is more feasible than the

existing NA-oriented ReID methods because it need not

to struggle for generating the pseudo annotations (Ge

et al., 2020) or revising the wrong annotations (Ye and

Yuen, 2020; Ye et al., 2022). Considering the huge iden-

tity number, it is daunting and even impossible to pre-

cisely revise the wrong annotations or predict the pseudo

annotations in practice.

3.4.2 Robustness against NC

Given pairs divided by the pair division module, i.e.,

TP, FP, TN, and FN, to alleviate the modality gap

and improve the identity-level discrimination, one could

construct triplet combinations and then compute the

triplet loss with the hard mining strategy (Hermans

et al., 2017) on them as most existing ReID meth-

ods (Ge et al., 2020; He et al., 2021; Hermans et al.,

2017; Rao et al., 2021; Ye et al., 2021a,b) do. Although

the vanilla triplet loss has shown its effectiveness in the

object ReID community, it would suffer from the follow-

ing deficiencies. First, the vanilla triplet loss can only

handle the combination of TP&TN and lacks robust-

ness against other combinations. Second, although the

hard mining strategy (Hermans et al., 2017) could im-

prove the discrimination between identities, it has an

incentive to introduce more NC. In other words, in the

presence of NA, the nearest negative and farthest pos-

itive samples chosen by the hard mining strategy are

susceptible to be FN and FP, respectively. Therefore,

it is highly expected to design a NC-robust loss which

can not only handle all the possible triplet combinations

i.e., TP&TN, FP&FN, TP&FN, and FP&TN, but also

in defense of the superiority of the hard mining strategy.

To this end, we propose the adaptive quadruplet

loss. Formally, given the triplet combination (xm1
i ,xm2

j ,xm2
s ),

the loss is in the form of

Laqdr = Latri + Lqdt, (9)

where xm1
i is the anchor sample, xm2

j and xm2
s are the

corresponding hardest positive and negative samples

constructed according to the annotations, i.e., ypij = 1

and ypis = 0. Latri aims at adaptively achieving ro-

bustness on different triplet combinations and Lqdt is

a quadruplet loss term. To be specific,

Latri =[m+ (ỹpij ⊗ ỹ
p
is)[(−1)(1−ỹ

p
ij)dij + (−1)(1−ỹ

p
is)dis]

+ (ỹpij � ỹ
p
is)(−1)(1−ỹ

p
ij)σ(dij , dis)]+,

dij =‖Fm1(xm1
i )− Fm2(xm2

j )‖2,
(10)

where [·]+ = max(·, 0), m is the margin fixed as a

constant in the experiments, ỹpij is the rectified cor-

respondence, ⊗ is the xor operator, dij is the pair-

wise distance, and σ(·, ·) is the proposed recast func-

tion. Notably, the recast function is designed for keep-

ing the merit of the hard mining strategy when en-

countering the homogeneous pair combinations (i.e.,

TP&FN or FP&TN), whose principles will be elabo-

rated on later. Clearly, learning on TP&FN or FP&TN

with Latri would only decrease or increase the pairwise
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Fig. 3 The adaptive quadruplet loss could adaptively change
its optimization directions for handing the four different kinds
of triplet combinations, thus enjoying robustness against the
NC.

distance monotonously instead of contrastively. To keep

the ranking capacity of Latri, we propose the following

quadruplet term,

Lqdt = (−1)ỹ
p
ij ỹ

p
is(ỹpij � ỹ

p
is)dit, (11)

where dit is the pairwise distance between xm1
i and

xm2
t , and xm2

t is the second hardest sample in the batch

with confidence wm2
t ≥ γ.

Besides the visual illustration in Fig. 3, we elabo-

rate on how the proposed Laqdr enjoys the robustness

against the NC in different situations below:

– TP&TN: For the combination of TP (ypij = 1, ỹpis =

1) and TN (ypij = 0, ỹpis = 0), Laqdr would degrade

into the vanilla triplet loss which encourages to de-

crease and increase pairwise distances of TP and

TN, respectively. Formally,

Laqdr = [m+ dij − dis]+. (12)

– FP&FN: For the combination of FP (ypij = 1, ỹpis =

0) and FN (ypij = 0, ỹpis = 1), Laqdr would adjust

its optimization tendency, i.e., increasing and de-

creasing the distances of FP and FN, respectively.

Laqdr = [m− dij + dis]+. (13)

– TP&FN: In this case, both TP (ypij = 1, ỹpis = 1)

and FN (ypij = 0, ỹpis = 1) are positives, and thus

the distance of such homogeneous pairs would be

recast by σ(·, ·). Besides, LCNL would sample the

second hardest negative sample xm2
t (ỹpit = 0) for

computing. Formally,

Laqdr = [m+ σ(dij , dis)− dit]+. (14)

– FP&TN: Similar to the aforementioned homogeneous

case, for the combination of FP (ypij = 1, ỹpis = 0)

and TN (ypij = 0, ỹpis = 0), their distance would be

recast by σ(·, ·). Then, LCNL would sample the sec-

ond hardest positive sample xm2
t (ỹpit = 1). Formally,

Laqdr = [m− σ(dij , dis) + dit]+. (15)

In the following, we elaborate on the principles of

the proposed recast functions σ(·, ·) which endows Laqdr

with the hard mining capacity on the homogeneous

pair combinations (FP&TN or TP&FN). Recalling that

the hard mining strategy will choose the nearest nega-

tive and the furthermost positive samples as discussed

above. As a result, TN in FP&TN would have a smaller

distance than FP, while TP in TP&FN would have a

greater distance than FN. It is expected to transform

the distances of the homogeneous combination into a

new one for usage in Eq. 10 while keeping the hard

mining capacity on them. To this end, given the homo-

geneous pairs (xm1
i ,xm2

j ) and (xm1
i ,xm2

s ), we design

the following five alternative recast functions σ, where

ypij = 1, ypis = 0, ỹpij = ỹpis = 0 or 1. Mathematically,

σ1 =
dij + dis

2
,

σ2 = max(dij , dis),

σ3 = min(dij , dis),

σ4 =

{
max(dij , dis), ỹpij = ỹpis = 1,

min(dij , dis), ỹpij = ỹpis = 0,

σ5 =
exp((−1)(1−ỹ

p
ij)dij)

exp((−1)(1−ỹ
p
ij)dij) + exp((−1)(1−ỹ

p
is)dis)

∗ dij

+
exp((−1)(1−ỹ

p
is)dis)

exp((−1)(1−ỹ
p
ij)dij) + exp((−1)(1−ỹ

p
is)dis)

∗ dis,

(16)

Under the help of different recast functions, the NC-

robust loss Laqdr would enjoy different optimization

properties when encountering the homogeneous com-

bination TP&FN or FP&TN. To be specific, we derive

the optimization properties by analyzing the gradient

of Laqdr w.r.t. the pairwise distance as follows.

– σ1: ∂Laqdr/∂dij = ∂Laqdr/∂dis = 1/2. The gradient

value of Laqdr w.r.t. dij equals to the one of Laqdr

w.r.t. dis. As a result, the networks would learn from

the homogeneous pairs equally.
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– σ2: ∂Laqdr/∂dij = 1 and ∂Laqdr/∂dis = 0 if dij >

dis; otherwise on the contrary. The gradient is only

produced with the pair of greater distance, and thus

the networks will only learn from the corresponding

pair.

– σ3: Similarly, ∂Laqdr/∂dij = 0 and ∂Laqdr/∂dis = 1

if dij > dis; otherwise on the contrary. The gradient

is only produced with the pair of smaller distance,

and the networks would only learn from that pair

similarly.

– σ4: It could be regarded as the synthesis of σ2 and

σ3. When the combination is TP&FN, σ4 would de-

grade into σ2, otherwise σ3.

– σ5: For the TP&FN combination, the gradient value

produced with the pair of greater distance is larger;

For the FP&TN combination, the gradient value

produced with the pair of smaller distance is larger.

One could easily prove the properties of σ1, σ2, σ3
and σ4. For σ5, the property on the TP&FN combina-

tion could be mathematically guaranteed by Theorem 1

and that on the FP&TN combination could be proved

by Theorem 2.

Theorem 1 For the TP&FN combination, the gradi-

ent value of Laqdr with σ5 w.r.t. dij is greater than that

w.r.t. dis when dij > dis.

Proof For the TP&FN combination, ỹpij = ỹpis = 1, the

gradient of Laqdr with σ5 w.r.t. dij is in the form of

∂Laqdr

∂dij
=

exp (2dij) + (1 + dij − dis) exp (dij + dis)

(exp (dij) + exp (dis))2
,

and the gradient of Laqdr with σ5 w.r.t. dis is in the

form of

∂Laqdr

∂dis
=

exp (2dis) + (1 + dis − dij) exp (dij + dis)

(exp (dij) + exp (dis))2
.

Let G be the square difference between the values of

∂Laqdr/∂dij and ∂Laqdr/∂dis, it could be proved that

G > 0,∀dij > dis by

G =

∣∣∣∣∂Laqdr

∂dij

∣∣∣∣2 − ∣∣∣∣∂Laqdr

∂dis

∣∣∣∣2
=

exp(2dij)− exp(2dis) + 2(dij − dis) exp (dij + dis)

(exp (dij) + exp (dis))2

> 0.

Therefore, the gradient value of ∂Laqdr/∂dij is greater

than ∂Laqdr/∂dis when dij > dis.

Theorem 2 For the FP&TN combination, the gradi-

ent value of Laqdr with σ5 w.r.t. dij is greater than that

w.r.t. dis when dij < dis.

Fig. 4 The gradient of Laqdr w.r.t. the pairwise distances.
(a) Laqdr with σ5 for FP&TN. (b) Laqdr with σ5 for
TP&FN. In the figure, dij and dis denote the pairwise dis-
tance of the homogeneous pairs which are both negative or
positive. From the figure, one could have an intuitive under-
standing on Theorem 1-2.

Similarly, Theorem 2 can be proved like Theorem

1 and the details are presented in Appendix. Besides

the above mathematical analysis, we also visualize the

performance surfaces of Laqdr with σ5 in Fig. 4 for an

intuitive understanding. On the one hand, Theorem 1

and 2 show that Laqdr with σ5 would push the pair with

greater distance (i.e., TP) more strongly by assigning

a greater gradient, because TP&FN are both positive.

Similarly, Laqdr with σ5 would pull the pair with smaller

distance (i.e., TN) more strongly for the combination

TP&FN. As a result, the network optimization will be

benefited.

Based on the above theoretical and visual analyses,

one could have the following conclusions. To be specific,

if σ1 is used, each pair in the homogeneous combination

would contribute equally to the network optimization

regardless of their hardness. If σ2 or σ3 is used, only the

pair with greater or smaller distance would contribute

to the optimization. Although σ4 enjoys the advantage

of σ2 and σ3, it thoroughly ignores the easy pairs and

thus being suboptimal. As a remedy, σ5 could adap-

tively adjust the gradient according to the hardness

of the pairs, thus maintaining the merits of the hard

mining strategy when learning with NC. Therefore, our

experiments adopt σ5 for its effectiveness.

4 Experiments

To verify the effectiveness of LCNL for achieving CNL-

robust object ReID, we conduct experiments on three

different object ReID tasks including single-modality

person ReID (V-ReID), vehicle ReID, and cross-modality

visible-infrared person ReID (VI-ReID). The organiza-

tion of this section is as follows. In section 4.1, we elab-

orate on the experiment settings including the hyper-

parameter configurations and datasets. In section 4.2, 4.3
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and 4.4, we carry out quantitative and ablation studies

to demonstrate the effectiveness of LCNL for achieving

CNL-robust VI-ReID, V-ReID, and vehicle ReID, re-

spectively. In section 4.5, we conduct a series of exper-

imental analyses to show the importance of the CNL-

oriented paradigm.

4.1 Settings

In this section, we elaborate on the experiment settings

of LCNL including the hyper-parameter configurations

and the used datasets.

Parameter Configurations: In our experiments,

the warm-up epochs are fixed as 1, 5, and 10 for the VI-

ReID, V-ReID, and Vehicle-ReID tasks, respectively. In

addition, the margin m for the adaptive quadruplet loss

and the threshold γ for the pair division module are set

as 0.3 and 0.5, respectively. In the inference stage, we

simply average the embeddings output by models A and

B for the evaluation and no complex strategy is used.

All the experiments and evaluations are conducted on

Ubuntu OS with GeForce RTX 3090 GPUs.

Datasets: For the VI-ReID task, we adopt two pub-

licly available datasets, i.e., SYSU-MM01 (Wu et al.,

2017) and RegDB (Nguyen et al., 2017). For the V-

ReID task, we use two widely-used datasets, i.e., Market-

1501 (Zheng et al., 2015a) and DukeMTMC (Zheng

et al., 2017b). As for the Vehicle-ReID task, we adopt

the widely-used VeRi-776 (Liu et al., 2016b, 2017). Ta-

ble 1 summarizes the statistics of the above five datasets

and the Appendix includes more details.

Table 1 Statistics of the used datasets.

Dataset Modality Object Train Gallery Query

SYSU-MM01 Cross Person 34,167 (395) 301 (96) 3,803 (96)
RegDB Cross Person 4,120 (206) 2,060 (206) 2,060 (206)

Market-1501 Single Person 13,387 (751) 15,913 (750) 3,368 (750)
DukeMTMC Single Person 16,522 (702) 17,661 (702) 2,228 (702)

VeRi-776 Single Vehicle 37,715 (576) 11,579 (200) 1,678 (200)

For quantitative evaluations, we randomly choose a

specific proportion of samples in each dataset and as-

sign them with random identities to simulate the noisy

annotations. For comprehensive investigation, the noise

ratio varies from 0%, 20%, to 50%. Following Hermans

et al. (2017); Liu et al. (2016b); Ye et al. (2021b); Zheng

et al. (2015a, 2017b), we use two metrics for perfor-

mance evaluation, i.e., the mean average precision score

(mAP) and the cumulative matching curve (CMC). Be-

sides, for person ReID tasks (VI-ReID and V-ReID),

we additionally use the mINP metric to measure the

matching efficiency by following Ye et al. (2021b).

4.2 Robust Cross-modality Person ReID

To verify the effectiveness of LCNL, we compare LCNL

with recently-published VI-ReID methods on the noisy

VI-ReID datasets. In addition, we conduct ablation stud-

ies to reveal the importance of each module in LCNL

on achieving robustness.

4.2.1 Comparisons with State of the Arts

To investigate the effectiveness of the LCNL framework,

we employ it to endow the state-of-the-art ADP (Ye

et al., 2021a) with robustness against the CNL. In the

investigation, we adopt ADP’s backbone and train it

under the proposed LCNL framework with our CNL-

robust objective function.

Following the common evaluation protocol in VI-

ReID (Park et al., 2021; Wu et al., 2021; Ye et al.,

2021a), we report the performance on the SYSU-MM01

dataset under the modes of “All-Search” and “Indoor-

Search”. For the RegDB dataset, we report the mean

results of the standard 10 train/test splits under the

modes of “Visible to Thermal” and “Thermal to Visi-

ble”.

The performance of LCNL is compared with six

recently-proposed VI-ReID methods including CrossAGW (Ye

et al., 2021b), DDAG (Ye et al., 2020), LbA (Park

et al., 2021), MPANet (Wu et al., 2021), ADP (Ye

et al., 2021a), and DART (Yang et al., 2022a). Among

them, the former five baselines are the standard VI-

ReID methods, and DART is the only one that could

achieve noise-robust VI-ReID. For the performance of

DART, we directly take the results reported in the orig-

inal paper. For the other baselines, we refer to the re-

ported results as the ones with the noise ratio of 0% and

carry out the baselines with careful parameter tuning

under the noise ratio of 20% and 50%. From Table 2

and 3, one could observe that LCNL achieves stable

performance while the vanilla methods encounter heavy

performance degradation. Meanwhile, although LCNL

is designed for achieving CNL-robust object ReID in-

cluding but not limited to the VI-ReID task, it still

shows promising performance improvements compared

to DART which is dedicatedly designed for handling

noise in VI-ReID. The above observations imply the

importance of developing CNL-resistant methods for

object ReID. Besides, LCNL outperforms ADP on the

SYSU-MM01 dataset in terms of most metrics, even

under the noise-free setting. The improvement could be

attributed to that the “clean” data are probably con-

taminated by unrevealed noises.
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Table 2 Comparisons with state-of-the-art methods on the SYSU-MM01 dataset under the noise ratio of 0%, 20% and 50%,
respectively. The best and second best results are highlighted in bold and underline.

Noise Methods
All-Search Indoor-Search

Rank-1 Rank-10 Rank-20 mAP mINP Rank-1 Rank-10 Rank-20 mAP mINP

0%

DDAG (ECCV2020) 54.8 90.4 95.8 53.0 39.6 61.0 94.1 98.4 68.0 62.6
CrossAGW (TPAMI2021) 47.5 84.4 92.1 47.7 35.3 54.2 91.1 96.0 63.0 59.2
LbA (ICCV2021) 55.4 – – 54.1 – 58.5 – – 66.3 –
MPANet (CVPR2021) 70.6 96.2 98.8 68.2 – 76.7 98.2 99.6 81.0 –
ADP (ICCV2021) 69.9 95.7 98.5 66.9 53.6 76.3 97.9 99.5 80.4 76.8
DART (CVPR2022) 68.7 96.4 99.0 66.3 53.3 72.5 97.8 99.5 78.2 74.9
LCNL (Ours) 70.2 96.4 99.0 68.0 55.5 76.2 98.2 99.8 80.3 76.9

20%

DDAG (ECCV2020) 14.6 46.6 61.8 14.0 5.6 15.1 50.7 69.3 22.4 18.3
CrossAGW (TPAMI2021) 17.7 56.8 72.5 18.2 8.6 20.8 65.0 82.4 29.8 25.3
LbA (ICCV2021) 9.9 39.5 55.9 10.2 3.8 10.1 44.1 64.5 17.4 14.0
MPANet (CVPR2021) 21.6 63.6 78.7 21.2 – 23.8 70.2 86.4 33.2 –
ADP (ICCV2021) 25.4 67.6 80.9 23.7 11.1 26.6 70.7 85.2 35.0 29.6
DART (CVPR2022) 66.3 95.3 98.4 64.1 50.7 70.5 97.1 99.0 75.9 72.3
LCNL (Ours) 67.2 95.1 98.4 64.9 51.7 73.4 97.6 99.5 78.2 74.4

50%

DDAG (ECCV2020) 6.7 29.0 43.8 7.5 2.9 8.4 37.9 57.9 15.1 12.3
CrossAGW (TPAMI2021) 7.9 37.6 55.8 9.8 4.4 9.6 47.9 70.5 18.1 15.2
LbA (ICCV2021) 2.7 17.8 30.3 4.2 1.9 4.9 29.4 49.0 11.0 8.6
MPANet (CVPR2021) 7.0 32.8 49.2 8.2 – 8.5 40.7 61.4 15.9 –
ADP (ICCV2021) 8.0 42.6 62.1 10.8 5.2 11.5 53.0 76.8 20.8 17.5
DART (CVPR2022) 60.3 93.4 97.5 58.7 45.3 65.7 95.0 98.2 71.8 68.1
LCNL (Ours) 62.4 93.6 97.5 59.8 45.9 67.2 96.4 99.1 73.1 69.0

Table 3 Comparisons with state-of-the-art methods on the
RegDB dataset under the noise ratio of 0%, 20% and 50%,
respectively. The best and second best results are highlighted
in bold and underline.

Noise Methods
Visible to Thermal Thermal to Visible

Rank-1 mAP mINP Rank-1 mAP mINP

0%

DDAG (ECCV2020) 69.3 63.5 49.2 68.1 61.8 48.6
CrossAGW (TPAMI2021) 70.1 66.4 50.2 70.5 66.0 51.2
LbA (ICCV2021) 74.2 67.6 – 72.4 65.5 –
MPANet (CVPR2021) 83.7 80.9 – 82.8 80.7 –
ADP (ICCV2021) 85.0 79.1 65.3 84.8 77.8 61.6
DART (CVPR2022) 83.6 75.7 60.6 82.0 73.8 56.7
LCNL (Ours) 85.6 78.7 65.0 84.0 76.9 60.9

20%

DDAG (ECCV2020) 39.3 25.7 10.0 37.7 25.1 9.6
CrossAGW (TPAMI2021) 47.8 31.4 12.4 47.2 30.9 11.9
LbA (ICCV2021) 36.0 23.5 7.5 36.2 22.8 6.7
MPANet (CVPR2021) 33.8 23.5 – 32.6 22.1 –
ADP (ICCV2021) 50.7 35.9 14.1 50.0 34.8 12.6
DART (CVPR2022) 82.0 74.2 57.9 79.5 71.7 54.5
LCNL (Ours) 84.5 76.7 61.6 82.5 74.6 57.3

50%

DDAG (ECCV2020) 24.0 14.4 4.3 21.5 13.4 4.3
CrossAGW (TPAMI2021) 21.9 13.4 3.9 21.0 13.0 3.7
LbA (ICCV2021) 11.7 6.7 1.5 10.2 6.3 1.5
MPANet (CVPR2021) 9.5 6.1 – 11.4 6.7 –
ADP (ICCV2021) 17.0 11.3 3.6 20.3 12.3 3.2
DART (CVPR2022) 78.2 67.0 48.4 75.0 64.4 43.6
LCNL (Ours) 76.3 65.9 47.9 73.8 63.2 42.9

Table 4 Ablation studies on SYSU-MM01 with 20% noise.
The default setting is marked in gray .

Method Variants 20% noise
Co-Modeling Pair Division Lsid Laqdr mAP mINP

! 29.8 15.2

! ! 62.2 48.5

! ! ! 63.8 49.8

! ! ! ! 64.9 51.7

4.2.2 Ablation Studies

To investigate the importance of each module of LCNL,

we conduct ablation studies on the SYSU-MM01 dataset

with 20% noise. In detail, we perform LCNL by discard-

ing or replacing the modules and evaluating the cor-

responding variants. More specifically, i) we train the

baseline using the co-modeling module with two indi-

vidually networks; ii) we add the proposed soft identi-

fication loss (Lsid) for achieving robustness on the NA;

iii) we add the pair division module and replace the de-

signed adaptive quadruplet loss (Laqdr) with the vanilla

triplet loss (Hermans et al., 2017). Namely, LCNL is

performed only on the clean combination (TP&TN); iv)

the complete pipeline of LCNL. As shown in Table 4, it

is promising to simultaneously embrace the robustness

on both NA and NC (Row 4) instead of only on NA

(Row 2) or neither (Row 1). Furthermore, the vanilla

triplet loss, which can only handle the clean combina-

tion (i.e., TP&TN) is sub-optimal for achieving robust-

ness against the CNL (Row 3).

4.3 Robust Singe-modality Person ReID

In this section, we apply LCNL on the noisy V-ReID

datasets and compare the performance with several noise-

robust V-ReID methods. Besides, we conduct ablation

studies to investigate the effect of each component of

LCNL.

4.3.1 Comparison with State of the Arts

In this section, we endow VisibleAGW (Ye et al., 2021b)

with the robustness against CNL under our LCNL frame-

work. In brief, we adopt the backbone of VisibleAGW (Ye

et al., 2021b) and our learning paradigm with the CNL-

robust objective function.

The performance of LCNL is compared with five V-

ReID methods including VisibleAGW (Ye et al., 2021b),
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Table 5 Comparisons with state-of-the-art methods on the Market1501 and DukeMTMC datasets under the noise ratio of
0%, 20% and 50%, respectively. The best and second best results are highlighted in bold and underline.

Noise Methods
Market1501 Duke-MTMC

Rank-1 Rank-5 Rank-10 mAP mINP Rank-1 Rank-5 Rank-10 mAP mINP

0%

DistributionNet (ICCV2019) 87.3 94.7 96.7 70.8 – 74.7 85.1 88.2 56.0 –
PurifyNet (TIFS2020) 88.4 95.8 97.6 72.1 – 77.8 88.6 92.4 62.0 –
MMT (ICLR2020) 89.2 96.2 97.8 74.1 – 78.2 88.6 92.1 64.0 –
VisibleAGW (TPAMI2021) 95.1 98.2 99.0 87.8 65.0 88.9 95.3 96.7 79.6 45.7
CORE (TIP2022) 89.6 96.4 98.1 74.6 – 78.8 89.4 92.6 64.1 –
LCNL (Ours) 94.7 98.4 99.0 87.7 64.5 88.7 94.7 96.4 79.3 43.1

20%

DistributionNet (ICCV2019) 77.0 90.6 94.0 53.4 – 62.4 77.4 82.5 40.9 –
PurifyNet (TIFS2020) 83.1 93.3 95.9 63.1 – 74.1 85.6 89.2 55.8 –
MMT (ICLR2020) 79.2 91.8 95.2 57.8 – 70.5 84.9 88.9 54.7 –
VisibleAGW (TPAMI2021) 80.8 93.5 96.3 59.3 20.3 68.4 85.2 89.6 52.2 15.0
CORE (TIP2022) 84.1 93.1 95.5 66.2 – 74.4 85.9 89.7 55.8 –
LCNL (Ours) 94.4 97.9 98.9 86.6 61.7 87.7 93.9 96.0 77.6 40.4

50%

DistributionNet (ICCV2019) 61.1 81.1 87.1 35.1 – 46.0 63.9 70.9 25.8 –
PurifyNet (TIFS2020) 83.4 94.1 96.3 52.1 – 65.0 79.0 83.9 44.5 –
MMT (ICLR2020) 55.6 76.5 83.1 31.7 – 51.0 67.6 74.4 34.9 –
VisibleAGW (TPAMI2021) 51.2 72.4 79.7 27.1 3.3 42.0 61.7 70.1 26.2 3.4
CORE (TIP2022) 80.1 91.5 94.4 46.2 – 56.9 72.6 77.3 37.5 –
LCNL (Ours) 90.9 97.3 98.3 79.7 47.6 83.0 92.1 94.5 71.5 30.9

CORE (Ye et al., 2022), MMT (Ge et al., 2020), Puri-

fyNet (Ye and Yuen, 2020), DistributionNet (Yu et al.,

2019). Among them, (Ge et al., 2020; Ye and Yuen,

2020; Ye et al., 2022; Yu et al., 2019) are NA-robust

V-ReID methods, and our method is the only CNL-

robust approach. As illustrated in Table 5, as the noise

ratio increases, the performance of all the baselines re-

markably reduces. In contrast, LCNL performs stably,

which verifies that the robustness against the CNL is

more favorable compared to NA. Besides the superi-

ority of LCNL in noisy cases, it performs comparably

to VisbleAGW (Ye et al., 2021b) under the noise-free

setting.

Table 6 Ablation studies on Market1501 with 20% noise.
The default setting is marked in gray .

Method Variants 20% noise
Co-Modeling Pair Division Lsid Laqdr mAP mINP

! 66.2 28.3

! ! 85.5 58.9

! ! ! 84.5 57.0

! ! ! ! 86.6 61.7

4.3.2 Ablation Studies

In this section, we carry out ablation studies on Market-

1501 with 20% noise. Similar to Section 4.2.2, we inves-

tigate the performances of different variants of LCNL.

From Table 6, one could observe that each module of

LCNL plays an inseparable role in achieving CNL-robust

V-ReID.

4.4 Robust Vehicle ReID

In this section, we perform LCNL on the noisy Vehicle-

ReID datasets compared with some state-of-the-art ve-

hicle ReID baselines. Moreover, we also carry out abla-

tion studies accordingly.

4.4.1 Comparisons with State of the Arts

We endow TransReID (He et al., 2021), with the robust-

ness against CNL under our LCNL framework. In our

implementation, we adopt TransReID’s backbone and

train it under the LCNL pipeline with the CNL-robust

objective function.

Besides the vanilla TransReID (He et al., 2021),

we also compare LCNL with two recently-published

Vehicle-ReID methods including PGAN (Zhang et al.,

2020) and PVEN (Meng et al., 2020). As demonstrated

in Table 7, LCNL substantially achieves robustness on

CNL under different noise ratios while the baselines all

fail.

4.4.2 Ablation Studies

In this section, we conduct ablation studies on the VeRi-

776 dataset with 20% noise. Similar to Section 4.2.2, we

perform LCNL with different variants and summarize

the corresponding results in Table 8. From the results,

one could conclude that each module of LCNL plays an

important role in achieving robustness on CNL.

4.5 Analysis Experiments

To further analyze the revealed CNL problem and the

proposed LCNL framework, we conduct experiments on
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(a) Detection on NA (b) Statistics on NC (c) Detection on NC

Fig. 5 The ability to detect the NA and NC with different noise ratios. “Divided ACC” denotes the detection accuracy of
NA / NC. “Pair Proportion” denotes the population statistics of different kinds of pairs.

Table 7 Comparisons with state-of-the-art methods on the
VeRi-776 dataset under the noise ratio of 0%, 20% and 50%,
respectively. The best and second best results are highlighted
in bold and underline.

Noise Methods
VeRi-776

Rank-1 Rank-5 Rank-10 mAP

0%

PGAN (TIFS2020) 96.5 – – 79.3
PVEN (CVPR2020) 95.6 98.4 – 79.5
TransReID (ICCV2021) 97.1 – – 82.0
LCNL (Ours) 96.9 98.4 98.9 81.7

20%

PGAN (TIFS2020) 76.6 91.9 95.1 42.3
PVEN (CVPR2020) 76.9 89.6 94.9 47.1
TransReID (ICCV2021) 83.0 93.9 96.5 49.7
LCNL (Ours) 97.4 98.7 99.3 81.8

50%

PGAN (TIFS2020) 34.6 59.7 70.4 10.5
PVEN (CVPR2020) 54.1 71.6 80.5 21.6
TransReID (ICCV2021) 49.6 69.0 77.4 13.0
LCNL (Ours) 96.7 98.3 99.1 79.4

Table 8 Ablation studies on VeRi-776 with 20% noise. The
default setting is marked in gray .

Method Variants 20% noise
Co-Modeling Pair Division Lsid Laqdr mAP

! 52.5

! ! 77.5

! ! ! 72.6

! ! ! ! 81.8

the VI-ReID task with the SYSU-MM01 dataset under

the all-search evaluation mode.

4.5.1 Necessity of CNL-oriented Techniques

In Introduction, we argue that it is impossible to elimi-

nate the influence of CNL by only achieving robustness

against the NA. In this section, we verify this claim

by taking the cross-modality VI-ReID task as a show-

case. As there is no NA-robust VI-ReID method yet, we

take the generalized approaches as alternatives. Specif-

ically, we adopt DivideMix (Li et al., 2020) for annota-

tion rectification and then adopt the ADP (Ye et al.,

2021a) on the rectified data. Furthermore, we report the

performance of ADP by only using the clean data for

training. As illustrated in Table 9, one could have the

following observations. First, DivideMix performs im-

perfect data division and annotation rectification, thus

leading to inferior VI-ReID performance. Second, the

inferior performance of ADP-Clean compared to LCNL

demonstrates that it is inadvisable to simply discard

the noisy sample even using the ground truth parti-

tion as prior. The above experimental results support

our claims, showing the importance of developing the

CNL-oriented methods for the object ReID tasks.

Table 9 The necessity of our CNL-oriented paradigm. “DA”
denotes the division accuracy on clean and noise samples,
“RA” denotes the rectified accuracy for DivideMix.

Methods
20% noise 50% noise

DA RA mAP DA RA mAP

ADP-DivideMix 94.2 85.8 56.8 82.8 85.6 52.0
ADP-Clean – – 61.6 – – 56.5
ADP-LCNL 98.9 – 64.9 99.7 – 59.8

4.5.2 The Detection Ability of CNL

After revealing the importance of CNL-oriented solu-

tions, we further study the ability of LCNL to detect

NA and NC w.r.t. different noise ratios. To distinguish

the clean samples from the noisy ones, we simply set

0.5 as the confidence boundary for distinguishing the

clean from noisy samples. In the evaluation on NC, we

report the pair construction statistics and investigate

the detection ability of the pair division module. As il-

lustrated in Fig. 5, the detection accuracies on NA and

NC keep relatively stable even with the increasing noise

ratios, which fully demonstrates the effectiveness of our

method.
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4.5.3 Fine-grained Ablation Studies

The importance of all the LCNL modules has been well

investigated in Table 4, 6 and 8. For a more compre-

hensive study, we conduct more ablation studies at a

finer-grained level.

Effect of the Co-modeling Module: To investi-

gate the effect of the co-modeling module, we replace

the co-modeling module by adopting only one network

(i.e., self-training manner) or using the teacher-student

architecture (i.e., EMA manner (Tarvainen and Valpola,

2017)). As shown in Table 10, both the self-training and

EMA manners probably accumulate the bias during NA

modeling, thus degrading the performance.

Effect of the Recast Functions: To handle the

homogeneous pair combination, we design different kinds

of recast functions (Eq. 16). Here, we investigate their

roles in Table 11. One could see that the “LCNL-Weighty”

setting achieves superior performance thanks to the fa-

vorable optimization properties on handling hard-sampling

triplets, i.e., Theorem 1and 2.

Effect of the Adaptive Quadruplet Loss: Af-

ter pair division and correspondence rectification, the

robustness of NC is guaranteed by the adaptive quadru-

plet loss (Eq. 9) which consists of two loss components.

Here, we investigate their effects and summarize the

results in Table 12. The results demonstrate the impor-

tance of the two loss components in achieving robust-

ness.

Table 10 The effects of different training manners.

Manners
20% noise 50% noise

R-1 mAP mINP R-1 mAP mINP

LCNL-SelfTraining 65.3 62.4 48.4 62.1 58.7 44.1
LCNL-EMA 66.1 62.9 48.9 58.6 55.8 41.0
LCNL-CoModeling 67.2 64.9 51.7 62.4 59.8 45.9

Table 11 The effects of different recast functions.

Functions
20% noise 50% noise

R-1 mAP mINP R-1 mAP mINP

LCNL-Mean (σ1) 66.3 64.1 50.7 60.3 58.7 45.3
LCNL-Max (σ2) 67.4 64.8 51.6 61.0 58.8 45.0
LCNL-Min (σ3) 65.2 63.0 49.8 61.3 59.0 45.2
LCNL-MaxMin (σ4) 65.5 63.3 50.1 61.7 59.5 45.8
LCNL-Weighty (σ5) 67.2 64.9 51.7 62.4 59.8 45.9

4.5.4 Visualization on Robustness

In this section, we qualitatively study the robustness of

LCNL.

Table 12 The effect of the two loss components of the adap-
tive quadruplet loss.

Laqdr 20% noise 50% noise
Latri Lqdt R-1 mAP mINP R-1 mAP mINP

5 5 66.3 63.8 49.8 60.9 57.3 42.3

! 5 66.7 64.0 50.7 61.7 59.2 45.4

! ! 67.2 64.9 51.7 62.4 59.8 45.9

Robustness against NA: We visualize the per-

sample identity loss (Eq. 2) on different stages or set-

tings in Fig. 6. From the results, one could see that the

vanilla identification loss will overfit the noisy samples

(Fig. 6(c)). In contrast, the proposed soft identifica-

tion loss (Eq. 8) not only fits the clean samples well

but also prevents the overfitting on the noisy samples

(Fig. 6(d)).

(a) Before warmup (b) After warmup

(c) Without Eq. 8 (d) With Eq. 8

Fig. 6 Per-sample loss distribution under different settings.

Robustness against NC: We visualize the pair-

wise distance distribution of different kinds of pairs

w.r.t., ADP and LCNL. As shown in Fig. 7, ADP will

confuse the clean and noisy pairs, thus overfitting the

NC. In contrast, LCNL not only remarkably distin-

guishes the pairs but also correctly utilizes the noisy

pairs, i.e., increasing the distance of FP pairs while de-

creasing the one of FN pairs.

4.5.5 Robustness and Generalizability of LCNL

LCNL is a generalized framework, which could endow

most existing object ReID methods with robustness
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(a) TP-FP distributions of
ADP

(b) TP-FP distributions of
LCNL

(c) TN-FN distributions of
ADP

(d) TN-FN distributions of
LCNL

Fig. 7 Pairwise distance distributions of “TP + FP” pairs
and “TN + FN” pairs computed through ADP and LCNL.

against the CNL. In this section, we verify such general-

izability by additionally developing a robust version of

CrossAGW (Ye et al., 2021b) under the LCNL frame-

work which is denoted as “CrossAGW+LCNL”. More-

over, we investigate the robustness of “ADP+LCNL”

and “CrossAGW+LCNL” with different noise ratios by

increasing it from 0% to 60% with an interval of 10%.

As illustrated in Fig. 8, LCNL not only endows both

CrossAGW and ADP with robustness on the CNL but

also performs quite stably under different noise ratios.

Fig. 8 Performance comparisons of CrossAGW, ADP,
AGW+LCNL and ADP+LCNL on the SYSU-MM01 dataset
with varying noise ratios.

5 Conclusion

In this paper, we reveal a new problem for object ReID,

i.e., coupled noisy labels, which we refer to as noisy an-

notation and the accompanied noisy correspondence.

To tackle this challenge, we propose a CNL-robust frame-

work dubbed learning with coupled noisy labels. The

proposed LCNL first estimates the truly-annotated con-

fidences and then rectifies the noisy correspondences.

After that, it further groups training pairs into four

partitions and achieve CNL-robust object ReID with a

provable CNL-robust objective function. Extensive ex-

periments on three different ReID tasks verify the effec-

tiveness of LCNL. As many applications such as sketch-

based image retrieval require to annotate samples and

construct the training pairs using the annotation, they

probably encounter the CNL problem. Therefore, we

plan to explore the characteristic of these tasks and

study a more general solution for the CNL problem in

the future.
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APPENDIX

1 Proof to Theorem 2

Theorem 2 For the FP&TN combination, the gradi-

ent value of Laqdr with σ5 w.r.t. dij is greater than that

w.r.t. dis when dij < dis.

Proof For the FP&TN combination, ỹpij = 0 and ỹpis =

0, the gradient of Laqdr with σ5 w.r.t. dij is in the form

of

∂Laqdr

∂dij
=

exp (2dis) + (1 + dis − dij) exp (dij + dis)

(exp (dij) + exp (dis))2
,

and the gradient of Laqdr with σ5 w.r.t. dis is in the

form of

∂Laqdr

∂dis
=

exp (2dij) + (1 + dij − dis) exp (dij + dis)

(exp (dij) + exp (dis))2
.

Let G be the square difference between the values of

∂Laqdr/∂dij and ∂Laqdr/∂dis, it could be proved that

G > 0,∀dij < dis by

G =

∣∣∣∣∂Laqdr

∂dij

∣∣∣∣2 − ∣∣∣∣∂Laqdr

∂dis

∣∣∣∣2
=

2(dis − dij) exp (dij + dis) + exp(2dis)− exp(2dij)

(exp (dij) + exp (dis))2

> 0.

Therefore, the gradient value of ∂Laqdr/∂dij is greater

than ∂Laqdr/∂dis when dij < dis.

2 Discussion

Due to the hard mining strategy, the pairs are sus-

ceptible to be with noisy correspondence in the pres-

ence of noisy annotation, as discussed in Section 3.4.2

in the manuscript. Therefore, the number of different

triplet combinations would be inevitably inconsistent.

Fortunately, thanks to the proposed adaptive loss Laqdr

(Eq. 9), there is no need to use additional techniques

to balance the triplet combinations. Specifically, LCNL

adopts loss Laqdr to adaptively transform the noisy

combinations (FP&FN, TP&FN, and FP&TN) into new

“clean” combination (TP&TN) for achieving robust-

ness. Thanks to the mechanism of Laqdr, different types

of combinations would be transformed into the new

“clean” combination (TP&TN), thus having the same

importance as each other. As a result, LCNL could

achieve robustness against noisy correspondence under

imbalanced triplet combinations.

3 More Experiment Details

In the Appendix, we elaborate on the details of the used

five datasets as follows.

– SYSU-MM01: It is a large-scale VI-ReID dataset

where the images are captured by four visible cam-

eras and two near-infrared ones under both indoor

and outdoor environments on the SYSU campus.

In the dataset, 22,258 visible images and 11,909 in-

frared images from 395 identities are used for train-

ing, 301 randomly sampled visible gallery images,

and 3,803 infrared query images from another 96

identities are used for single-shot evaluation.

– RegDB: It is a VI-ReID dataset that consists of

8,240 images from 412 identities. Each identity has

10 visible and 10 infrared images captured by a dual-

camera (one visible and one infrared) system. The

standard evaluation protocol is using 10 different

training/testing splits. At each evaluation trial, half

of the identities are chosen for training and the rest

are used for evaluation.

– Market-1501: It is a large-scale V-ReID benchmark,

which consists of 32,668 images of 1501 identities

captured by six different cameras. In the dataset,

751 identities are used for training and the rest 750

identities are utilized for testing. In the standard

testing protocol, 3,368 query images are chosen as

the probe set to find the correct matching over 15,913

reference gallery images.

– DukeMTMC: It is a large-scale V-ReID dataset col-

lected from eight different high-resolution videos.

This dataset consists of 16,522 training images from

702 identities, 2,228 query images, and 17,661 gallery

images from another 702 identities.

– VeRi-776: It is a widely-used dataset for vehicle ReID

which is collected in the real-world urban surveil-

lance scenario. The dataset consists of 37,715 train-

ing images from 576 identities, 11,579 gallery im-

ages, and 1,678 query images from another 200 iden-

tities.

4 More Experiment Results

To investigate the impact of different network initial-

ization on our LCNL, we change the initialization dif-

ference by varying the hyper-parameters of the default

initialization scheme. Accordingly, we conduct exper-

iments with three settings to investigate the impact

of initialization differences on the final performance.

Specifically, we initialize two networks with 1) the same

initialization; 2) different initialization; and 3) relatively

different initialization. The results are summarized in
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Table 13, where one could find that moderately varying

the initialization between two networks might benefit

the co-modeling scheme thus slightly improving the per-

formance. However, over-changing the hyper-parameters

of the default initialization scheme might lead to unsta-

ble optimization. Therefore, in the main experiments,

we still initialize networks with default hyper-parameters.

Table 13 Ablation studies the network initialization scheme
under SYSU-MM01 with 20% noise. The default setting is
marked in gray . The ↓ and ↑ denote the performance degra-

dation and improvement compared to the default setting, re-
spectively.

Initialization Variants 20% noise
Same Different Relatively Different mAP mINP

! 64.9 51.7

! 64.5(↓ 0.4) 51.2(↓ 0.5)

! 65.3(↑ 0.4) 52.3(↑ 0.6)


